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Background: Music-assisted treadmill training (MATT) is a new therapeutic approach

for Parkinson’s disease (PD) patients, combining treadmill training with rhythmic auditory

cueing and visual feedback. PD studies have shown larger positive effects on motor

outcomes than usual treadmill training. However, effects on cognition, in contrast, are

less clear. Existing studies provided intensive training protocols and included only stable

medicated patients. Thus, a pilot randomized controlled trial was designed to analyze the

feasibility of a shorter training protocol as well as preliminary effects on cognition, motor

function, and patient-centered outcomes in a rehabilitation setting where PD patients with

and without deep brain stimulation (DBS) undergo adaptation of medication and DBS

settings. Here, we present the results from the feasibility analysis of the still ongoing trial.

Methods: Non-demented PD patients with and without DBS were recruited during their

inpatient rehabilitation and randomized to an experimental group (EG; 20min MATT)

or an active control group (CG; 20min bike ergometer training). The trainings took

place for 8 consecutive days and were added to the usual rehabilitation. Feasibility

was assessed with the following parameters: patients’ study protocol acceptance, study

protocol transferability into clinical routine, training-induced adverse events, and patients’

training perception.

Results: Thirty-two patients (EG: n = 15; CG: n = 17; 72% DBS) were included.

The study protocol was well-accepted (inclusion rate: 84%). It was transferable

into clinical routines; dropout rates of 40% (EG) and 18% (CG) were observed.

However, an in-depth analysis of the dropout cohort did not reveal intervention-related

dropout reasons. The MATT and the standard ergometer training showed no

adverse events and were positively perceived by PD patients with and without DBS.
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Conclusion: MATT was shown to be a feasible, safe, and enjoyable treatment option

in PD patients with and without DBS. Furthermore, the dropout cohort analysis revealed

some exciting first insights into possible dropout reasons that go beyond the form of

intervention. Therefore, research would benefit from a common practice of dropout

analyses, as this would enhance our understanding of patients’ therapy adherence

and expectations.

Keywords: Parkinson’s disease, deep brain stimulation, music assisted treadmill, non-pharmacological treatment,

feasibility, randomized controlled trial

INTRODUCTION

Parkinson’s disease (PD) is defined by the motor symptoms
akinesia/bradykinesia, rigidity, resting tremor, and postural
instability (1). However, growing evidence exists that PD is a
more complex, multidimensional disease that goes along with
motor symptoms as well as several non-motor symptoms (2–5).

Among the motor symptoms, the alterations in the ability
to move caused by a loss of automaticity, rhythmicity, velocity,
and effectiveness are clinically the most prominent features
of the disease (6–11). These symptoms become especially
evident in patients’ gait and balance performance, which are
usually impaired causing slowness/fastening of gait, higher step
variability, reduced walking dynamics, and/or freezing of gait
(11–14) and are likely to increase patients’ inactivity (15) and
disease burden (16, 17).

Pathophysiologically, these changes in movement and
especially in gait are due to alterations in networks involving
the basal ganglia and other brain structures (6, 7, 10, 18). These
alterations are suggested to be also responsible for some of the
non-motor symptoms that occur in PD (6, 8, 10). Among these,
especially the cognitive functions are strongly discussed to be
impacted by the neuronal changes caused by the transmitter
depletion (6, 8, 19). The changes in cognition, which are common
in PD (20, 21), additionally decrease quality of life and increase
disease burden (16, 17).

Some of the disease-related symptoms can be treated
pharmacologically (1, 22) or by deep brain stimulation [DBS; (23,
24)], whereas other symptoms respond only limitedly, negatively,
or not at all to PD medication (3, 6, 10, 25) and/or DBS (23, 26–
28). Furthermore, for the treatment of cognitive dysfunction,
only limited pharmacologic options exist (6, 29, 30). Therefore,
non-pharmacologic therapies, such as neurorehabilitation, gain
increasing interest to improve PD symptoms (27, 31–34).

Neurorehabilitation is a multi-professional approach aiming

at restoration, compensation, and/or prevention of ability loss

through training (31, 32). Physiotherapy is a major pillar of PD

neurorehabilitation, as PD was longtime considered solely as a

motor disorder (33, 35, 36). One main goal of physiotherapy
is to preserve and improve automaticity, rhythmicity, velocity,
and effectiveness of movement through different trainings (34,
37). For the gait and balance deficits commonly observed in
PD, treadmill training is a widely used training tool (38, 39).
Nevertheless, conventional treadmill training oftentimes targets
only motor symptoms in a multidimensional disease. However,

treadmill training has cognitive aspects when conducting the
training itself (40), and few studies have also examined the
positive effects of endurance training (e.g., treadmill training) on
cognitive functioning (41).

Knowledge has increased that motor function and cognition
are interrelated in PD and should be considered as linked
entities in therapy (6, 27, 31, 42), especially during a cognitive
(re-)learning process (6, 31, 42). Neurorehabilitation usually
is such a cognitive skill–(re-)learning process, indicating that
its success depends on available and accessible cognitive
resources (6, 40, 43).

Furthermore, in PD, the loss of automaticity, rhythmicity,
velocity, and effectiveness of actions requires that patients have
to cognitively control them (6, 11, 44, 45). This results in an
increased cognitive load, an increased risk for errors/failure, and
fatigue (11, 45). Additionally, the cognitive impairment itself,
which can even occur in PD patients before or at the time of
the diagnosis (3, 21), might influence movement planning and
execution (11, 45, 46), all together limiting patients’ (re-) learning
potential. However, several studies have shown that (re-)learning
is possible in PD (39, 42, 47–50). Approaches that consider
patients’ limitations and help to bypass the deficient networks
seem to be especially promising (51–53).

