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Abstract: The role of the gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) has
been in focus for decades. Although metagenomic observations in patients/animal colitis models
have been attempted, the microbiome results were still indefinite and broad taxonomic presumptions
were made due to the cross-sectional studies. Herein, we conducted a longitudinal microbiome
analysis in a dextran sulfate sodium (DSS)-induced colitis mouse model with a two-factor design
based on serial DSS dose (0, 1, 2, and 3%) and duration for 12 days, and four mice from each
group were sacrificed at two-day intervals. During the colitis development, a transition of the cecal
microbial diversity from the normal state to dysbiosis and dynamic changes of the populations
were observed. We identified genera that significantly induced or depleted depending on DSS
exposure, and confirmed the correlations of the individual taxa to the colitis severity indicated by
inflammatory biomarkers (intestinal bleeding and neutrophil-derived indicators). Of note, each
taxonomic population showed its own susceptibility to the changing colitis status. Our findings
suggest that an understanding of the individual susceptibility to colitis conditions may contribute to
identifying the role of the gut microbes in the pathogenesis of IBD.

Keywords: intestinal microbiota; DSS-induced colitis development; longitudinal studies; dynamics;
susceptibility; gut microbes

1. Introduction

Inflammatory bowel disease (IBD) is a comprehensive disorder that encompasses
various types of chronic inflammations in the gastrointestinal (GI) tract, depending on
the occurrence location and inflammatory severity. IBD has a multifactorial pathogenesis
that results from the complex interplay of genetic predispositions, host immune response,
environmental factors, and gut flora [1,2]. In recent decades, gut dysbiosis, which refers to
the structural and/or functional imbalance of the GI tract microbiome, has been elucidated
in IBD patients, and it has been postulated that intestinal microflora play a key role in the
pathogenesis of IBD [3,4]. It has been known that stimulation of the immune system and
gut dysbiosis are primarily associated with the development of chronic inflammation in
the late stages of IBD [5]. Emerging studies in germ-free mice have demonstrated that gut
microbes contribute to colitis conditions [6–8]. Therefore, microbiome-based therapeutics
that modulate the gut ecology have been proposed as a novel strategy for preventing or
alleviating IBD [5,9].

The gut microbiota composition changes are dynamic and relatively immediate, influ-
enced by various factors such as diet, medication, stress, and hygiene [10,11]. The dynamics
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of fluctuating gut microbiota are even more severe in IBD patients due to recurrent active
disease and remission states [12]. Numerous microbiome studies have been primarily
conducted as a cross-sectional study to identify differences in microbial compositions
between healthy controls and IBD patients [13–15]. However, the microbiome results are
indecisive and inconsistent among individual studies because the cross-sectional outcomes
do not reflect the dynamics of gut microbiome that depend on highly personalized disease
status [12,16–19]. Therefore, longitudinal microbiome observations from onset to develop-
ment of the disease are required to reveal the gut microbes which cause or contribute to
IBD pathogenesis, but there is a limit to conducting such an approach on humans.

Experimental models of IBD are useful tools to improve the understanding of the
mechanistic relations of intestinal microorganisms with IBD pathogenesis. The most
representative is the dextran sulfate sodium (DSS)-induced colitis model because it is simple
to induce colonic inflammation and similar to ulcerative colitis in pathology, etiology, and
therapeutic response [20,21]. DSS is directly toxic to the intestinal epithelium, resulting in
disruption of mucosal barrier function and stimulation of the immune response [22,23].
Studies in DSS-induced colitis mouse models in which intestinal bacteria are eliminated by
using antibiotics have shown that gut microbes contribute to the onset of inflammation in
acute cases rather than chronic cases [24]. According to Brinkman et al. [25], in a genomic
modified DSS-resistant mouse model, the gut microbiota affected acute colitis susceptibility
regardless of host genotype. Thus, the acute DSS-induced colitis model is suitable for
studying intestinal mucosal barrier dysfunction, concomitant microbial dysbiosis, and
their role in IBD pathogenesis [26–28]. However, as with human studies, there are still
limitations. The gut microbiome results are varied and inconsistent among studies due to
the different colitis conditions, including the dose and duration of DSS application. For
instance, the expansion of Proteobacteria has been commonly reported in the DSS-induced
colitis model [29,30], but its expansion was not observed under mild colitis status [28]. In
addition, population reduction was detected in mice treated with 5% DSS for 14 days [31].
As an example, at the genus level, the increasing or decreasing abundances of Lactobacillus,
Prevotella, and Parabacteroides also indicated a discrepancy between the results [29,30,32–34].

Therefore, in the present study, we observed the cecal microbiota changes in a mouse
in vivo colitis model based on serial DSS dose and duration, identified colitis-associated
bacterial taxa that can be used as potential microbial markers of gut dysbiosis in DSS-
induced colitis, and investigated the susceptibility of the individual taxa to colitis indicators
to provide an understanding of their role in IBD pathogenesis.

