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Abstract: The effective spin Hamiltonian method has drawn considerable attention for its power to
explain and predict magnetic properties in various intriguing materials. In this review, we summarize
different types of interactions between spins (hereafter, spin interactions, for short) that may be used
in effective spin Hamiltonians as well as the various methods of computing the interaction parameters.
A detailed discussion about the merits and possible pitfalls of each technique of computing interaction
parameters is provided.

Keywords: spin Hamiltonian; magnetism; energy-mapping analysis; four-state method; Green’s
function method

1. Introduction

The utilization of magnetism can date back to ancient China when the compass was
invented to guide directions. Since the relationship between magnetism and electricity was
revealed by Oersted, Lorentz, Ampere, Faraday, Maxwell, and others, more applications
of magnetism have been invented, which include dynamos (electric generators), electric
motors, cyclotrons, mass spectrometers, voltage transformers, electromagnetic relays, pic-
ture tubes, and sensing elements. During the information revolution, magnetic materials
were extensively employed for information storage. The storage density, efficiency, and
stability were substantially improved by the discovery and applications of the giant magne-
toresistance effect [1,2], tunnel magnetoresistance [3–9], spin-transfer torques [10–13], etc.
Recently, more and more novel magnetic states such as spin glasses [14,15], spin ice [16,17],
spin liquid [18–22], and skyrmions [23–28] were found, revealing both theoretical and
practical significance. For example, hedgehogs and anti-hedgehogs can be seen as the
sources (monopoles) and the sinks (antimonopoles) of the emergent magnetic fields of
topological spin textures [29], while magnetic skyrmions have shown promise as ultradense
information carriers and logic devices [24].

To explain or predict the properties of magnetic materials, many models and methods
have been invented. In this review, we will mainly focus on the effective spin Hamiltonian
method based on first-principles calculations, and its applications in solid-state systems. In
Section 2, we will introduce the effective spin Hamiltonian method. Firstly, in Section 2.1,
the origin and the computing methods of the atomic magnetic moments are presented.
Then, from Sections 2.2–2.6, different types of spin interactions that may be included in the
spin Hamiltonians are discussed. Section 3 will discuss and compare various methods of
computing the interaction parameters used in the effective spin Hamiltonians. In Section 4,
we will give a brief conclusion of this review.
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2. Effective Spin Hamiltonian Models

Though accurate, first-principles calculations are somewhat like black boxes (that
is to say, they provide the final total results, such as magnetic moments and the total
energy, but do not give a clear understanding of the physical results without further
analysis), and have difficulties in dealing with large-scale systems or finite temperature
properties. In order to provide an explicit explanation for some physical properties and
improve the efficiency of thermodynamic and kinetic simulations, the effective Hamiltonian
method is often adopted. In the context of magnetic materials where only the spin degree
of freedom is considered, it can also be called the effective spin Hamiltonian method.
Typically, the effective spin Hamiltonian models need to be carefully constructed and
include all the possibly important terms; then the parameters of the models need to be
calculated based on either first-principles calculations (see Section 3) or experimental data
(see Section 3.3). Given the effective spin Hamiltonian and the spin configurations, the
total energy of a magnetic system can be easily computed. Therefore, it is often adopted
in Monte Carlo simulations [30] (or quantum Monte Carlo simulations) for assessing the
total energy of many different configurations so that the finite temperature properties of
magnetic materials can be studied. If the effects of atom displacements are taken into
account, the effective Hamiltonians can also be applied to the spin molecular dynamics
simulations [31–33], which is beyond the scope of this review.

In this review, we mainly focus on the classical effective spin Hamiltonian method
where atomic magnetic moments (or spin vectors) are treated as classical vectors. In many
cases, these classical vectors are assumed to be rigid so that their magnitudes keep constant
during rotations. This treatment significantly simplifies the effective Hamiltonian models,
and it is usually a good approximation, especially when atomic magnetic moments are
large enough.

In this part, we shall first introduce the origin of the atomic magnetic moments as
well as the methods of computing atomic magnetic moments. Then different types of spin
interactions will be discussed.

2.1. Atomic Magnetic Moments

The origin of atomic magnetic moments is explained by quantum mechanics. Suppose
the quantized direction is the z-axis, an electron with quantum numbers (n, l , ml , ms) leads
to an orbital magnetic moment µl = −µBl and a spin magnetic moment µs = −geµBs,
with their z components µlz = −mlµB and µsz = −gemsµB, where µB = |e|}

2m is the Bohr
magneton and ge ≈ 2 is the g-factor for a free electron. The energy of a magnetic moment µ
in a magnetic field B (magnetic induction) along z-direction is −µ · B = −µzB.

Considering the Russell-Saunders coupling (also referred to as L-S coupling), which
applies to most multi-electronic atoms, the total orbital magnetic moment and the total spin
magnetic moment are µL = −µBL and µS = −geµBS, respectively, where L = ∑

i
li and

S = ∑
i

si are the summation over electrons. The quantum numbers of each electron can

usually be predicted by Hund’s rules. Owing to the spin–orbit interaction, L and S both
precess around the constant vector J = L + S. The time-averaged effective total magnetic
moment is µ = −gJµBJ, where

gJ = 1 +
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
(1)

The atomic magnetic moments discussed above are based on the assumption that the
atoms are isolated. Taking the influence of other atoms and external fields into account,
the orbital interaction theory, the crystal field theory [34], or the ligand field theory [35,36]
may be a better choice for theoretically predicting atomic magnetic moments. Notice that
half-filled shells lead to a total L = 0, and that in solids and molecules, orbital moments of
electrons are usually quenched, resulting in an effective L = 0 [37] (counterexamples may
be found for 4f elements or for 3d7 configurations as in Co(II)). Therefore typically µ = µS,
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with its z component µz = −geSzµB (Sz is restricted to discrete values: S, S− 1, . . . ,−S).
Usually, a nonzero µS results from singly filled (localized) d or f orbitals, while s and p
orbitals are typically either doubly filled or vacant so that they have no direct contribution
to the atomic magnetic moments. Therefore, when referring to atomic magnetic moments,
usually only the atoms in the d- and f -transition series need to be considered.