One of these approaches is rhythmic auditory cueing (RAC).
RAC eases the initiation and continuation of repetitive sequential
movements by providing an external temporal auditory stimulus
[e.g., metronome, music, clapping; (54)]. Other studies have
also used ecological sounds as cues (e.g., footsteps), which have
proven to be effective, especially for spatiotemporal parameters
of gait (55, 56). This is believed to help patients to overcome
the automaticity and rhythmicity deficits (44, 57, 58), resulting
in more fluent movement and reduced cognitive engagement
(44, 58). RAC is often combined with gait training and has proven
to be an effective therapy tool to improve different aspects of
gait, such as walking speed, step length, and step frequency (52,
59, 60). Besides its previously mentioned effects on automaticity
and rhythmicity, RAC gait training in combination with visual
feedback is considered as a dual-task cognitive–motor training
(61, 62), as it demands patients’ attention to consciously step
synchronic to the auditory cue and include the visual feedback
in the next step, which are two concurrent tasks. This allows
therapists and patients to take advantage of a cognitive–motor
strategy bypassing deficient neuronal circuits (57, 63, 64). Studies
showed that RAC also affects cognition (65, 66) and motor
relearning (49, 50).
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The relative new therapy device Gait Trainer 3.1 by Biodex
offers a treadmill with integrated RAC and real-time visual
feedback extending common treadmill training by cognitive–
motor strategies. Studies on this device have shown superior
effects of music-assisted treadmill training (MATT) on patients’
gait (67–69), locomotion networks (67), and quality of life
(69) compared with those of traditional treadmill training
without RAC. However, these studies were conducted in
special rehabilitation settings with high training intensities and
duration and did not examine the effects on cognition (64, 67–
69). Furthermore, patients’ medication had to be unchanged
before and during study inclusion (64, 67, 69). Although this
methodological procedure has some advantages regarding the
interpretability of changes, it might not represent “real-world”
PD patients that are referred to inpatient rehabilitation with the
indication also to optimize medication and/or DBS settings. The
Godeshoehe rehabilitation clinic (Bonn, Germany) is specialized
in post-surgery DBS programming and medication optimization
so that PD patients characteristically undergo adjustment of
medication and stimulation parameters during their inpatient
rehabilitation (70, 71). It is, therefore, especially interesting
for such a rehabilitation setting, if a study protocol like the
present and the newly herein planned MATT is feasible and safe
compared with the usual treatments. Moreover, this question
is especially relevant to extend non-pharmacological therapy
options in the PD-DBS cohort as literature on the (physical)
trainability of those patients is scarce (72).

Therefore, we designed a pilot randomized controlled trial
(RCT) with a 6-week follow-up evaluating the feasibility of our
study protocol and study interventions as well as preliminary
effects on cognition, motor function, and patient-centered
outcomes. In this present article, we show the feasibility analysis
of this ongoing pilot RCT, whereas the results on cognition,
motor function, and patient-centered outcomes immediately
after training and 6 weeks later will be reported after the
recruitment is completed.

Regarding the feasibility of the study protocol, it was
hypothesized that (i) PD inpatients at the rehabilitation clinic
are interested in joining an additional 20min of training either
on the MATT or the ergometer; (ii) the study protocol can
be transferred into clinical routines. Regarding the training
feasibility, we expected that (iii) MATT will not cause (more)
negative adverse events during or after training, and (iv) MATT
will lead to a more positive perception by participants than the
ergometer training.

MATERIALS AND METHODS

Study Design and Procedure
This pilot RCT was conducted at the Godeshoehe, a neurological
rehabilitation clinic in Bonn, Germany, with PD patients during
their inpatient rehabilitation. Patients’ eligibility was assessed by
checking medical records and in personal conversation (MG, JS,
and JN). If patients were eligible and interested to participate,
they were verbally informed about the details of the study
(MG, JS, and JN) and received written study information.
Written informed consent was obtained from all participants

before inclusion in the study. The ethics committee of the
medical faculty of the University of Cologne approved the study
(reference number 19-1291), which followed the declaration of
Helsinki (version 2013, Fortaleza). The trial was registered in
the German Clinical Trials Register (DRKS00017687, 25.09.2019)
before the first patients’ enrollment.

Patients underwent extensive testing before and immediately
after the intervention phase to assess cognition, motor function,
and patient-centered parameters. Also, we assessed depression,
fatigue, quality of life, physical activity level, functional
independence in activities of daily living (ADL), freezing of
gait, and word fluency 6 weeks later (follow-up) within a
telephone interview. The results of cognitive, motor, and patient-
centered assessments, as well as the follow-up interviews, will
be published elsewhere. All assessors were trained in motor
and neuropsychological examinations. The cognitive testing was
performed by the neuropsychology staff of the clinic who was
not further involved in the study conduction and was blinded
for the type of intervention at both time points. The motor
function was assessed by two qualified physiotherapists (MG and
MK) who were blinded for group allocation in the pre- but not
in the post-testing due to limited personnel resources. Patient-
centered parameters were assessed with questionnaires that were
conducted by trained psychology students (PS, LC, AN, JL, and
LE) who were blinded for group allocation at baseline but not
after training and in telephone interviews.

After the baseline assessment, patients were randomized into
the experimental group (EG) and the control group (CG) by a
paper lot that was drawn from a sealed envelope by a person not
related to the study. The lots had been prepared before patients’
enrollment. Therefore, the numbers 1 to 40 were randomized
into the two study conditions (EG and CG) with randomizer.org.
Thereafter, paper-lots indicating a number and group allocation
were prepared and sealed in an envelope. The lot number
(e.g., 00), together with the study ID (MATT_0), served as the
participants’ ID (e.g., MATT_000) during the study.

During the intervention phase, patients received either 20min
of MATT or ergometer training (CG) in addition to the standard
rehabilitation program (525 min motor therapy per week plus
210 min cognitive training) for 8 consecutive days excluding
weekends and holidays (Figure 1).

Daily, mood and motivation before each training session as
well as exhaustion and fun after each training session were
evaluated, and training participation was documented.

Patients and Eligibility Criteria
Participants were inpatients of the neurological rehabilitation
center Godeshoehe in Bonn, Germany. They could participate
if they had a clinical diagnosis of idiopathic PD [according to
UK Brain Bank Criteria; (73)] and confirmed by a neurologist
and were non-demented [score ≥17 in the Montreal Cognitive
Assessment—MoCA; (74)], had no clinically relevant depression
[score ≤10 on the Geriatric Depression Scale—GDS; (75)],
or other concurrent neurologic or psychiatric illness, and
had no orthopedic or cardiac contraindication to performing
the training.
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FIGURE 1 | Study protocol.

Interventions
Music-Assisted Treadmill Training
The MATT was conducted on Biodex Gait Trainer 3.1 (Biodex
Medical System, 20 Ramsay Road, Shirley, NY, USA). This
treadmill is an extension of common therapy and training
treadmills, as it has an integrated RAC function and a visual
feedback option. MATT can be used, for example, to train gait
parameters, balance, endurance, and, eventually, also cognition.