2. Materials and Methods
2.1. A Two-Factor Design for an Experimental Mouse in Vivo Colitis Model

One hundred and twelve six-week-old female C57BL/6J mice were purchased from
Daehan Bio Link Co., Ltd., South Korea, which adopted the strain in 2010 from Taconic
Farms, Inc. Mice were maintained in a controlled animal facility under specific pathogen-
free conditions. This study was carried out in accordance with the guidelines established
by the Korean Association for Laboratory Animals. The protocol was approved by the
Committee on the Ethics of Animal Experiments of Handong Global University (approval
No. 20190424-008). The in vivo experiment was carried out in a 4 × 7 design, which had
two factors (DSS concentration and duration), each with four and seven levels, respectively.
After stabilization for two weeks, mice were divided into four groups (n = 28 per group),
and colitis was induced by administration of DSS (molecular weight 36 to 50 kDa; MP
Biomedicals, Santa Ana, CA, USA) at 1%, 2% and 3% concentrations in drinking water ad
libitum. The 0% DSS group was provided with only the vehicle, which was autoclaved
distilled water (DW). Each treatment group was kept in the same cage with enough
space to accommodate all of the mice to avoid ‘cage effects’ on the composition of the
gut microbiota [35,36]. The experiment lasted 12 days, and four mice from each DSS
dose group were randomly selected, weighed, and sacrificed at two-day intervals. After
mice were euthanized, total blood per mouse was collected in a serum separator tube
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(BD Microtainer; Becton Dickinson, Sparks, MD, USA), and the serum was isolated with
centrifugation at 15,000× g for 2 min. Cecum samples were immediately placed at –80 ◦C
for extracting DNA, and the distal end of the colon was fixed in 10% buffered formalin
phosphate (Sigma-Aldrich, St. Louis, MO, USA) solution for histological observations.
Mouse fecal samples were collected on alternate days and maintained in a deep freezer
until subsequent assessment.

2.2. Fecal Inflammatory Markers

Mouse fecal samples from each group were divided into three groups, completely
suspended in DW at a ratio of 50 mg feces/mL by vigorous vortexing, and centrifuged
at 10,000× g for 3 min to separate the fecal supernatants. The fresh supernatants were
aliquoted and kept at −20 ◦C. Mouse lipocalin-2/NGAL (Lcn2) and myeloperoxidase
(MPO) activity in the fecal supernatants were quantified by commercially available ELISA
kits (R&D Systems, Minneapolis, MN, USA) in accordance with the manufacturer’s in-
structions. Optical density was detected at 450 nm and 570 nm, readings at 570 nm were
subtracted from the readings at 450 nm, and the final concentration was expressed as
ng/g feces.

The amount of hemoglobin (Hgb) from stool was determined according to our pre-
viously established luminol method [28]. In brief, the luminol reagent was prepared
immediately prior to detection to prevent signal reduction, with the following chemicals
(Sigma-Aldrich, St. Louis, MO, USA): 0.1 g of luminol, 5.0 g of Na2CO3, 15 mL of 30% (w/w)
H2O2 solution, and 100 mL of DW. Lyophilized human Hgb (Sigma-Aldrich, St. Louis, MO,
USA) was used as a standard solution. Luminescence was immediately measured by a
SpectraMax M4 Microplate/Cuvette Reader (Molecular Devices, San Jose, CA, USA) after
mixing the fecal supernatant and Hgb standard with the same amount of luminol reagent.
The whole process was protected from direct light. The final concentration of hemoglobin
in feces was expressed as mg/g stool. All detection was conducted in technical duplicate
repeats of biological triplicate samples.

2.3. Serum Inflammatory Cytokines

Six different inflammatory cytokine (IL-6, IL-10, MCP-1, TNF, IFN-γ, and IL-12p70)
levels in mouse serum were determined using a Cytometric Bead Array Mouse Inflam-
mation Kit (Becton Dickinson, Sparks, MD, USA) in accordance with the manufacturer’s
protocol. Each specific antibody conjugated to capture beads and its target analyte com-
bined to form sandwich complexes with PE-conjugated detection antibodies. Fluorescence
signals were measured using flow cytometry (FACS Canto II; Becton Dickinson, Sparks,
MD, USA), and the data were analyzed with Flow Cytometric Analysis Program Array
software (version 3.0, Becton Dickinson, Sparks, MD, USA).

2.4. Histological Observations

The fixed distal colon end tissues were paraffin embedded and stained with hema-
toxylin and eosin (H&E) by the Contract Research Organization of LOGONE Bio Conver-
gence Research Foundation (Seoul, South Korea).

2.5. DNA Extraction and Purification

Due to the inhibitory effect of DSS on polymerase activity [37,38], we established the
optimal conditions to remove DSS from DSS-contaminated cecum samples by dividing
the process of obtaining purified DNA into four steps, as follows: (1) the mouse cecum
was roughly chopped with dissecting scissors, homogenized, and washed three times
with ice-cold purified DW using centrifugation (24,000× g) at 4 ◦C for 7 min; (2) total
DNA was extracted according to the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
protocol; (3) the extracted DNA was precipitated with ice-cold ethanol and 3 mol/L sodium
acetate (Sigma-Aldrich, St. Louis, MO, USA), maintaining the entire process on ice [39];
and (4) DNA templates were purified using a QIAquick PCR purification kit (Qiagen,
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Hilden, Germany) for the removal of residual DSS contaminants. Then, we confirmed that
there was no inhibitory effect on DNA polymerase in qRT-PCR when all procedures were
performed in sequence. All procedures were equally applied to the cecum samples of the
group not treated with DSS.