The atomic magnetic moments can also be predicted numerically employing first-
principles calculations. Nevertheless, we should notice that traditional Kohn–Sham density
functional theory (DFT) calculations [38,39] (based on single-electron approximation) are
not reliable for predicting atomic magnetic moments, and hence require the considera-
tion of strong correlation effect among electrons, especially when dealing with localized
d or f orbitals. Based on the Hubbard model [40], such problem can often be remedied
by introducing an intra-atomic interaction with effective on-site Coulomb and exchange
parameters, U and J [41] (or only one parameter Ueff = U − J in Dudarev’s approach [42]).
This approach is the DFT+U method [41–44], including LDA+U (LDA: Local density
approximation), LSDA+U (LSDA: Local spin density approximation), GGA+U (GGA: Gen-
eralized gradient approximation), and so forth, where “+U” indicates the Hubbard “+U”
correction. The parameters U and J can be estimated according to experience or semi-
empirically by seeking agreement with experimental results of some specific properties,
which is convenient but not very reliable. Considering how the values of the parameters U
and J affect the prediction of atomic magnetic moments and other physical properties, we
may need to compute these parameters more rigorously. A typical approach is constrained
DFT calculations [43,45–47], where the local d or f charges are constrained to different
values in several calculations, so that the parameters U and J can be obtained. Another
approach based on constrained random-phase approximation (cRPA) [48–50] allows for
considering the frequency (or energy) dependence of the parameters. More methods of
computing U and J are summarized in Ref. [43]. There are more accurate approaches
for dealing with strong correlated systems like DFT + Dynamical Mean Field Theory
(DFT+DMFT) [51–55] and Reduced Density Matrix Functional Theory (RDMFT) [56,57],
but they are much more sophisticated and computationally demanding so that they may
be impractical for large-scale calculations. Wave function (WF) methods, such as Complete
Active Space Self-Consistent Field (CASSCF) [58–61], Complete Active Space second-order
Perturbation Theory (CASPT2) [62–64], Complete Active Space third-order Perturbation
Theory (CASPT3) [65], and Difference Dedicated Configuration Interaction (DDCI) [66–68],
are also widely adopted by theoretical chemists for studying magnetic properties of materi-
als (especially molecules), including atomic magnetic moments and magnetic interactions.
These WF methods are also more accurate but more computationally demanding than the
DFT+U method, more detailed discussions of which can be found in Ref. [69].

2.2. Heisenberg Model

The simplest effective spin Hamiltonian model is the classical Heisenberg model,
which can be reduced to Ising model or XY model. The classical Heisenberg model can be
written as

Hspin = ∑
i,j>i

JijSi · Sj, (2)

where Si and Sj indicate the total spin vectors on atoms i and j, and the summation is over
all relevant pairs (ij). Its form was suggested by Heisenberg, Dirac, and Van Vleck. Such an
interaction comes from the energy splitting between quantized parallel (ferromagnetic, FM;
triplet state) and antiparallel (antiferromagnetic, AFM; singlet state) spin configurations.
Jij > 0 and Jij < 0 prefer AFM and FM configurations, respectively. There may be a
difference in the factor such as −1 and 1

2 between different definitions of Hspin, which is
also the case in other models as will be discussed.
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The spatial wave function of two electrons should possess the form of
ψ± = 1√

2
[ψa(r1)ψb(r2)± ψb(r1)ψa(r2)], where ψa and ψb are any single-electron spa-

tial wave functions. A parallel triplet spin state and an antiparallel singlet spin state should
correspond to an antisymmetric (ψ−) and a symmetric (ψ+) spatial wave function, respec-
tively. For given ψa and ψb, the expectation value for the total energy of ψ− can be different
from that of ψ+, which gives a preference to the AFM or FM spin configuration. Whether
the AFM or FM spin configuration is preferred depends on the circumstances, and their
energy difference can be described as a Heisenberg term J12S1 · S2.

In the simple case of an H2 molecule, an AFM singlet spin state is preferred, whose
symmetric spatial wave function ψ+ corresponds to a bonding state [70,71]. However, this
leads to the total magnetic moment of zero because the two antiparallel electrons share
the same spatial state. In another simple case, where ψa and ψb stands for two degenerate
and orthogonal orbitals of the same atom, an FM triplet spin state is preferred, which is
in agreement with Hund’s rules. Consider a set of orthogonal Wannier functions with
φnλ(r − rα) resembling the nth atomic orbital with spin λ centered at the αth lattice site,
and suppose there are Nh electrons each localized on one of the N lattice sites, each ion
possessing h unpaired electrons. If these h electrons have the same exchange integrals with
all the other electrons, the interaction resulting from the antisymmetrization of the wave
functions can be expressed as

Hex = ∑
αα′

nn′

Jnn′(rα, rα′)

[
1
4
+ S(rα) · S(rα′)

]
(3)

which is called the Heisenberg exchange interaction [72]. After removing the constant
terms, we can see such an interaction has the form of Hspin = ∑

i,j>i
JijSi · Sj.