For the RAC, the device is equipped with a library of
different metronome sounds and music. The selection of
music therapy-informed compositions was specially designed
by music therapists to expand rhythm-based therapy using
spatial, temporal, and force cues (76). Therefore, the beats per
minute (bpm) can be adapted to patients walking speed in a
range between 45 and 130 bpm. For the visual feedback, a
monitor is mounted on the treadmill visualizing patients’ steps
in comparison with the demanded step. The target step length
is visualized by a marked corridor in between two green lines.
Patients’ alternating steps for right and left foot were shown, and
patients were provided with the visual but also verbal feedback
(e.g., “good job” or “longer step right/left”). Furthermore, patients
received feedback on the step symmetry by the percentage of
weight bearing on each foot shown as a bar graph.

During training, the bpm of metronome/music was matched
with patients’ steps per minute, which were evaluated before
the first training serving as an indicator for the baseline
walking speed on the treadmill. Walking speed was gradually
increased, depending on heartbeat, balance, and synchronization
if patients felt comfortable with it. In this study, a metronome
(“Metronome Only- E Click Low”) and a piece of music
(“Animals Everywhere”) were used. These were found to work

best for PD patients in terms of beat recognition and the ability

to synchronize in several training sessions before the study onset.

Patients started the gait training after walking on the treadmill

for 5min. In this first 5min, they were provided with real-

time visual feedback for their step length, speed, and symmetry.
After that, they walked to the metronome for another 5min,
followed by 10min walking to the music. The visual feedback
was provided for the whole training duration. The training was
instructed, adapted, supervised, and documented by qualified

physiotherapists (MG and MK) and assistants (JS, PS, LC, AN,
JL, and LE) who conducted patients’ daily ratings before and after
training and recorded possible adverse events.

Ergometer Training
During the ergometer training, patients trained for 20min
on the ERGO-FIT Cycle 4000 med (ERGO-FIT GmbH &
Co. KG, Blocksbergstraße 165, 66955 Pirmasens, Germany).
Patients’ entry level was at a nominal power of 25W, which
was, if possible, gradually increased over time, depending on
medical recommendations, heartbeat, and blood pressure. The
ergometer training is a standard endurance treatment at the
Godeshoehe rehabilitation clinic. The training was instructed,
adapted, supervised, and documented by the team of sports
therapists, as this is the usual procedure in the clinic. One
person from the study personnel was also around during training,
especially to conduct patients’ daily ratings before and after
training and record possible adverse events.

Sociodemographic and Clinical
Parameters
To allow a description of the study population, sociodemographic
(sex, age, education, marital status, and handedness) and clinical
parameters (PD duration, DBS yes/no, and DBS duration,
physical activity level) were taken from the patients’ medical
records or assessed in personal communication.

Outcomes
Feasibility of the Study Protocol
The following parameters were used to assess the feasibility of
the study protocol: (i) Patients’ acceptance of the study protocol
was measured as the rate of patients providing their written
informed consent to participate in the study out of those patients
regarded as eligible for the study; (ii) Transferability of the
study interventions into clinical routine was defined by the rate
of patients who completed the full study protocol, including
the pretesting, the eight training days, and the post-testing
(completion and dropout rates).
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Feasibility of the Music-Assisted Treadmill Training in

Comparison With a Treatment as Usual Ergometer

Training
To assess the feasibility of theMATT compared with the standard
ergometer trainings, the following parameters were assessed:
(i) the amount of possible adverse events such as abortions
of single training sessions, cardiovascular incidences, falls or
almost falls during/after MATT as well as extreme fatigue that
caused the cancellation of other trainings after the MATT session
or ergometer training were recorded to be compared in the
analysis. Therefore, the trainers (MG, MK, JS, PS, AN, LC, JL,
and LE) documented the training in a standardized form during
training and communicated with the nurses and/or patients
about the occurrence of possible adverse events before the next
training. (ii) Patients’ subjective training perception, including
mood, motivation, exhaustion, and fun, was assessed. For each
parameter, a four-point Likert scale (e.g., “very happy,” “rather
happy,” “rather unhappy,” and “very unhappy”; “not exhausted at
all,” “hardly exhausted,” “little exhausted,” and “very exhausted”)
was used. Patients in both groups received one questionnaire
(asking to rate mood and motivation) before training and the
other one (asking to rate exhaustion and fun) after training daily
during the intervention phase of the study. Patients were allowed
to fill out these questionnaires without the trainers to reduce the
risk of bias for responses in favor of the trainers, and they were
asked to give their truthful feedback.

Cognition
Patients underwent extensive pre- and post-training assessments
to evaluate different cognitive domains. The test battery
consisted of tests for global cognition [MoCA; (77)], attention
[test of attentional performance—TAP; (78), subtests “alertness”
and “divided attention”], executive functions (TAP subtest
“flexibility” and “Go/NoGo”), working memory [Wechsler
Memory Scale, revised version—WMS-R; (79), subtest “digit
span reverse” and “block span reverse”], memory (WMS-R
subtests “digit span forward” and “block span forward”),
and visuocognition [TAP, subtest “visual scanning” and
Leistungsprüfsystem—LPS 50+ (80), subtest “mental rotation”].
All tests were performed and evaluated by the team of the
neuropsychology department.

Motor Function
Motor function was assessed in this analysis with the Hoehn
and Yahr Scale (81) and the motor score (part III) of the
Movement Disorder Society Unified Parkinson’s Disease Rating
Scale [UPDRS; (82)] by trained physiotherapists (MG and MK).
In the preregistration of the study, we registered further motor
outcomes (functional integrity of the lower extremity, walking,
balance, gross and fine hand function, and freezing of gait). As
this is a preliminary analysis of the ongoing pilot RCT focused on
feasibility, only selected outcomes to describe motor impairment
were analyzed and presented here.

Patient-Centered Outcomes
In terms of patient-centered outcomes, disease severity,
depression [GDS; (75)], quality of life [39-item Parkinson’s

Disease Questionnaire—PDQ-39; (83)], fatigue [16-item
Parkinson Fatigue Scale—PFS-16; (84)], and functional
independence in ADL [Functional Independence Measure—
FIM; (85)] were assessed by psychology students (PS, AN, LC, JL,
and LE).

Statistical Analyses
The statistical analysis was performed with IBM SPSS Statistics
26.0 (Armonk, NY).

An a priori sample size calculation or power analysis was not
performed, as this is a pilot study especially interested in the
feasibility. The planned sample size is 40 patients, 20 in each arm.