2.6. 16S rRNA Gene Amplification and HiSeq Sequencing

Sequencing libraries of the V3 and V4 regions of the 16S bacterial rRNA gene were con-
structed following Illumina’s instructions [40]. Briefly, the amplification was performed in a
two-step PCR with two PCR clean-up steps. The 16S rRNA amplicons were amplified using
V3–V4 region primers: forward [5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC
CTACGGGNGGCWGCAG-3′] and reverse [5′-GTCTCGTGGGCTCGGAGATGTGTATAAG
AGACAGGACTACHVGGGTATCTAATCC-3′]. After the amplicon PCR (95 ◦C 3 min; 25 cy-
cles of 95 ◦C 30 s, 55 ◦C 30 s and 72 ◦C 30 s; and then 72 ◦C 5 min), the amplicons were
cleaned with AMPure XP beads. The second PCR was performed using the purified PCR
templates and Nextera XT index primers, and then the PCR products were cleaned be-
fore Illumina HiSeq sequencing (Illumina Inc., San Diego, CA, USA) by Macrogen (Seoul,
South Korea).

2.7. Data Processing, Taxonomic Classification, and Diversity Studies

The 16S rRNA sequence reads were processed in the Quantitative Insight into Mi-
crobial Ecology 2 (QIIME 2) pipeline [41]. A total of 39,278,297 demultiplexed sequences
with an average of 370,550 reads per sample, ranging from 40,903 to 847,758 reads, were
obtained. After the low-quality regions were trimmed and truncated in the DADA2 plugin,
samples with a total number of reads below the feature count of 10,000 were removed.
Rooted and unrooted phylogenetic trees were created, and taxonomy was assigned using
the naive Bayes classifier against the Greengenes reference database (13_8 99% operational
taxonomic units (OTUs) from the 515F/806R region of the sequences). Some individual
sample sequences were excluded from the beginning of data processing because of low se-
quence quality. Raw sequences and metadata are available in the public database GenBank
(ID PRJNA615701). The assigned OTUs were rarefied to 10,000-read sampling depth, and
the OTU table is available in Supplementary Data S1.

To conduct downstream data analysis, the preprocessed files (.qza) from QIIME 2
were imported into R (www.r-project.org) via the qiime2R package, and we generated
the phyloseq object to be analyzed in phyloseq R package [42,43]. Alpha diversity was
measured with the Chao1 and Shannon indices, and the generalized UniFrac (GUniFrac)
method was applied for the calculation of phylogenetic distances [44,45]. The sample
distribution was analyzed by a nonmetric multidimensional scaling (NMDS) method, and
an ADONIS permutation-based statistical test was conducted in R to determine whether
the separation of the sample groups was significant. Data visualization was performed in
GraphPad Prism (version 8.3.0; GraphPad software Inc., San Diego, CA, USA).

2.8. Colitis-Associated Microbiota Analysis

To identify the particular taxa that increased or decreased in proportion to an increase
in dosage and duration of DSS administration, the relative abundances (RAs) of individ-
ual groups were agglomerated at the genus level using the tax_glom and merge_sample
method in the phyloseq R package (Supplementary Data S2). The subsequent workflow
is summarized as follows: (1) Pearson correlation analysis with exposure duration was
applied in each DSS dose group (Supplementary Data S3); (2) the genera showing a strong
positive correlation with duration were sorted (Pearson correlation coefficient, PCC > 0.7
and p < 0.05) (Supplementary Data S4); (3) the genera showing a strong negative correlation
with duration were sorted (PCC < −0.7 and p < 0.05) (Supplementary Data S5); and (4)
selected genera that have a significant correlation with duration in a serial dose manner
were identified as follows: all dose groups, the 2% and 3% DSS groups or only the 3%
DSS group (Supplementary Data S6). In order to find the relations of the microbial taxa

www.r-project.org
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to colitis severity, fecal Lcn2, MPO, and Hgb levels were used as inflammatory indicators.
The correlation between the RAs of the agglomerated OTUs at the genus level and each
biomarker was assessed (PCC > 0.6 or < −0.6) with statistical significance (p < 0.05).

2.9. Statistical Analyses

One-way analysis of variance (ANOVA) was applied to evaluate differences in discrete
variables among the groups. The significance of the tested fecal biomarkers was analyzed
by two-way ANOVA with two independent variables, and simple linear regression at
the 95% confidence interval was performed. Pearson correlation analysis was conducted
via two-tailed tests with 95% confidence intervals. Statistical analysis was conducted in
GraphPad Prism, except ADONIS in R.

2.10. Data Availability

The 16S rRNA gene sequences were deposited in the GenBank Sequence Read Archive
(SRA) database (ID PRJNA615701).

3. Results
3.1. DSS-Driven Colitis Development in a Two-Factor Designed in Vivo Mouse Model

An in vivo experiment was carried out in which four mice were sacrificed at two-day
intervals in each DSS dose group (Figure 1a). The experiment was discontinued on day 12
based on the Institutional Animal Care and Use Committee (IACUC) recommendations
because losses of 18.0% (p < 0.0001) and 31.4% (p < 0.0001) of the initial body weight
were observed in the 2% and 3% DSS groups, respectively. The negative controls, i.e.,
the DSS-untreated group, consisted of the 0% DSS group and the initial samples from all
DSS-treated groups. Exposure to more than 2% DSS induced a significant loss of body
weight from 8 days post colitis induction (Figure 1b). The body weight of mice treated with
1% DSS showed a variation with the day of DSS administration but was not significantly
different from that of the negative control group mice. An invasive marker, serum IL-6
tended to increase gradually with treatment duration at concentrations above 2% DSS
(Figure 1c). On the other hand, in the 1% DSS group, the IL-6 level was elevated until day
10 and then attenuated on the subsequent test day. Notable results in serum IL-10, MCP-1,
TNF, IFN-γ, and IL-12p70 levels were not observed (Supplementary Table S1).