Based on molecular orbital analysis using φa and φb to denote the singly filled d
orbitals of the two spin- 1

2 magnetic ions (i.e., d9 ions), Hay et al. [73] showed that the
exchange interaction between the two ions can be approximately expressed as

J = −2Kab +
∆2

Ueff = JF + JAF (4)

where

Kab ∝
〈

φa(1)φb(2)
∣∣∣∣ 1
r12

∣∣∣∣φb(1)φa(2)
〉

=
∫

φ∗a (r1)φ
∗
b (r2)

1
r12

φb(r1)φa(r2) > 0 (5)

Ueff = Jaa − Jab ∝
〈

φa(1)φa(2)
∣∣∣∣ 1
r12

∣∣∣∣φa(1)φa(2)
〉
−
〈

φa(1)φb(2)
∣∣∣∣ 1
r12

∣∣∣∣φa(1)φb(2)
〉

> 0 (6)

and ∆ indicates the energy gap between the bonding state and antibonding state con-
structed by φa and φb. The two components of J have opposite signs, i.e., JF = −2Kab < 0
and JAF = ∆2

Ueff > 0, which give preference to FM and AFM spin configurations, respec-
tively. For general dn cases, more orbitals should be considered. Therefore the expression
of J will be more complicated, but the exchange interaction can still be similarly decom-
posed into FM and AFM contributions [73]. An application of this analysis is that when
calculating exchange parameter J using Dudarev’s approach of DFT+U with a parameter
Ueff, the calculated value of J should vary with Ueff approximately as J = JF +

∆2

Ueff with
JF and ∆2 to be fitted [74]. However, this is no longer correct when Ueff → 0 .

Another mechanism that leads to FM spin configurations is the double exchange, in
which the interaction between two magnetic ions is induced by spin coupling to mobile
electrons that travels from one ion to another. A mobile electron has lower energy if the
localized spins are aligned. Such a mechanism is essential in metallic systems containing
ions with variable charge states [75,76].
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The superexchange is another important indirect exchange mechanism, where the
interaction between two transition-metal (TM) ions is induced by spin coupling to two
electrons on a non-magnetic ligand (L) ion that connects them, forming an exchange path
of TM-L-TM type. Different mechanisms were proposed to explain the superexchange
interaction. In Anderson’s mechanism [77,78], the superexchange results from virtual
processes in which an electron is transferred from the ligand to one of the neighboring
magnetic ions, and then another electron on the ligand couples with the spin of the other
magnetic ion through exchange interaction. In Goodenough’s mechanism [79,80], the
concept of semicovalent bonds was invented, where only one electron given by the ligand
predominates in a semicovalent bond. Because of the exchange forces between the electrons
on the magnetic ion and the electron given by the ligand, the ligand electron with its spin
parallel to the net spin of the magnetic ion will spend more time on the magnetic ion
than that with an antiparallel spin if the d orbital of the magnetic ion is less than half-
filled, and vice versa. The magnetic atom and the ligand are supposed to be connected
by a semicovalent bond or a covalent bond when they are near, or by an ionic bond (or
possibly a metallic-like bond) otherwise. The superexchange interaction with semicovalent
bonds existing is also called semicovalent exchange interaction. Kanamori summarized
the dependence of the sign of the superexchange parameter (whether FM or AFM) on
bond angle, bond type and number of d electrons (in different mechanisms), which is often
referred as Goodenough–Kanamori (GK) rules [80–82]. For the 180◦ (bond angle) case,
generally, AFM interaction is expected between cations of the same kind (counterexamples
may exist for d4 cases such as Mn3+-Mn3+, where the sign depends on the direction of the
line of superexchange), and FM interaction is expected between two cations with more-
than-half-filled and less-than-half-filled d-shells, respectively [81]. For the 90◦ case, the
results are usually the opposite [81]. A schematic diagram of superexchange interactions
(between cations both with more-than-half-filled d-shell) is given in Figure 1. More details
of the discussions can be found in Ref. [81] and Ref. [82].
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Figure 1. A schematic diagram of superexchange interactions between transition-metal (TM) ions
both with more-than-half-filled d-shell. According to Goodenough–Kanamori (GK) rules, the 180◦

and the 90◦ cases favor antiferromagnetic (AFM) and ferromagnetic (FM) arrangements of TM ions,
respectively. The main difference is whether the two electrons of L occupy the same p orbital, leading
to different tendencies for the alignments of the two electrons of L that interact with two TM ions.
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A counterexample of the GK rules can be found in the layered magnetic topological
insulator MnBi2Te4, which possesses intrinsic ferromagnetism [83]. In contrast, the pre-
diction of the GK rules leads to a weak AFM exchange interaction between Mn ions. In
Ref. [84], the presence of Bi3+ was found to be essential for explaining this anomaly: d5

ions in TM-L-TM spin-exchange paths would prefer FM coupling if the empty p orbitals
of a nonmagnetic cation M (which is Bi3+ ion in the case of MnBi2Te4) hybridize strongly
with those of the ligand L (but AFM coupling otherwise). Oleś et al. [85] pointed out that
the GK rules may not be obeyed in transition metal compounds with orbital degrees of
freedom (e.g., d1 and d2 electronic configurations) due to spin-orbital entanglement.

Exchange interactions between two TM ions also take place through the exchange
paths of TM-L . . . L-TM type [86], referred to as super-superexchanges, where TM ions
do not share a common ligand. Each TM ion of a solid forms a TMLn polyhedron (typi-
cally, n = 3–6) with the surrounding ligands L, and the unpaired spins of the TM ion are
accommodated in the singly filled d-states of TMLn. Since each d-state has a d-orbital of
TM combined out-of-phase with the p-orbitals of L, the unpaired spin of TM does not
reside solely on the d-orbital of TM, as assumed by Goodenough and Kanamori, but is
delocalized into the p-orbitals of the surrounding ligands L. Thus, TM-L . . . L-TM type
exchanges occur and can be strongly AFM when their L . . . L contact distances are in the
vicinity of the van der Waals distance so that the ligand p-orbitals overlap well across the L
. . . L contact.