For the baseline comparison of demographic data, global
cognition, PD related characteristics, and clinical outcomes
between the EG and CG, independent sample t-tests, Wilcoxon
rank-sum tests, or χ2-tests were used as appropriate. Variables
and test scores were previously inspected for normal distribution.
As the Kolmogorov–Smirnov Test indicated that most variables
were not normally distributed, further analyses were conducted
with non-parametric tests.

To evaluate the feasibility of the study protocol, the following
analyses were conducted: The inclusion rate for all patients was
reported. Furthermore, the completion rate and corresponding
dropout rate were reported for the EG and CG. To assess reasons
for dropout, baseline results of patients following the complete
study protocol (completers, C+) and non-completers (C–)
were compared by Mann–Whitney U-test. To evaluate eventual
training-related dropout reasons, the curves in subjective daily
measures of C– were visually inspected and descriptively
compared with the median curve of C+. To evaluate the
feasibility of trainings, reported adverse events are listed for the
EG and CG. Moreover, a baseline comparison of C+ patients
separated into EG and CG was performed by Mann–Whitney U-
test. To analyze the course of the subjective training perceptions
(motivation, mood, exhaustion, and fun) for the C+ within the
EG and CG, Friedman’s ANOVA was applied.

The significance level was set at p ≤ 0.05; values of p ≤ 0.1
were considered as statistical trends. Bonferroni corrections were
applied to correct for multiple testing. For the cognition, the
adjusted α-level was set at p≤ 0.004 (14 comparisons), for motor
function at p ≤ 0.025 (two comparisons), and for the patient-
centered outcomes at p ≤ 0.013 (four comparisons). Corrected
p-values are reported. Pearson’s r was calculated as effect sizes
and interpreted according to Cohen (86): r = 0.10 weak, r = 0.30
moderate, r = 0.50 strong.

RESULTS

Feasibility of the Study Protocol
Patients’ Acceptance of the Study Protocol
Between September 2019 and March 2020, we checked 54
patients for their eligibility to participate in this pilot RCT.
Sixteen patients had to be excluded for not meeting the inclusion
criteria; six declined to participate. Finally, 32 patients (24 males;
age: 57.56 ± 7.68 years; PD duration: 8.63 ± 6.60 years; 24
DBS patients) were included in this pilot RCT. Therefore, the
inclusion rate was 84%.
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FIGURE 2 | Summary of patients’ flow.

Transferability of Study Protocol Into Clinical Routine
During allocation, 15 patients were randomized into the EG and
17 patients into the CG. In the course of the study, nine patients
dropped out due to various reasons (EG: n = 6; CG: n = 3): In
the EG, two patients asked to be excluded from the study, one
after the baseline assessment and one after the seventh training
session. Another four patients had to be discharged from the
rehabilitation center before the study protocol was completed (n
= 2 after the third training, n= 2 after the fourth training). Three
of these four patients were offered an extended stay but declined.
In the CG, two patients were discharged too early as well, one
after the baseline assessment and one after the first training. One
of the two patients declined an offered extension of rehabilitation.
No patient in the CG dropped out for personal reasons. Due to
upcoming COVID-19 restrictions, one more patient had to stop
after the second training. The completion rate in the EG was 60%

and in the CG 82%, with corresponding dropout rates of 40% in
the EG and 18% in the CG (Figure 2).

Comparison of Completers and Non-completers at

Baseline
To further analyze possible dropout reasons, baseline parameters
of C+ (n = 23, age: 55.83 ± 6.09 years, PD duration: 7.61 ±

4.73 years, 17 DBS patients) and C– (n = 9, age: 62 ± 9.77
years, PD duration: 11.23 ± 9.83 years, 7 DBS patients) were
examined. Between the C+ and C–, a significant difference in
sociodemographic and clinical data was observed for the time
since DBS surgery (U = 28.000, p = 0.041, r = 0.42) and the
level of activity (U = 39.500, p= 0.019, r= 0.44): time since DBS
surgery was longer in C+, and they were physically more active.
C+ demonstrated a less motor impairment (Hoehn and Yahr
Scale, U = 39.500, p= 0.005, r = 0.49; UPDRS III, U = 51.000, p
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= 0.026, r= 0.39). Regarding cognition, a significant difference in
favor of the C+ was observed for non-verbal short-termmemory
(WMSR block span forward, U = 19.500, p = 0.001, r = 0.56) as
well as statistical trends for non-verbal working memory (WMSR
block span reverse, U = 41.000, p = 0.053, r = 0.34) and visual
processing accuracy (TAP visual scanning errors, U = 43.000, p
= 0.066, r= 0.34). C+ patients showed less depressive symptoms
(GDS, U = 41.000, p = 0.018, r = 0.42), tended to experience a
higher health-related quality of life (PDQ-39, U = 40.500, p =

0.050, r= 0.36), and higher levels of independence in ADLs (FIM,
U = 52.000, p = 0.070, r = 0.33). No other differences between
the C+ and C– were identified (Table 1).

Comparison of Training Perception for Completers

and Non-completers
In the C– group, seven of nine patients had trained three to seven
times until they dropped out of the study. Therefore, patients’
training perceptions before and after the absolved trainings were
visualized to explore possible training-induced dropout reasons
(Figures 3A–D). Here, some heterogeneity among the seven
patients was seen. However, on average, C– patients were in
“good mood” and “motivated” before their trainings as well as “a
little exhausted” after the training. Furthermore, they had “fun”
while training. These results are similar to the median of the
C+ group.

Comparing the training perception of those C– patients who
trained in the EG (n = 5, patient C– [1] to C– [5]) with that in
the CG (n = 2, patient C– [6] and C– [7]) descriptively, some
heterogeneity in patients’ reports could be seen. However, most
patients in the EG, as well as in the CG, were in “good mood” and
“motivated” before training and “exhausted” after the training.
Patients in both groups reported that training was “fun.” Only
on EG patient (C– [4]) deviated negatively from the others for
“mood” and “motivation” but not for “exhaustion” and “fun.”

Feasibility of the Music-Assisted Treadmill
Training and the Ergometer Training
Adverse Events of Trainings
In both training groups, no adverse events such as abortions of
single training sessions, cardiovascular incidences during or after
training, falls or almost falls during or after training, and extreme
fatigue that caused the cancellation of other trainings were noted
by the patients, trainers, or nurses.