The DSS-induced colitis model, unlike the 2,4,6-trinitrobenzene sulfonic acid (TNBS)
model, is suitable for investigating the host immune response because immune cells,
such as neutrophils and myeloid cells, are involved [20]. Lcn2 and MPO associated with
neutrophil granules were used as noninvasive fecal biomarkers to evaluate the severity of
gut inflammation in real time [46]. Compared to that of the negative control, the significant
activity of Lcn2 was determined beginning on day 6, while MPO activity showed significant
elevation beginning on day 8, except for in the 3% DSS group (Figure 1d). Administration
of 3% DSS severely induced both Lcn2 and MPO levels after six days, showing strong
positive correlations with treatment duration (PCC = 0.8804 and 0.8075, respectively).
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Figure 1. Experimental design and pathological/pathophysiological changes. (a) The in vivo experimental scheme. Four
mice from each dextran sulfate sodium (DSS) group (total n = 28 per group) were sacrificed at two-day intervals. Shown in
red is the negative control consisting of the 0% DSS group and the initial mice of all DSS groups. (b) Fold change in body
weight (%) compared to that of the 0% DSS group. (c) Fold change in serum IL-6 level compared to that of the negative
control. (d) Fecal inflammatory biomarkers. (e) Histological architecture of distal colon tissue in DSS-induced colitis mice.
Original magnification, 4×. Scale bars, 100 µm. Significance is indicated compared to the 0% DSS group values. Correlations
with treatment duration and significance are indicated as PCC and p value. All data represent the mean ± SEM. Statistical
significance is indicated as follows: * p < 0.05, ** p < 0.01, and *** p < 0.001.
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The presence of blood in stool is one of the typical clinical symptoms in colitis [47,48].
We quantified the amount of Hgb in feces based on a luminescence assay. Fecal Hgb in
the 1% DSS group showed no correlation with the colitis induction period (PCC = 0.0328),
while strong correlations were observed in the 2% and 3% DSS groups (PCC = 0.7570 and
0.9714, respectively) (Figure 1d). Based on our results, Lcn2 and MPO were suitable as
biomarkers to differentiate between the 2% and 3% DSS groups, whereas Hgb was sensitive
to distinguishing colitis conditions at concentrations below 2% DSS.

DSS-induced colonic mucosal damage was observed longitudinally (Figure 1e). In the
negative controls, intact architecture was observed, displaying well-defined gland lengths,
no leukocyte infiltration within the mucosa or submucosa, and no ulceration. The 2% and
3% DSS groups showed mild mucosal inflammatory cell infiltrates and focal ulceration
with few crypts on day 4. The pathology developed severely from day 6, showing extensive
ulceration with dense infiltrate of neutrophils into the mucosa/submucosa and loss of
goblet cells. Treatment with 1% DSS resulted in inflammatory cell infiltration into the
submucosa with crypt loss on day 6 and increased the infiltrates into the mucosa until
day 10. On day 12, in particular, the 1% DSS group had moderately damaged mucosal
architecture, including submucosal infiltrates, partial ulceration, and aberrant crypts with
mild goblet cell loss. The 1% DSS group result supports the tendency of the fecal and
serum biomarkers.

3.2. DSS-Driven Microbial Diversity Shifts

To unravel the alterations in microbial abundance and diversity induced by DSS, the
Chao1 (F = 2.616 and p = 0.0016) and Shannon indices (F = 6.104 and p < 0.0001) were
analyzed (Figure 2a,b). Treatment with 3% DSS significantly decreased Chao1 scores on day
12 and Shannon index after day 10 compared to those of the negative control (n = 38). In
the 2% DSS group, the Chao1 and Shannon indices showed a marked tendency to decrease
after ten days. On the other hand, neither of the indices were significantly reduced in
the 1% DSS group. Significant separation of the individual groups was determined with
the ADONIS permutation-based statistical test with 999 permutations (R2 = 66.4% and
p = 0.001). In NMDS analysis, dissimilarity between the 0% DSS and DSS-treated groups
was observed from day 2, and considerable separation of each dose group was found
after eight days of colitis induction (Figure 2c). The cluster of the DSS groups shifted
gradually from the 0% DSS group as time passed, and distinct dose-dependent separation
was observed on day 12. The pairwise distances between individual samples and initial
samples of the 0% DSS group (n = 4) showed the dysbiotic condition against normal status
(Figure 2d). Detailed data are available in Supplementary Data S7.
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Figure 2. DSS-driven changes in microbial diversity, phylogenetic ordinations, and populations at the phylum level. Alpha
diversity estimated as (a) Chao1 and (b) Shannon indices during DSS colitis induction. (c) Nonmetric multidimensional
scaling (NMDS) plot of GUniFrac distances. (d) Pairwise distance of individuals compared to the initial 0% DSS subjects
in a black-lined box. (e) Phyla (Firmicutes and Actinobacteria) and population ratios (Firmicutes/Bacteroidetes and Bac-
teroidetes/Proteobacteria) that decreased with increasing DSS exposure and the phylum whose abundance diminished (TM7)
with DSS treatment are shown. (f) Phyla (Bacteroidetes, Proteobacteria, Verrucomicrobia, Cyanobacteria, and Deferribacteres) that
increased with increasing DSS exposure. Statistical significance compared to the negative control values is indicated as
follows: * p < 0.05, ** p < 0.01, and *** p < 0.001.
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3.3. Microbial Dynamics Depending on DSS Exposure