Another mechanism is the indirect coupling of magnetic moments by conduction
electrons, referred to as Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [87–90]. This
kind of interaction between two spins S1 and S2 is also proportional to S1 · S2 with an
expression

HRKKY ∝ ∑
q

χ(q)eiq·r21 S1 · S2. (7)

The magnetic dipole–dipole interaction (between magnetic moments µ1 and µ2 located
at different atoms) with energy

V =
1

R3

[
µ1 · µ2 − 3

(
R̂ · µ1

)(
R̂ · µ2

)]
(8)

also has contributions to the bilinear term, but it is typically much weaker than the ex-
change interactions in most solid-state materials such as iron and cobalt. The characteristic
temperature of dipole–dipole interaction (or termed as “dipolar interaction”) in magnetic
materials is typically of the order of 1 K, above which no long-range order can be stabilized
by such an interaction [37]. However, in some cases, such as in several single-molecule
magnets (SMMs), the exchange interactions can be so weak that they are comparable to or
weaker than dipolar interactions, thus the dipolar interactions must not be neglected [91].

For most magnetic materials, the Heisenberg interaction is the most predominant
spin interaction. As a result, the simple classical Heisenberg model is able to explain the
magnetic properties such as the ground states of spin configurations (FM or AFM) and the
transition temperatures (Curie temperature for FM states or Néel temperature for AFM
states) for many magnetic materials.

If some pairs of spins favor FM spin configurations while other pairs favor AFM
configurations, frustration may occur, leading to more complicated and more interesting
noncollinear spin configurations. For example, the FM effects of double exchange resulting
from mobile electrons in some antiferromagnetic lattices give rise to a distortion of the
ground-state spin arrangement and lead to a canted spin configuration [92]. A magnetic
solid with moderate spin frustration lowers its energy by adopting a noncollinear su-
perstructure (e.g., a cycloid or a helix) in which the moments of the ions are identical in
magnitude but differ in orientation or a collinear magnetic superstructure (e.g., a spin
density wave, SDW) in which the moments of the ions differ in magnitude but identical in
orientation [93,94]. For a cycloid formed in a chain of magnetic ions, each successive spin
rotates in one direction by a certain angle, so there are two opposite ways of rotating the
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successive spins hence producing two cycloids opposite in chirality but identical in energy.
When these two cycloids occur with equal probability below a certain temperature, their
superposition leads to a SDW [93,94]. On lowering the temperature further, the electronic
structure of the spin-lattice relaxes to energetically favor one of the two chiral cycloids so
that one can observe a cycloid state. The latter, being chiral, has no inversion symmetry
and gives rise to ferroelectricity [95]. The spin frustration is also a potential driving force
for topological states like skyrmions and hedgehogs [29].

2.3. The J Matrices and Single-Ion Anisotropy

The classical Heisenberg model can be generalized to a matrix form to include all the
possible second-order interactions between two spins (or one spin itself):

Hspin = ∑
i,j>i

ST
i JijSj + ∑

i
ST

i AiSi (9)

where Jij and Ai are 3 × 3 matrices called the J matrix and single-ion anisotropy (SIA) ma-
trix. The Jij matrix can be decomposed into three parts: The isotropic Heisenberg exchange
parameter Jij =

(
Jij,xx + Jij,yy + Jij,zz

)
/3 as in the classical Heisenberg model, the antisym-

metric Dzyaloshinskii–Moriya interaction (DMI) matrix Dij =
(
Jij − JT

ij

)
/2 [96–98], and

the symmetric (anisotropic) Kitaev-type exchange coupling matrix Kij =
(
Jij + JT

ij

)
/2−

JijI (where I denotes a 3 × 3 identity matrix). Thus Jij = JijI+Dij +Kij [99,100].
Now we analyze the possible origin of these terms by means of symmetry analysis.

When considering interaction potential between (or among) spins, we should notice that
the total interaction energy should be invariant under time inversion ({Sk} → {−Sk} ).
Therefore, any odd order term in the spin Hamiltonian should be zero unless an external
magnetic field is present when a term −∑

i
µi · B = ∑

i
geµBB · Si should be added to the

effective spin Hamiltonian. Ignoring the external magnetic field, the spin Hamiltonian
should only contain even order terms, with the lowest order of significance being the
second-order (the zeroth-order term is a constant and therefore not necessary). If the
spin-orbit coupling (SOC) is negligible, the total effective spin Hamiltonian Hspin should
be invariant under any global spin rotations, therefore Hspin should be expressed by only
inner product terms of spins like terms proportional to Si · Sj,

(
Si · Sj

)
(Sk · Sl) and so on.

That is to say, when SOC is negligible, the second-order terms in the Hspin should only
include the classical Heisenberg term ∑

i,j>i
JijSi · Sj, which implies that those interactions

described by Ai, Dij, and Kij matrices all originate from SOC (HSO = λŜ · L̂). What is more,
if the spatial inversion symmetry is satisfied by the lattice, Jij should be equal to JT

ij so that
there will be no DMI (Dij = 0). That is to say, the DMI can only exist where the spatial
inversion symmetry is broken.