Baseline Results for Experimental and Control

Groups Without Non-completers
In comparison of sociodemographic and clinical parameters
between EG (n = 9; age: 56.67 ± 3.61 years, PD duration: 8.64
± 5.49 years, 5 DBS patients) and CG (n = 14, age: 55.29 ± 7.43
years, PD duration: 6.94 ± 4.25, 12 DBS patients), a trend for
a statistical difference was noticed, showing that patients in the
EG were physically more active (IPAQ, U = 34.000, p = 0.099,
r = 0.37). Another trend for a significant group difference was
observed for the visual scanning speed (TAP visual scanning,
U = 31.000, p = 0.046, r = 0.42), which was faster in the EG
compared with the CG. In the EG, quality of life showed a trend
to be higher than in the CG (PDQ-39,U = 58.500, p= 0.087, r=

0.29). No further differences were observed between the EG and
CG (Table 2).

Patients’ Training Perception for Experimental and

Control Groups Without Non-completers
Comparing these parameters for the C+ separately for the EG
and the CG for all trainings (Figures 4A–D), it was observed that
patients in the EG were in “good mood” and “motivated” before
training but showed some variance in post-training exhaustion
over the eight trainings ranging from “a little exhausted” to
“exhausted.” Furthermore, patients in the EG reported having
“a lot of fun” during training. No significant changes over time
within the EG were identified. In the CG, patients were also in
“good mood” and mostly “motivated” before training. However,
patients were significantly less motivated to train on the sixth
day [χ2(2) = 18.293, p = 0.011] compared with those on all
other training days. Patients in the CG were “a little exhausted”
after training, and their report of fun during training varied
between “fun” and “a lot of fun.” In the CG, no further changes
were observed.

DISCUSSION

In the present feasibility analysis, we aimed to evaluate the
feasibility of the study protocol in terms of patients’ acceptance
of the study and the transferability into clinical routines as well
as the feasibility of training defined by the occurrence of adverse
events and patients’ training perception. The main findings were
that the study protocol was well-accepted by PD patients with
and without DBS. However, the high dropout rate, especially
in the EG, indicated the transferability of the study protocol
only. Nevertheless, the analysis of the dropout cohort did not
reveal intervention-related dropout reasons (but patient-related
differences between C+ and C–). Furthermore, the MATT, as
well as the standard ergometer training, showed no adverse
events and was positively perceived by PD patients with and
without DBS.

Feasibility of the Study Protocol
Patients’ Acceptance of the Study Protocol
In this feasibility analysis, patients’ acceptance of the protocol
was measured as the rate of participating patients out of eligible
patients (=inclusion rate), which was 84%. In a comparable
study by Calabrò et al. (67), also examined the effects of
MATT, an inclusion rate of 94% was obtained. It has to be
noted that in the present study, six eligible patients declined
to participate. However, it is difficult to give reasons for the
rejection, as patients were allowed to quit without giving reasons.
Nevertheless, it would be informative to find inclusion rates in
studies more often.

Transferability of Study Protocol Into Clinical Routine
The transferability of the study protocol into clinical routines
was evaluated by the completion and dropout rate. The present
feasibility analysis revealed, a completion rate of 60% (and
corresponding 40% dropout) in the EG, as well as 82%
completion (and corresponding 18% dropout) in the CG.
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TABLE 1 | Baseline comparison of completers and non-completers.

Completers (C+) Non-completers (C–) U Between-group

significance, p

Effect size, r

n 23 9

Sociodemographic and clinical data

Sex Males 19 6 75.500 0.176

Females 4 3

Years of age 55.83 ± 6.09 62.00 ± 9.77 72.500 0.200

Level of education No formal education 1 1 75.500 0.134

Min. 9 years of education 4 3

Min. 12 years of education 5 2

12–16 years of education 4 0

More than 16 years of education 5 3

Marital status Single 2 0 99.000 0.877

Relationship 3 0

Married 14 9

Divorced 4 0

Handedness (EHI) Right 21 8 101.000 1.000

Left 2 1

Bilateral 0 0

Years since PD diagnosis 7.61 ± 4.73 11.23 ± 9.83 87.500 0.515

DBS No 7 2 99.500 1.000

Yes 17 7

Years since DBS surgery 2.24 ± 2.95 0.63 ± 1.48 28.000 0.041* 0.42

Freezing of gait (FOGQ) 0.00 (R = 21; n = 11/23) 14.00 (R = 18; n = 4/9) 60.000 0.324

Physical activity level

(IPAQ)

Low 5 5 39.500 0.19* 0.44

Moderate 8 3

High 9 0

Cognition

Global cognition (MoCA)a 25 (R = 10) 25 (R = 16) 87.000 0.611

Attention (TAP) Alertness (reaction time in ms)b 281 (R = 822) 300 (R = 261) 74.500 0.233

Divided attention (omissions)b 2 (R = 7) 4 (R = 14) 70.000 0.161

Executive functions (TAP) Flexibility (reaction time in ms)b 934 (R = 2,458) 1,356 (R = 0) 64.000 0.368

Flexibility (errors)b 2 (R = 16) 4 (R = 31) 71.500 0.364

Inhibition (reaction time in ms)b 455 (R = 455) 493 (R = 299) 76.500 0.268

Inhibition (errors)b 1 (R = 10) 1 (R = 14) 93.500 0.678

Working memory (WMSR) Digit span reversea 6 (R = 7) 5 (R = 5) 67.000 0.517

Block span reversea 7 (R = 8) 4 (R = 5) 41.000 0.053t 0.34

Memory (WMSR) Digit span forwarda 6 (R = 8) 6 (R = 5) 63.000 0.400

Block span forwarda 8 (R = 9) 6 (R = 3) 19.500 0.001* 0.56

Visuocognition (TAP) Visual scanning (reaction time in ms)b 3,806 (R = 5,512) 3,527 (R = 8,402) 67.000 0.570

Visual scanning (errors)b 8 (R = 26) 2 (R = 8) 43.000 0.066t 0.34

Visuocognition (LPS 50+) Mental rotationa 11 (R = 25) 10 (R = 14) 90.500 0.598

Motor function

Motor impairment Hoehn and Yahrb 2.5 (R = 2.5) 3 (R = 1.5) 39.500 0.005* 0.49

UPDRS IIIb 28 (R = 50) 43 (R = 60) 51.000 0.026t 0.39

Patient-centered outcomes

Depressive mood (GDS)b 1 (R = 9) 4.5 (R = 8) 41.000 0.018t 0.42

Quality of life (PDQ-39)b 31 (R = 76) 62 (R = 64) 40.500 0.050t 0.36

Fatigue (PFS-16)b 45 (R = 54) 49 (R = 36) 69.500 0.322

ADL independence (FIM)a 89 (R = 33) 82.5 (R = 75) 52.000 0.070t 0.33

*Significant difference.
aHigher scores indicate better performance.
bLower scores indicate better performance.