At the phylum level, Firmicutes and Actinobacteria demonstrated a duration-dependent
decrease in abundance (Figure 2e), while Bacteroidetes, Proteobacteria, and Verrucomicrobia
showed a significant duration-dependent increase in abundance (Figure 2f). Among the
other phyla that accounted for low abundance, the RA of Cyanobacteria increased in the
1% DSS group (Figure 2f). The populations of Deferribacteres in all the DSS dose groups
had a similar pattern, rising for 6–8 days and then decreasing subsequently (Figure 2f).
The phylum TM7 was found in only the negative control. The ratio of Bacteroidetes and
Proteobacteria was significantly decreased upon DSS exposure at concentrations above 2%
from day 6, and the correlations with duration were analyzed as follows: PCC = −0.9284,
p = 0.0075 and R2 = 0.8620 for the 2% DSS group, and PCC = −0.9178, p = 0.0099, and
R2 = 0.8424 for the 3% DSS group (Figure 2e). The ratio of Firmicutes and Bacteroidetes had
no considerable correlation with DSS duration, resulting in PCCs of −0.6572 (p = 0.1562
and R2 = 0.4319) and −0.4783 (p = 0.3373 and R2 = 0.2288) in the 2% and 3% DSS groups,
respectively (Figure 2e). Notably, the phyla Firmicutes, Bacteroidetes, Proteobacteria, and
Verrucomicrobia were susceptible to intensive DSS exposure, while Actinobacteria showed
high susceptibility to even mild DSS exposure.

The agglomerated RAs were analyzed to identify genera changed in response to DSS
dose and duration (Supplementary Data S2) instead of finding the differential abundances
using R packages such as DESeq2 [49] and edgeR [50]. The time-series experimental work-
flow of the DESeq2 vignette was not suitable due to the reductions in log2 fold change
estimates and low sample numbers (n = 4 per condition) [51,52]. Detailed information
about the selection course in this study is available in Supplementary Data S3–S6. As a
result, a total of 16 genera were selected depending on DSS exposure (Figure 3). Uncul-
tured order RF32, Bacteroides, Akkermansia, uncultured Firmicutes, Enterobacteriaceae, and
Anaerotruncus were selected as induced genera. Ten genera were selected as depleted gen-
era, as follows: Eggerthella, Bifidobacterium, uncultured Coriobacteriaceae, Bacteroidales, S24-7,
Clostridium, Olsenella, Butyrivibrio, Paenibacillus, and uncultured family Lactobacillaceae. Gen-
era belonging to the phyla Proteobacteria and Verrucomicrobia were identified in only the
induced genera, while genera belonging to Actinobacteria were found in only the depleted
genera. The selected uncultured Enterobacteriaceae, RF32, and Akkermansia contributed
mainly to the significant enrichment of each phylum (Figures 3 and S1d,e). Notably, the
genera Bifidobacterium, Eggerthella, Olsenella, and uncultured family Coriobacteriaceae led to
a significant reduction in the phylum Actinobacteria abundance (Figures 3 and S1c). The
genera belonging to the phyla Bacteroidetes and Firmicutes were classified in both induced
and depleted categories. The induction of Bacteroides considerably contributed to the en-
richment of Bacteroidetes despite the opposite contributions of uncultured Bacteroidales and
S24-7 (Figure S1b).
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3.4. Microbial Susceptibility to Colitis Severity

The cecal microbial communities showed different susceptibility to colitis severity.
As colitis intensified, the dynamics of the phylum populations were observed (Figure 4a).
The crucial point is that each phylum has a different susceptibility to the colitis status
caused by DSS. We divided two sections, ‘A’ and ‘B,’ assigned to the mild and severe
colitis status of each index, respectively. There were no considerable changes in the RA of
Firmicutes in section A of all indices, but Firmicutes abundance considerably declined under
severe conditions (section B). Actinobacteria was more susceptible to mild status, with a
drastic decline in section A of Lcn2 and MPO, not Hgb (PCC = −0.4507 and p = 0.0694).
In contrast, Verrucomicrobia was sensitive to severe status of section B, with a strong Hgb
association (PCC = 0.7603 and p = 0.0004), not Lcn2 and MPO. Bacteroidetes showed higher
susceptibility to intense inflammation in section B. The RA of Proteobacteria consistently
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increased as Lcn2 and MPO levels increased regardless of the sections, but the enrichment
of the phylum was accelerated in section B.
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Figure 4. Dynamics of the gut microbiota based on microbial susceptibility to colitis severity. (a) Dynamics of microbial
changes at the major phylum level. Constantly (b) increasing or (c) decreasing genus populations from mild to severe status,
respectively. (d) Taxonomic groups showing dynamic fluctuations from mild to severe status. Color gradients indicate,
as follows: compared to the negative control, blue represents decreased populations (fold change < 1.0), red represents
increased populations (fold change > 1.0), and white shows no changes (fold change = 1.0). (e) Correlation between the
resulting RAs and colitis indicators. Statistical significance is indicated as follows: * p < 0.05, ** p < 0.01, and *** p < 0.001.
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To determine the dynamics of susceptibility to the severity of inflammation
at the genus level, the mean of agglomerated RAs of the individual groups over
those of the negative control group in each section (Figure 4b–d) was calculated
(Supplementary Data S8–S10). Some genera showed continuous increasing or decreas-
ing abundances under mild colitis (section A) and severe colitis (section B) over those in
the negative control group (Figure 4b,c). However, certain genera did not show a con-
sistent shift, and some had opposite patterns in the A and B sections (Figure 4d). These
results elucidate that the susceptibilities of the bacterial taxonomic groups to colitis sta-
tus are different and suggest the possibility of obtaining the mismatched results among
cross-sectional studies performed with varying colitis status.