The SIA matrix Ai has only six independent components and is usually assumed to be
symmetric. If we suppose the magnitude of the classical spin vector Si to be independent
of its direction, the isotropic part 1

3
(
Ai,xx +Ai,yy +Ai,zz

)
I would be of no significance, and

therefore Ai would have only five independent components after subtracting the isotropic
part from itself. It is evident that the ST

i AiSi prefers the direction of Si along the eigenvector
of Ai with the lowest eigenvalue. If this lowest eigenvalue is two-fold degenerate, the
directions of Si favored by SIA will be those belonging to the plane spanned by the two
eigenvectors that share the lowest eigenvalue, in which case we say the ion i has easy-
plane anisotropy. On the contrary, if the lowest eigenvalue is not degenerate while the
higher eigenvalue is two-fold degenerate, we say the ion i has easy-axis anisotropy. In
these two cases (easy-plane or easy-axis anisotropy), by defining the direction of z-axis
parallel to the nondegenerate eigenvector, the ST

i AiSi part would be simplified to Ai,zz
(
Sz

i
)2

with only one independent component. The easy-axis anisotropy has been found to be
helpful in stabilizing the long-range magnetic order and enhancing the Curie temperature
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in two-dimensional or quasi-two-dimensional systems [101]. The easy-plane anisotropy in
three-dimensional ferromagnets can lead to the effect called “quantum spin reduction”,
where the mean spin at zero temperature has a value lower than the maximal one due to
the quantum fluctuations [101,102]. Recently, several materials with unusually large easy-
plane or easy-axis anisotropy were found [103–105], which, as single-ion magnets (SIMs),
are promising for applications such as high-density information storage, spintronics, and
quantum computing.

The DMI matrix Dij is antisymmetric and therefore has only three independent com-
ponents, which can be expressed by a vector Dij with Dij,x = Dij,yz, Dij,y = Dij,zx, and
Dij,z = Dij,xy. Thus, the DMI can be expressed by cross product: ST

i DijSj = Dij ·
(
Si × Sj

)
.

Such an interaction prefers the vectors Si and Sj to be orthogonal to each other, with a
rotation (of Sj relative to Si) around the direction of −Dij. Together with Heisenberg term
JijSi · Sj, the preferred rotation angle between Si and Sj relative to the collinear state pre-

ferred by the Heisenberg term would be arctan |Dij|
|Jij| . In Ref. [106], the DMI is shown to

determine the chirality of the magnetic ground state of Cr trimers on Au(111). The DMI
is also important in explaining the skyrmion states in many materials such as MnSi and
FeGe [24,26,27,29,107–110]. Materials with skyrmion states induced by DMI usually have
a large ratio of |D1|

|J1|
(typically 0.1~0.2) where the subscript “1” means nearest pairs [24,100].

In Ref. [100], strong enough DMI for the existence of helical cycloid phases and skyrmionic
states are predicted in Cr(I,X)3 (X = Br or Cl) Janus monolayers (e.g., for Cr(I,Br)3, sup-
posing |Si| = 3

2 for any i, the corresponding interaction parameters are computed as

J1 = −1.800 meV and |D1| = 0.270 meV, thus |D1|
|J1|

= 0.150), though monolayers such as
CrI3 only exhibit an FM state for lack of DMI. In Ref. [110], the nonreciprocal magnon spec-
trum (and the associated spectral weights) of MnSi, as well as its evolution as a function
of magnetic field, is explained by a model including symmetric exchange, DMI, dipolar
interactions, and Zeeman energy (related to the magnetic field).

The Kitaev matrix Kij has five independent components as a symmetric matrix with
zero trace. For the specific cases when Si and Sj are parallel to each other (pointing in the
same direction), ST

i KijSj would perform like ST
i AiSi and show preference to the direction

with the lowest eigenvalue of Kij; while when Si and Sj are antiparallel to each other,
ST

i KijSj would prefer the direction with the highest eigenvalue of Kij. The difference
between the highest and lowest eigenvalue of Kij can be defined as Kij (a scalar), which
characterizes the anisotropic contribution of Kij. Generally, the favorite direction of the
spins is decided by both SIA and Kitaev interactions. The long-range ferromagnetic order in
monolayer CrI3 was explained by the anisotropic superexchange interaction since the Cr-I-
Cr bond angle is close to 90◦ [111]. In Ref. [112], the interplay between the prominent Kitaev
interaction and SIA was studied to explain the different magnetic behaviors of CrI3 and
CrGeTe3 naturally. For CrI3, supposing |Si| = 3

2 for any i, the Jij and Kij parameters between
nearest pairs are computed as−2.44 and 0.85 meV, respectively; while the only independent
component Ai,zz of Ai is −0.26 meV. For CrGeTe3, these three parameters are calculated
to be −6.64, 0.36, and 0.25 meV, respectively. These two kinds of interactions are induced
by SOC of the heavy ligands (I or Te) in these two materials (rather than the commonly
believed Cr ions). Among different types of quantum spin liquids (QSLs), the exactly
solvable Kitaev model with a ground state being QSL (with Majorana excitations) [113]
has attracted much attention. Materials that achieve the realization of such Kitaev QSLs
as α-RuCl3 [114–116] and (Na1-xLix)2IrO3 [117,118] (with an effective S = 1/2 spin value)
with honeycomb lattices are discovered. A possible Kitaev QSL state is also predicted in
epitaxially strained Cr-based monolayers with S = 3/2, e.g., CrSiTe3 and CrGeTe3 [119].

2.4. Fourth-Order Interactions without SOC

Sometimes, higher-order interactions are also crucial for explaining the magnetic
properties of some materials, especially if the magnetic atoms have large magnetic moments
or if the system is itinerant. As mentioned in Section 2.3, when SOC can be ignored, the
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effective spin Hamiltonian should only include inner product terms of spins. Besides
second-order Heisenberg terms like JijSi · Sj, the terms with the next lowest order (which is

fourth-order) are biquadratic (exchange) terms like Kij
(
Si · Sj

)2, three-body fourth-order
terms like Kijk

(
Si · Sj

)
(Si · Sk), and four-spin ring coupling terms like Kijkl

(
Si · Sj

)
(Sk · Sl).