P-values are reported for all data, effect sizes only in case of a significant finding. For sociodemographic and clinical data, frequencies, as well as means and standard deviations, are

reported. For cognitive, motor, and patient-centered outcomes, medians and ranges are reported. For sociodemographic data, p was set at p ≤ 0.05, whereas p ≤ 0.1 were considered

as trends. Corrected p-values are reported for the cognitive data (p ≤ 0.004), the motor function data (p ≤ 0.025), and the patient-centered outcomes (p ≤ 0.013).

t, statistical trend; R, range; EHI, Edinburgh Handedness Scale; FOGQ, Freezing of Gait Questionnaire; IPAQ, International Physical Activity Questionnaire; MoCA, Montreal Cognitive

Assessment; TAP, Test of Attentional Performance; WMSR, Wechsler Memory Scale revised; LPS50+, Leistungsprüfsystem; GDS, Geriatric Depression Scale; PDQ-39, 39-item

Parkinson’s disease questionnaire; PFS-16, 16-item Parkinson Fatigue Scale.
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FIGURE 3 | Non-completers’ subjective self-perception before and after training compared with the median of completers. (A) Mood before each training for

non-completers (C– [1] to C– [7]) compared with the median of completers (C+). (B) Motivation before each training for non-completers (C– [1] to C– [7]) compared

with the median of completers (C+). (C) Exhaustion after each training for non-completers (C– [1] to C– [7]) compared with the median of completers (C+). (D) Fun

after each training for non-completers (C– [1] to C– [7]) compared with the median of completers (C+).

As previous studies on MATT (64, n = 40; 67, n = 50)
did not observe any dropouts, we did not anticipate such a
high dropout-rate for our study. Thus, an accordingly high
dropout rate needs to be considered when calculating sample
sizes for future (MATT-) studies in an inpatient rehabilitation
setting. Furthermore, it might be relevant to evaluate if process
optimization in the context of study planning might decrease
dropout-rates. This might include communicating with patients
in advance if they would be interested in an extended length of
stay if offered. However, this would be irrelevant for patients’ who
are discharged earlier due to resolvedmedical indication. In these
cases only shorter training protocols would help.

Comparison of Completers and Non-completers at

Baseline
To elucidate the high dropout rate from our study, the group
of C– was closely examined. This analysis revealed that C+
patients were in better health constitution than C– patients. It
was especially striking that C– patients had received their DBS
stimulation (DBS: n = 7/ 9) after a longer disease duration than
C+ (DBS: n = 17/24) and that C– patients were less physically
active than C+ patients. There are several ways to explain the
observed differences.

One possibility is that due to shorter disease duration and
younger age, patients in the C+ could be more physically active,
as they were less impaired, which had a positive impact on
cognition, motor functioning, and patient-centered outcomes,
whereas patients in the C– group, due to longer disease duration
and older age, had adopted a more sedentary lifestyle (15).
Inactivity, according to van Nimwegen et al. (15), is related
to disease severity, motor impairment, and greater disability in
ADL. Today, it is common sense that physical activity is an
essential tool to prevent age-related (87–89) and disease-related
decline (90–92). It is, therefore, plausible that these observed
baseline differences resulted in less ambition to complete
the study protocol. For future studies, it might, therefore,
be recommendable to stratify concerning these parameters
during randomization.

Another explanation might be that, due to higher levels
of health-related quality of life, ADL independence, and less
depressive symptoms, C+ patients faced fewer barriers to be
physically active, which resulted in better health conditions,
whereas C– patients experienced the opposite. It is well-known
that mood, self-perception, the stage of the disease, and the
faith in being able to modify disease progression influence the
motivation and activity levels (11, 45, 93–95). It can, therefore,
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TABLE 2 | Baseline comparison of the experimental and control group.

EG CG U Between-group

significance, p

Effect size, r

n 9 14

Sociodemographic and clinical data

Sex Males 8 11 56.500 0.630

Females 1 3

Years of age 56.67 ± 3.61 55.29 ± 7.43 54.500 0.609

Level of education No formal education 0 1 53.000 0.952

Min. 9 years of education 1 3

Min. 12 years of education 2 3

12–16 years of education 1 0

More than 16 years of education 5 7

Marital status Single 1 1 57.000 0.643

Relationship 1 2

Married 6 8

Divorced 1 3

Handedness (EHI) Right 9 12 54.000 0.502

Left 0 2

Bilateral 0 0

Years since PD diagnosis 8.64 ± 5.49 6.94 ± 4.25 52.000 0.504

DBS No 4 2 44.000 0.162

Yes 5 12

Years since DBS surgery 1.62 ± 2.55 2.50 ± 3.17 24.500 0.583

Freezing of gait (FOGQ) 5 (R = 16; n = 5/9) 0 (R = 21; n = 6/14) 54.000 0.559

Physical activity level

(IPAQ)

Low 0 5 34.000 0.099 0.37

Moderate 4 4

High 5 4

Cognition

Global cognition (MoCA)a 25 (R = 5) 25 (R = 10) 47.500 0.471

Attention (TAP) Alertness (reaction time in ms)b 261 (R = 257) 288.5 (R = 822) 58.500 0.793

Divided attention (omissions)b 1 (R = 6) 2.5 (R = 7) 46.500 0.306

Executive functions (TAP) Flexibility (reaction time in ms)b 1,067 (R = 1,429) 834 (R = 2,458) 48.000 0.369

Flexibility (errors)b 2 (R = 15) 3.5 (R = 16) 59.000 0.815

Inhibition (reaction time in ms)b 473 (R = 281) 425.5 (R = 225) 38.000 0.124

Inhibition (errors)b 1 (R = 4) 1 (R = 10) 59.000 0.813

Working memory (WMSR) Digit span reversea 6 (R = 7) 6 (R = 3) 46.000 0.274

Block span reversea 6 (R = 8) 7.5 (R = 7) 44.000 0.228

Memory (WMSR) Digit span forwarda 6 (R = 5) 6.5 (R = 6) 55.500 0.645

Block span forwarda 8 (R = 7) 7.5 (R = 6) 46.000 0.294

Visuocognition (TAP) Visual scanning (reaction time in ms)b 3,409 (R = 1,987) 4,031 (R = 5,021) 31.000 0.046t 0.42