The relationship between the microbial composition changes and the colitis conditions
remains unclear (Figure 4e). According to the correlation criteria (PCC > 0.6 or <−0.6)
with the indicators associated with immune-related proteins (Lcn2 and MPO) and bleed-
ing (Hgb), a total of 20 genera were selected (Supplementary Data S11). The selected
genera included the induced or depleted genera depending on DSS exposure (shown in
Figure 3), except Bifidobacterium, Olsenella, and uncultured Lactobacillaceae. Bifidobacterium
and Olsenella were not selected based on our PCC criteria, but they had significant cor-
relations with Lcn2 (PCC = −0.5545 and p = 0.0137, PCC = −0.5159 and p = 0.0238, re-
spectively). Likewise, uncultured Lactobacillaceae had a significant correlation with Hgb
(PCC = −0.5421 and p = 0.0246). Bacteroides, Anaerotruncus, uncultured Firmicutes, and
uncultured Enterobacteriaceae showed significant relationships with all indices. Of note,
Candidatus Arthromitus, Akkermansia, uncultured Betaproteobacteria, and uncultured
mitochondria were significantly related to only Hgb, whereas Paenibacillus was correlated
only to the neutrophil-derived indicators (Lcn2 and MPO).

Overall, this study demonstrated that colitis development and concomitant decreases
in intestinal microbial diversity depend on the degree of DSS exposure, but changes in the
gut microbial composition are based on the susceptibility of each taxon to colitis severity.
Furthermore, the correlations between taxa and colitis indicators provide an understanding
of gut dysbiosis in IBD pathogenesis.

4. Discussion

Gut homeostasis refers to a microbial composition that is stable and balanced with
the host immune system [3]. Disturbances in this homeostasis lead to a pathogenic state
called dysbiosis by depleting beneficial microbes and changing microbial diversity [53,54].
In general, decreased populations of Faecalibacterium, Clostridiales, Lactobacillus, and
Bifidobacterium and increased populations of Enterobacteriaceae and Escherichia coli within the
class Gammaproteobacteria have been reported in IBD patients, but there are inconsistencies
among clinical cases [16–18].

In DSS-induced colitis mice, Enterobacteriaceae and Bacteroides are well known to
expand in the inflamed intestine, including in our results (Figures 3 and 4e). However, there
is obvious heterogeneity in microbiome results among studies (Table S2), which can result
from mouse genetic and environmental factors, as well as research methods [6,35,55,56]. In
particular, a cross-sectional study design is one of the main causes [35]. For instance, in this
study, Paenibacillus and Anaerotruncus might not be considered DSS colitis-associated taxa
if the study focused on a single time point on day 6 with 2% DSS (Figure 3). In addition,
Olsenella may also be excluded from the DSS colitis taxa if we compared its RA at day 6
with that in the negative control (Figure 3).
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In previous longitudinal metagenomic investigations in IBD patients and colitis ani-
mals, the dynamics of the intestinal microbiota have been observed, which were linked
to the course of disease development [12,19,57,58]. In the present study, by dissecting
the intestinal microbiota based on mild and severe status, it was shown that individual
taxonomic groups have specific susceptibility to colitis severity (Figure 4a–d). As repre-
sentative results, the population of Herbaspirillum showed opposite tendencies in mild
(section A) and severe (section B) conditions (Figure 4d). Moreover, some taxa (e.g., Proteus
and uncultured Lactobacillales) had opposite patterns between the sections depending on
Hgb (Figure 4d).

Colitis-associated microbe identification remains elusive. We tried to analyze the re-
structured bacterial taxa depending on DSS exposure and confirmed their correlations with
colitis severity (Figures 3 and 4e). As reported in previous studies (Supplementary Table S2),
Bacteroides, Akkermansia, and Enterobacteriaceae showed consistent expansions in the in-
flamed gut (Figures 3 and 4e). Current assumptions to explain this result are as follows.
(i) High oxygen levels confer superiority in the consumption of nutrients and niche occu-
pation to Enterobacteriaceae over strict anaerobes (such as Clostridium and Bifidobacterium),
and Enterobacteriaceae growth is enhanced by the utilization of sialic acids degraded by
Bacteroides from mucin as a nutrient [32,59,60]. (ii) Lcn2, a secreted inflammatory cytokine
from epithelial and myeloid cells, binds to the iron-chelating siderophore enterobactin
(Ent) released by gut bacteria such as E. coli and Salmonella. It inhibits Ent-mediated iron
acquisition and supports the bactericidal enzyme MPO [61]. However, Enterobacteriaceae
pathogens do not rely solely on Ent for iron uptake, as they produce another form of
siderophores [62]. (iii) Hgb from intestinal bleeding may play a key role in increasing
the Akkermansia population in the mucosal layer, leading to colonic mucolysis [63]. The
increased Hgb levels also induce gut dysbiosis by increasing gram-negative bacteria and
directly exacerbate colitis through free radical production, cytotoxicity induction, and
lipid peroxidation reaction catalysis [30]. We confirmed the strong correlation between
Akkermansia and fecal Hgb (Figure 4e). The damaged mucosal architectures in the 2%
and 3% DSS groups were regarded as supplying Hgb to some mucus-degrading bacteria
(Figure 1d,e). Recent studies have suggested that administration of Akkermansia muciniphila
attenuated inflammation in DSS-induced colitis mice and that these potential probiotic
properties would allow A. muciniphila use as a therapeutic agent [29]. In our opinion,
however, the application of A. muciniphila in diseases accompanied by gut bleeding should
be carefully considered based on a sufficient number of studies.