That is to say, when SOC and external magnetic field are ignored, keeping the terms with
orders no higher than fourth, the effective spin Hamiltonian can be expressed as

Hspin = ∑
i,j>i

JijSi · Sj + ∑
i,j>i

Kij
(
Si · Sj

)2
+ ∑

i, j,
k > j

Kijk
(
Si · Sj

)
(Si · Sk) + ∑

i, j > i,
k > i,
l > k

Kijkl
(
Si · Sj

)
(Sk · Sl) (10)

The biquadratic terms have been found to be important in many systems, such as
MnO [120,121], YMnO3 [74], TbMnO3 [122], iron-based superconductor KFe1.5Se2 [123],
and 2D magnets [124]. In the case of TbMnO3, besides the biquadratic terms, the four-spin
couplings are also found to be important in explaining the non-Heisenberg behaviors [122];
the three-body fourth-order terms are also found to be important in simulating the total
energies of different spin configurations [125] (a list of the fitted values of each important
interaction parameter in TbMnO3 is provided in the supplementary material of Ref. [125]).
According to Ref. [126], in a Heisenberg chain system constructed from alternating S > 1

2
and S = 1

2 site spins, the additional isotropic three-body fourth-order terms are found
to stabilize a variety of partially polarized states and two specific non-magnetic states
including a critical spin-liquid phase and a critical nematic-like phase. In Ref. [127], the
four-spin couplings were found to have a large effect on the energy barrier preventing
skyrmions (or antiskyrmions) collapse into the ferromagnetic state in several transition-
metal interfaces.

2.5. Chiral Magnetic Interactions Beyond DMI

Some high-order terms containing cross products of spins may also be necessary for
fitting the models to the total energy or explaining some certain magnetic properties. Due
to the chiral properties of these interactions like DMI, it is possible that they can also
lead to, or explain, intriguing noncollinear spin textures such as skyrmions. In Ref. [128],
topological–chiral interactions are found to be very prominent in MnGe, which includes
chiral–chiral interactions (CCI) with the form

κCC
ijki′ j′k′

[
Si ·
(
Sj × Sk

)][
Si′ ·

(
Sj′ × Sk′

)]
(11)

whose local part has the form
κCC

ijk
[
Si ·
(
Sj × Sk

)]2 (12)

and spin–chiral interactions (SCI) with the form

κSC
ijk

(
τijk · Si

)[
Si ·
(
Sj × Sk

)]
(13)

where the unit vector τijk ∝
(
Rj −Ri

)
× (Rk −Ri) is the surface normal of the oriented

triangle spanned by the lattice sites Ri, Rj and Rk. The local scalar spin chirality χijk =

Si ·
(
Sj × Sk

)
among triplets of spins can be interpreted as a fictitious effective magnetic

field Beff ∝ χijkτijk, which leads to topological orbital moments LTO (TOM) [129–134]
arising from the orbital current of electrons hopping around the triangles. The TOM is
defined as

LTO
i = ∑

(jk)
LTO

ijk = ∑
(jk)

κTO
ijk χijkτijk (14)

where κTO
ijk is the local topological orbital susceptibility. CCI corresponds to the interaction

between pairs of topological orbital currents (or TOMs), whose local part can be interpreted
as the orbital Zeeman interaction LTO

i · B
eff. SCI arises from the SOC, which couples the
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TOM to single spin magnetic moments. An illustration of CCI and SCI is provided in
Figure 2. Considerations of CCI and SCI improved the fitting of the total energy in MnGe
(see details in Ref. [128]). Moreover, the authors showed the possibility that the CCI may
lead to three-dimensional topological spin states and therefore may be vital in deciding
the ground state of the spin configurations of MnGe, which was found to be a three-
dimensional topological lattice (possibly built up with hedgehogs and anti-hedgehogs)
experimentally [135].
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A new type of chiral pair interaction Cij ·
(
Si × Sj

) (
Si · Sj

)
, named as chiral biquadratic

interaction (CBI), which is the biquadratic equivalent of the DMI, was derived from a mi-
croscopic model and demonstrated to be comparable in magnitude to the DMI in magnetic
dimers made of 3d elements on Pt(111), Pt(001), Ir(111) and Re(0001) surface with strong
SOC [136]. Similar but generalized chiral interactions such as Dijjk ·

(
Sj × Sk

) (
Si · Sj

)
and

Dijkl · (Sk × Sl)
(
Si · Sj

)
, named four-spin chiral interactions, were discussed in Ref. [137],

and they are found to be important in predicting a correct chirality for a spin spiral state of
Fe chains deposited on the Re(0001) surface.

When there is a magnetic field, for a nonbipartite lattice, the magnetic field can couple
with the spin and produce a new term of the form JijkSi ·

(
Sj × Sk

)
= Jijkχijk [138,139],

which can be termed the three-spin chiral interaction (TCI) [140]. Such a chiral term can
induce a gapless line in frustrated spin-gapped phases, and a critical chiral strength can
change the ground state from spiral to Néel quasi-long-range-order phase [138]. This
chiral term is also found to produce a chiral spin liquid state [141], where the time-reversal
symmetry is broken spontaneously by the emergence of long-range order of scalar chiral-
ity [142].

2.6. Expansions of Magnetic Interactions

In general, a complete basis can be used to expand the spin interactions. One example
is the spin-cluster expansion (SCE) [143–145], where unit vectors denoting the directions
of spins are used as independent variables and spherical harmonic functions are used in
the expressions of the basis functions. When SOC and the external magnetic field are not
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important, as mentioned in Section 2.3, only inner products of spins need to be considered.
Consequently, the expansion can be

Hspin = E0 +
∞

∑
n=1

Jn

 ∑
nth nearest pairs 〈k,l〉

ek · el

+
∞

∑
n′=1

J′n′ ∑
n′th type

(ek · el)(em · en) + · · · (15)

as used in Ref. [125]. When using expansions of spin vectors (or directions of the spins),
suitable truncations on interaction distances and interaction orders are needed. Otherwise,
the number of terms would be infinite, and as a result, the problem would be unsolvable.