Visual scanning (errors)b 5 (R = 16) 8.5 (R = 24) 45.000 0.267

Visuocognition (LPS 50+) Mental rotationa 9 (R = 25) 12.5 (R = 12) 51.000 0.465

Motor function

Motor impairment Hoehn and Yahrb 2.5 (R = 1.5) 2.5 (R = 2.5) 62.500 0.981

UPDRS IIIb 28 (R = 35) 28 (R = 42) 62.000 0.963

Patient-centered outcomes

Depressive mood (GDS)b 2 (R = 8) 1 (R = 7) 41.500 0.172

Quality of life (PDQ-39)b 30 (R = 72) 36 (R = 76) 58.500 0.087t 0.29

Fatigue (PFS-16)b 45 (R = 45) 44.5 (R = 54) 61.000 0.914

ADL independence (FIM)a 89 (R = 14) 88.5 (R = 33) 56.000 0.672

aHigher scores indicate better performance.
bLower scores indicate better performance.

P-values are reported for all data, effect sizes only in case of a significant finding. For sociodemographic and clinical data, frequencies, as well as means and standard deviations, are

reported. For cognitive, motor, and patient-centered outcomes, medians and ranges are reported. For sociodemographic data, p was set at p ≤ 0.05, whereas p ≤ 0.1 were considered

as trends. Corrected p-values are reported for the cognitive data (p ≤ 0.004), the motor function data (p ≤ 0.025), and the patient-centered outcomes (p ≤ 0.013).

t, statistical trend; R, range; EHI, Edinburgh Handedness Scale; FOGQ, Freezing of Gait Questionnaire; IPAQ, International Physical Activity Questionnaire; MoCA, Montreal Cognitive

Assessment; TAP, Test of attentional Performance; WMSR, Wechsler Memory Scale revised; LPS50+, Leistungsprüfsystem; GDS, Geriatric Depression Scale; PDQ-39, 39-item

Parkinson’s disease questionnaire; PFS-16, 16-item Parkinson Fatigue Scale.
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FIGURE 4 | Patients’ subjective self-perception before and after training for the experimental and control group without non-completers. (A) Mood before each

training for EG and CG patients. (B) Motivation before each training for EG and CG patients. (C) Exhaustion after each training for EG and CG patients. (D) Fun after

each training for EG and CG patients.

be hypothesized that C– patients had lost their self-efficacy
expectancy and, therefore, did not consider themselves as capable
of modifying disease progression through training.

As themajority of C+ (71%) andC– patients (78%) had aDBS,
the time point of DBS surgery to disease duration might also play
an important role, as patients who received their DBS at an earlier
time point of the disease might benefit from the early stimulation
concerning motor functions and ADL independence as well as
the quality of life and mood (96, 97). However, the effects of DSB
on cognition are discussed controversy (26, 96). Again, reports
of dropout cohorts might help to gain further insight into the
question if early stimulated patients show higher rates of therapy
adherence, which could be a relevant argument for DBS.

However, it is also possible that the time since surgery to
study inclusion was crucial for the observed differences in
C+ and C– (time since surgery in CG: 0.63 ± 1.48 years;
in EG: 2.24 ± 2.95 years). C– patients were more recently
stimulated than C+ patients, which might have caused that
C– patients relied more on the adaptation of the DBS settings

and medication by the neurologist instead of recognizing their

own responsibility to train as an important modifier of disease

progression. Furthermore, the short duration since DBS surgery

might have caused that patients were less motivated to stay in the
rehabilitation clinic, as they were usually referred directly from
the acute clinic resulting in a long absence from home. Studies
evaluating these aspects of therapy adherence, especially in PD

DBS, are needed to schedule rehabilitation more effectively and
to increase patients’ education on these aspects.

However, from the results obtained in the present feasibility
analysis, we can only speculate on causality. Nevertheless, it
gives an interesting first insight into a group of C–, which
could be extended only by more trials examining their dropout
cohorts. This might be especially valuable to answer the question
of why our therapy aims do not reach the patient and when
therapy should start in the course of disease progression. This
information would also extend the knowledge on training
adherence of PD patients, especially with DBS.

Comparison of Training Perception for Completers

and Non-completers
The visualized reports of self-perception before and after training
for those C– patients who absolve trainings (n = 7) did
not support the general assumption that withdrawal from a
study might be related to the subjective experience of the
study intervention. This observation is conclusive, as only one
(C– [4]) of these seven patients left the study on personal
request. However, another three of these patients were offered
an extension of stay, which they declined. On the one hand, the
patient who quit the study after the seventh training for personal
reasons reported low mood and motivation before most training
sessions. On the other hand, he reported having fun during the
MATT. Therefore, it can be assumed that the withdrawal was
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more related to a general factor rather than the training itself.
One possible factor could be resignation due to loss of self-
efficacy, which was shown to be a predictor of physical activity
in PD patients (15, 93–95). Another possible explanation might
be impaired self-awareness of motor and cognitive functions
(anosognosia), which has been reported in PD patients (98).
Although it is more likely to appear in more cognitively impaired
or depressed patients (99), it was found that some PD patients
with and without DBS were unable to adequately judge their
cognitive and motor skills (99, 100). Patients, who judge their
abilities incorrectly, might not recognize the need for training
and therefore care less about it. These phenomena might
also explain the second withdrawal upon personal request by
another patient in the EG, who left the study before the first
training. However, the influences of these two factors are still
underinvestigated concerning training participation/adherence.
Here, again, the analysis of dropout cohorts could be informative.

Feasibility of the Music-Assisted Treadmill
Training and the Ergometer Training
Adverse Events of Training
The additional 20-min MATT, as well as the ergometer training,
was feasible for all patients in this study, and no adverse
events were reported. This observation extends especially the
limited evidence on the safety training approaches for PD DBS
patients (72).

Baseline Results for Experimental and Control

Groups Without Non-completers
Although some heterogeneity was observed between the EG
and CG, both groups were mostly comparable at baseline. The
statistical trends for more physical activity, better visual scanning
speed, and higher quality of life in favor of the EG might result
from different group sizes and need to be confirmed with the
final sample size. However, if these differences are found to be
robust, they need to be considered when interpretation post-
training results.