A novel focus in our investigation is the bacterial taxa, which have a significant corre-
lation with Hgb or neutrophil-derived biomarkers (Figure 4e). Candidatus Arthromitus was
annotated from the Greengenes database, but the original lineage was Candidatus Savagella
within the Clostridiaceae family, known as segmented filamentous bacteria (SFB) [64]. As
commensals in the mammalian gut, SFB penetrate the intestinal mucus layer without
invading epithelial cells. They do not trigger host immunity that induces secretory IgA
production and stimulates T cell responses (Th1, Th17, and Treg cells) [65–67]. Interestingly,
Candidatus Arthromitus disappeared with the Hgb-enhanced expansion of mucus-degrading
bacteria, such as Akkermansia and Bacteroides (Figure 4e). Furthermore, Paenibacillus was
the only genus that had strong correlations with Lcn2 and MPO but not Hgb (Figure 4e).
The genus Paenibacillus is a gram-variable, facultative anaerobic, and endospore-forming
bacteria with low G + C genomic features. The genus was originally included within the
genus Bacillus but reclassified to Paenibacillus based on phylogenetic analysis with 16S
rRNA sequences in 1993 [68]. Notably, it has been well characterized that Paenibacillus pro-
duces a wide range of antimicrobial compounds against pathogens [69] and bacillibactin,
which is structurally similar to Ent, as a possible Lcn2 ligand [70]. This could support the
negative relationship of Paenibacillus populations with Lcn2′s companion MPO and Lcn2
(Figure 4e).
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The relation of the toxic effect of hydrogen sulfide produced by sulfate-reducing
bacteria (SRB), mainly Desulfovibrio spp., with ulcerative colitis has been reported [71,72].
The amount of sulfate and pH in the intestine influence the abundance of SRB leading
to intestinal inflammation in the distal colon [73,74]. However, there are heterogeneous
results for the SRB population in the cross-sectional DSS colitis model [75–77], and our
longitudinal analysis showing the dynamics of Desulfovibrio and Desulfomicrobium support
the inconclusive results (Figure 4d). According to Laroui et al. [23], individual DSS-
associated molecules (free glucose, sulfate, and free dextran) did not induce significant
colitis in mice independently, and intact DSS chemicals linked to medium-chain-length
fatty acids activated the inflammatory pathway in colonic epithelial cells.

Whether altering the gut microbiota is a cause or consequence of colitis is an ongoing
debate. According to Eichele et al. [27], some studies have reported that reduced gut micro-
bial diversity occurred early prior to the physiological observations of inflammation. On
the other hand, our results demonstrated that the microbial diversity gradually shifted from
that of the negative control group and intensified under severe DSS exposure (Figure 2a–d),
showing almost parallel pathological/pathophysiological evidence (Figure 1b–e). More-
over, we found that microbial composition changes showed various dynamics depending
on the individual taxonomic group (Figures 2e,f, 3 and 4a–d). Consequently, it can be
postulated that disease development in the DSS colitis murine model results from mutual
and simultaneous interactions among the mucus barrier, intestinal microflora, and host
immune response.

The metagenome sequencing technology has expanded our knowledge and informa-
tion on microbial compositions in ecology. Its function has also been enabled to analogize by
other meta-omics technologies, such as metabolomics, metatranscriptomics, and metapro-
teomics. However, the computational methods do not overcome the strain-level resolu-
tion [78,79]. In addition, there are still a lot of unknown taxa of the gut microbiome [80,81].
Although we selected the colitis-associated genera by a two-factor design rather than
a single time point or simple long-term analysis, there are limitations in revealing spe-
cific strain resolution and unknown taxa, described as ‘uncultured’ (Figures 3 and 4e).
As a future direction, to unravel the functions of gut microbes in IBD pathogenesis, cul-
turable gut microorganisms should be expanded and accumulated more than currently
obtained [81,82]. Eventually, a deep observation and understanding of the gut microbiota
at strain-level resolution could reveal host–microbe and microbe–microbe interactions in
specific intestinal conditions.