3. Methods of Computing the Parameters of Effective Spin Hamiltonian Models

In this part, we mainly discuss the methods of computing the spin interaction parame-
ters based on first-principles calculations of crystals, where periodic boundary conditions
are tacitly supposed. These methods include different kinds of energy-mapping analysis
(see Section 3.1) and Green’s function method based on magnetic-force linear response
theory (see Section 3.2). Discussions on the rigid spin rotation approximation and other
assumptions are provided in Section 3.3. The cases of clusters, where periodic boundary
conditions do not exist, will be briefly discussed in Section 3.3. Methods of obtaining spin
interaction parameters from experiments will also be briefly mentioned in Section 3.3.

3.1. Energy-Mapping Analysis

In an energy-mapping analysis, we do several first-principles calculations to assess the
total energies of different spin configurations. Then, we use the effective spin Hamiltonian
to provide the expressions of the total energies of these spin configurations (with the
expressions containing several undetermined parameters). By mapping the total energy
expressions given by the effective spin Hamiltonian model to the results of first-principles
calculations, the values of the undetermined parameters can be estimated. There are several
types of energy-mapping analysis. For the first type, a minimal number of configurations
are used, and a concrete expression for calculating the parameters can be given in advance.
An example is by mapping between the eigenvalues and eigenfunctions of exact Hamiltoni-
ans and the effective spin Hamiltonian models (typically the Heisenberg model) to estimate
the exchange parameters for relatively simple systems [146,147]. Several broken symmetry
(BS) approaches are also of this type, where broken-symmetry states (instead of eigenstates
of exact Hamiltonians) are adopted for energy mapping between the models and results of
first-principles calculations [147,148]. A typical example of BS approach is the four-state
method [148,149] where four special states are chosen for calculating each component
of the parameters, which will be introduced in Section 3.1.1. For the second type, more
configurations are used, and the parameters in the supposed effective spin Hamiltonian
model are determined by employing least-squares fitting, which will be introduced in
Section 3.1.2. The third type is similar to the second one, but the concrete form of the
effective spin Hamiltonian model is not determined in advance. In the beginning, one
includes many terms in the mode Hamiltonians. The relevance of each individual term
depends on the fitting performance with respect to first-principles calculations. While
selecting the relevant terms for a model Hamiltonian, it is important to search for the
minimal Hamiltonian for a given magnetic system, namely, the one with the minimal
number of parameters that capture its essential physics. This type of energy-mapping
analysis will be introduced in Section 3.1.3.

In this section, we will mainly focus on the applications in solid state systems with
periodic boundary conditions. The total energy of a designated configuration (which is
usually a broken-symmetry state) is typically provided by first-principles calculations (e.g.,
DFT+U calculations) with constrained directions of magnetic moments.

3.1.1. Four-State Method

The energy-mapping analysis based on four ordered spin states [148,149], also referred
to as the four-state method, assumes the effective spin Hamiltonian include only second-
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order terms (i.e., isotropic Heisenberg terms, DMI terms, Kitaev terms, and SIA terms).
Each component of the parameters like Jij, Dij,x, Ai,xy, (Ai,yy − Ai,xx) and (Ai,zz − Ai,xx)
can be obtained by first-principles calculations for four specified spin states [148]. Taking
the isotropic Heisenberg parameter Jij for example, with the spin-orbit coupling (SOC)
switched off during the first-principles calculations, we use Eij,αβ ( α, β =↑, ↓ ) to denote
the energy of the configuration where spin i is parallel or antiparallel to the z direction (if
α =↑ or ↓ , respectively), spin j is parallel or antiparallel to the z direction (if β = ↑ or ↓ ,
respectively), and all the spins except i and j are kept unchanged in the four states (which
will be referred to as the “reference configuration”, usually chosen to be a low-energy
collinear state). Then Jij can be expressed as

Jij =
Eij,↑↑ + Eij,↓↓ − Eij,↑↓ − Eij,↓↑

4S2 (16)

The schematic diagrams of these four states are shown in Figure 3.
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total energies given by first-principles calculations corresponding to these four states are denoted as
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In general, the second-order effective spin Hamiltonian takes the form of

Hspin = ∑
i,j>i

ST
i JijSj + ∑

i
ST

i AiSi (17)

and each component of the matrix Jij and Ai can also be obtained by first-principles
calculations for four specified spin states. To compute Jij,ab (a, b = x, y, z), we use Eij,ab,αβ

( α, β = ↑, ↓ ) to denote the energy of the configuration where spin i is parallel or antiparallel
to the a direction (if α = ↑ or ↓ , respectively), spin j is parallel or antiparallel to the b
direction (if β = ↑ or ↓ , respectively), and all the spins except for i and j are kept unchanged
and parallel to the c-axis (c = x, y or z, c 6= a, c 6= b) with an appropriate reference
configuration and kept unchanged. Then, Jij,ab can be expressed as

Jij,ab =
Eij,ab,↑↑ + Eij,ab,↓↓ − Eij,ab,↑↓ − Eij,ab,↓↑

4S2 (18)
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To compute Ai,ab (a, b = x, y, z with a 6= b), we use Ei,ab,αβ ( α, β = ↑, ↓ ) to denote the
energy of the configuration where spin i is parallel to the direction whose a component
is ±

√
2

2 (for α = ↑ or ↓ , respectively), b component is ±
√

2
2 (for β = ↑ or ↓ , respectively),

and the other component is 0. Here all the spins except for i and j are parallel to the c-axis
(c = x, y or z, c 6= a, c 6= b) with an appropriate reference configuration. Then, Ai,ab can be
expressed as