Patients’ Training Perception for Experimental and

Control Groups Without Non-completers
On average, patients were in “good mood” and “motivated”
before training independent of the group allocation, although
some variance was noticed within each group. These results are
conclusive, as patients in both groups did not show depressive
symptoms that could have influenced mood more generally,
and patients volunteered to participate in the study, probably
representing motivation. Furthermore, it shows that patients’
moods and motivations were obviously not dependent on the
form of training. It is possible that patients’ perception before
training was influenced by the knowledge that they participated
in a study and the closer relationship to the constant study team
compared with more frequently changing therapists during other
treatments. This observation is in line with findings from other
studies, showing that the trainer (exercise leader) is of crucial
importance for patients’ motivation and adherence to training as
well as social interaction during training (94, 95).

The reports of “exhaustion” varied more in the EG than
in the CG after training. The form of training might explain
the greater variance within the EG. The ergometer training
in the CG is as an aerobic, seated, single-task training, which
is probably less demanding for PD patients than the aerobic,
upright, dual-task MATT in the EG. However, after the fifth
training, patients in the EG seemed to have gotten more used
to the training, resulting in less exhaustion for the remaining
days of training. Furthermore, patients’ reports of fun during
training differed descriptively between the two groups. Patients
in the EG had, on the average, “a lot of fun” during MATT,
whereas patients in the CG had “fun.” The MATT seems to
be a little more enjoyable than the ergometer training, which
is eventually an effect of the musically assisted training. The
power of music to ease training is a common experience (101),
which was proven to be relevant for neurological rehabilitation
(57, 63, 64, 67–69, 76, 102–104). It might also be an effect of
the novelty of the approach. However, this result is of high
importance regarding patient reported outcome measurements,
and it can be regarded as an important indicator for patients’
therapy adherence.

However, patients were not asked in detail about the
reasons for their mood and motivational status as well as the
exhaustion and what had caused the experienced fun. Only a
more elaborated questionnaire or a semi-structured interview
might reveal further insights here. This information will be
especially needed when planning and conducting even more
patient-centered therapies and should be implemented in future
feasibility trials.

Strength and Limitations
In Germany, inpatient rehabilitation is a common setting for
many PD patients with and without DBS. Therefore, it is
especially important to know if newly provided treatments are
accepted by patients, feasible in the clinical routines, and safe
for the patient clientele. In this regard, it is important to
adapt the study protocols to the settings and circumstances
of therapy, rather than to adapt the settings to the preferred
study protocol to gain transferable insights. It is a clear strength
of the study protocol to be designed for a realistic clinical
setting. Thus, we used a training protocol that was able to
schedule in the training plans of the rehabilitation clinic,
and we avoided high-intensity training like it was used in
user studies using MATT (67–69). Furthermore, we covered
a realistic sample of PD patients in a rehabilitation clinic,
including those with DBS, as well as patients who underwent
adjustment of medication and DBS settings. However, it should
be kept in mind that our results cannot be generalized to
the global PD population, and caution should be expressed
regarding transferability.

Furthermore, in this clinical setting, unforeseen, system-
related changes, like early discharges, can occur. Moreover,
the diversity of rehabilitation treatments combined with
a large amount of time required for therapy makes it
more challenging to differentiate intervention-induced effects
from general improvements. Therefore, controlled designs are
essential. As already mentioned, we aimed to implement the
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MATT in a realistic setting. Thus, we did not choose a treadmill
training without music assistance as a CG but ergometer training,
which is the standard endurance training provided by sports
therapists in the rehabilitation clinic Godeshoehe e.V., Bonn.
As a limitation, this design does not allow identifying the
specific effect of music on the patients’ feasibility; future studies
should, therefore, consider a CG receiving treadmill training
without music.

Furthermore, the study represents a realistic though a small
cohort of PD patients with and without DBS during their
inpatient rehabilitation. Consequently, the stability of medication
and DBS settings was none of our inclusion criteria. This
probably has some effects on the interpretability of present and
future results and should be avoided when further assessing the
behavioral effects of MATT.

Although dropout rates were high, especially in the EG, the in-
depth analysis of the dropout cohort is a strength of this feasibility
analysis and did not reveal training-induced dropout reasons.
However, high dropout rates will limit the interpretability of
behavioral results in future analyses of our data. Furthermore,
due to ethical aspects, we were not allowed to ask for explicit
reasons for dropout, and patients were allowed to quit without
giving reasons. Thus, interpretations in this respect remain
speculative. Notably, dropouts only occurred in patients during
the recruitment phase as well as in one patient during the
intervention period.

This feasibility analysis showed that the MATT did not
cause any negative adverse events in PD patients with and
without DBS and seemed to be a safe training during the
rehabilitation. Nevertheless, further studies with larger sample
sizes investigating the feasibility of MATT, especially in PD DBS
patients, are needed.

The fact that the feasibility of trainings was not only
assessed by the reported adverse events but also by patients’
subjective perception of training is another strength of
the study. Nevertheless, the applied Likert scales provide
no understanding of the reasons for the chosen answers.
Future evaluations of patients’ training perception would,
therefore, benefit from more extensive questionnaires or
a mixed-methods approach, including qualitative interviews.
More detailed feedback might also help to identify eventual
between-group differences.

The present feasibility analysis included a detailed sample
description based on results from an extensive cognitive, motor,
and patient-centered test battery. All raters in the study were
blinded during pretraining assessments. Nevertheless, it was
a clear limitation that raters of motor function and patient-
centered parameters were not blinded in the post-assessment,
and raters of patients’ daily training perception were not blinded
due to lack of personnel resources. However, raters of cognition
were blinded in pre- and post-assessments, as the staff of
the neuropsychology department performed these tests. Future
studies should provide complete single blinding of all raters at all
time points.

We set an alpha level of ≤0.1 as a statistical trend,
which can be discussed as too generous. However, we also
focused on effect sizes to get a deeper understanding of

whether differences between the groups and time points of
measurement occurred.

CONCLUSION

MATT was shown to be a feasible, safe, and enjoyable training
for PD patients with and without DBS, although RCTs with
larger sample size are needed to examine the training efficacy
and to make further recommendations for training possibilities
in PD patients with and without DBS. Furthermore, the
dropout cohort analysis revealed some exciting first insights
into possible dropout reasons that go beyond the form of
intervention. Therefore, research would benefit from a common
practice of dropout analyses, as this would enhance our
understanding of patients’ therapy adherence and expectations.
Finally, MATT should also be used in other settings to examine
the generalizability of the findings for the general PD population.
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