5. Conclusions

In summary, we demonstrated colitis-associated genera by considering intestinal
microbial dynamics based on serial DSS dose and duration, and confirmed their suscep-
tibilities to the gut inflamed conditions. Our findings revealed that microbiota compo-
sition in colitis intestine is dynamic due to individual taxonomic groups having their
own susceptibility to changing colitis status, and specific populations showed significant
correlations with intestinal bleeding and/or neutrophil-derived indicators. To elicit the
underlying mechanisms of microbial susceptibility in IBD pathogenesis, more comprehen-
sive and specific information on the gut microbes should be provided from culture-based
approaches (high-throughput culturomics and target-specific reverse genomics) with inte-
grated omics technologies [83,84].
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74. Dordević, D.; Jančíková, S.; Vítězová, M.; Kushkevych, I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of
sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2020, 27, 55–69. [CrossRef] [PubMed]

75. Håkansson, Å.; Tormo-Badia, N.; Baridi, A.; Xu, J.; Molin, G.; Hagslätt, M.L.; Karlsson, C.; Jeppsson, B.; Cilio, C.M.; Ahrné, S.
Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin. Exp.
Med. 2015, 15, 107–120. [CrossRef]

76. Yang, Y.; Chen, G.; Yang, Q.; Ye, J.; Cai, X.; Tsering, P.; Cheng, X.; Hu, C.; Zhang, S.; Cao, P. Gut microbiota drives the attenuation
of dextran sulphate sodium-induced colitis by Huangqin decoction. Oncotarget 2017, 8, 48863–48874. [CrossRef]

77. Ding, S.; Ma, Y.; Liu, G.; Yan, W.; Jiang, H.; Fang, J. Lactobacillus brevis alleviates DSS-induced colitis by reprograming intestinal
microbiota and influencing serum metabolome in murine model. Front. Physiol. 2019, 10, 1152. [CrossRef]

78. Anyansi, C.; Straub, T.J.; Manson, A.L.; Earl, A.M.; Abeel, T. Computational methods for strain-level microbial detection in colony
and metagenome sequencing data. Front. Microbiol. 2020, 11, 1925. [CrossRef] [PubMed]

79. Yan, Y.; Nguyen, L.H.; Franzosa, E.A.; Huttenhower, C. Strain-level epidemiology of microbial communities and the human
microbiome. Genome Med. 2020, 12, 71. [CrossRef]

80. Thomas, A.M.; Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 2019, 17, 48. [CrossRef] [PubMed]
81. Vrancken, G.; Gregory, A.C.; Huys, G.R.B.; Faust, K.; Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol.

2019, 17, 754–763. [CrossRef]
82. Lagier, J.C.; Hugon, P.; Khelaifia, S.; Fournier, P.E.; La Scola, B.; Raoult, D. The rebirth of culture in microbiology through the

example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 2015, 28, 237–264. [CrossRef]
83. Kambouris, M.E.; Pavlidis, C.; Skoufas, E.; Arabatzis, M.; Kantzanou, M.; Velegraki, A.; Patrinos, G.P. Culturomics: A new kid on

the block of OMICS to enable personalized medicine. OMICS 2018, 22, 108–118. [CrossRef] [PubMed]
84. Cross, K.L.; Campbell, J.H.; Balachandran, M.; Campbell, A.G.; Cooper, S.J.; Griffen, A.; Heaton, M.; Joshi, S.; Klingeman, D.; Leys,

E.; et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 2019, 37, 1314–1321.
[CrossRef] [PubMed]

http://doi.org/10.1073/pnas.1507645112
http://doi.org/10.1038/mi.2012.91
http://doi.org/10.1016/j.immuni.2014.03.009
http://doi.org/10.1016/j.immuni.2014.03.005
http://doi.org/10.1016/j.immuni.2009.08.020
http://www.ncbi.nlm.nih.gov/pubmed/19833089
http://doi.org/10.1007/BF00873085
http://doi.org/10.1111/j.1472-765X.2006.01995.x
http://www.ncbi.nlm.nih.gov/pubmed/17032229
http://doi.org/10.1039/C5RA18736B
http://doi.org/10.1111/j.1574-6941.2002.tb00942.x
http://doi.org/10.3390/jcm8071054
http://www.ncbi.nlm.nih.gov/pubmed/31330956
http://doi.org/10.1016/j.micpath.2017.09.054
http://doi.org/10.1016/j.jare.2020.03.003
http://www.ncbi.nlm.nih.gov/pubmed/33318866
http://doi.org/10.1007/s10238-013-0270-5
http://doi.org/10.18632/oncotarget.16458
http://doi.org/10.3389/fphys.2019.01152
http://doi.org/10.3389/fmicb.2020.01925
http://www.ncbi.nlm.nih.gov/pubmed/33013732
http://doi.org/10.1186/s13073-020-00765-y
http://doi.org/10.1186/s12915-019-0667-z
http://www.ncbi.nlm.nih.gov/pubmed/31189463
http://doi.org/10.1038/s41579-019-0264-8
http://doi.org/10.1128/CMR.00014-14
http://doi.org/10.1089/omi.2017.0017
http://www.ncbi.nlm.nih.gov/pubmed/28402209
http://doi.org/10.1038/s41587-019-0260-6
http://www.ncbi.nlm.nih.gov/pubmed/31570900

	Introduction 
	Materials and Methods 
	A Two-Factor Design for an Experimental Mouse in Vivo Colitis Model 
	Fecal Inflammatory Markers 
	Serum Inflammatory Cytokines 
	Histological Observations 
	DNA Extraction and Purification 
	16S rRNA Gene Amplification and HiSeq Sequencing 
	Data Processing, Taxonomic Classification, and Diversity Studies 
	Colitis-Associated Microbiota Analysis 
	Statistical Analyses 
	Data Availability 

	Results 
	DSS-Driven Colitis Development in a Two-Factor Designed in Vivo Mouse Model 
	DSS-Driven Microbial Diversity Shifts 
	Microbial Dynamics Depending on DSS Exposure 
	Microbial Susceptibility to Colitis Severity 

	Discussion 
	Conclusions 
	References