Ai,ab =
Ei,ab,↑↑ + Ei,ab,↓↓ − Ei,ab,↑↓ − Ei,ab,↓↑

4S2 (19)

To compute (Ai,aa −Ai,bb) (a, b = x, y, z with a 6= b), we use Ei,ab,αβ ( α, β = ↑, ↓ or 0) to
denote the energy of the configuration where spin i is parallel to the direction whose a com-
ponent is ±1 or 0 (if α = ↑, ↓ or 0 , respectively), b component is ±1 or 0 (if β = ↑, ↓ or 0 ,
respectively) and the other component is 0, while all the spins except i are parallel to the
c-axis (c = x, y or z, c 6= a, c 6= b) with an appropriate reference configuration. Then
(Ai,aa −Ai,bb) can be expressed as

Ai,aa −Ai,bb =
Ei,ab,↑0 + Ei,ab,↓0 − Ei,ab,0↑ − Ei,ab,0↓

4S2 (20)

It is easy to verify that, by employing this four-state method, each component of the
Jij and Ai can be obtained with the effects of other second-order terms entirely cancelled.
Now we take the effects of fourth-order terms (without SOC) into account and check if
the algorithms for computing Jij and Ai are still rigorous. For Ai, we can find out that
the effects of all these terms are correctly cancelled. For Jij, the effects of biquadratic
terms, three-body fourth-order terms, and most of the four-spin ring coupling terms are
perfectly cancelled, while only the terms like

(
Si · Sj

)
(Sk · Sl) (k, l 6= i, j) will interfere with

the calculation of Jij because (Sk · Sl) is constant during the calculation and therefore mixed
with the contribution of Jij

(
Si · Sj

)
. The error of the calculated Jij originated from four-spin

ring coupling terms
∑

i, j > i,
k > i,
l > k

Kijkl
(
Si · Sj

)
(Sk · Sl) (21)

is given by
∑

k 6= i or j
l 6= i or j
(l > k)

Kijkl(Sk · Sl) (22)

while there is no easy way to get rid of this problem perfectly. Other parts of the Jij
(including Dij and Kij) are not affected by these fourth-order terms (without SOC), but by
other types of fourth-order terms (like four-spin chiral interactions) if SOC is taken into
account (because of the similar reason).

In Ref. [122], the four-spin ring coupling interaction is found to be important in
TbMnO3, and therefore leads to instability in calculating the Heisenberg parameters using
the four-state method when changing the reference configurations. This problem is reme-
died by calculating the Heisenberg parameter Jij twice with the four-state method using
the FM and A-type AFM (A-AFM, see Figure 4c) as the reference configurations, and use
their average value as the final estimation of Jij. The parameter of the vital ring coupling
interaction is obtained by calculating the difference between the two calculated Jij values
(with FM and A-AFM reference configurations, respectively). This effective remedy is
based on the assumption that only one kind of ring coupling interaction is essential. How-
ever, if there are more kinds of significant ring coupling or if we do not know which ring
coupling is essential in advance, such a method of calculating Jij is still not very trustworthy.
Nevertheless, it is found that by taking the average of the calculated Jij with four-state
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method with FM and G-type AFM (G-AFM, see Figure 4a) reference configurations, the
influences of Kijkl

(
Si · Sj

)
(Sk · Sl) with k and l being nearest pairs are eliminated. The terms

Kijkl
(
Si · Sj

)
(Sk · Sl) with non-nearest pairs of k and l still interfere with the calculation

of Jij, but they are generally very weak. Therefore, such a remedy to calculate Jij using
the four-state method should work well in most cases. In cases when a G-AFM state (in
which all the nearest pairs of spins are antiparallelly aligned) cannot be defined (e.g., a
triangular or a Kagomé lattice), there may be more than two reference configurations to
use in the four-state method so as to eliminate the effects of Kijkl

(
Si · Sj

)
(Sk · Sl) terms with

non-nearest pairs of k and l. These reference configurations need to be designed carefully
according to the specific circumstances to get rid of the effects of Kijkl

(
Si · Sj

)
(Sk · Sl) terms

as much as possible.
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The main advantages of the four-state method are its relatively small amount of
first-principles calculations and its relatively good cancellations of other relevant terms. A
weakness is that it cannot analyze the uncertainties of the parameters, so that we do not
know how precise those estimated values are. Another weakness, which is also shared
with other energy-mapping analysis methods, is that the computed Jij between Si and Sj is
actually the sum over Jij′ with any lattice vector R = rj′ − rj. Therefore, to get rid of the
effects of other spin pairs, a relatively large supercell is needed.

The four-state method can also be generalized to compute biquadratic parameters,
where the SOC needs to be switched off during the first-principles calculations. For
calculating Kij in the term Kij

(
Si · Sj

)2, we can let Si pointing to the (1, 0, 0) direction, Sj

pointing to the (1, 0, 0), (−1, 0, 0),
(

1√
2
, 1√

2
, 0
)

and
(
− 1√

2
,− 1√

2
, 0
)

directions, with other
spins parallel to the z-axis. The corresponding total energies are denoted as E1, E2, E3, and
E4, respectively. Then the Kij can be expressed as

Kij = E1 + E2 − E3 − E4 (23)

It can be easily checked that the effects of other terms not higher than fourth order are
totally eliminated. Therefore, this approach of calculating Kij should be relatively rigorous
theoretically.

Note that the four-state methods [148,149] could also give the derivatives of ex-
change interactions with respect to the atomic displacements without doing additional
first-principles calculations due to the Hellmann-Feynman theorem. These derivatives are
useful for the study of spin-lattice coupling related phenomena.

3.1.2. Direct Least Squares Fitting

Another type of energy-mapping analysis, instead of the four-state method, uses
more first-principles calculations with different spin configurations and fits the results
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to the effective spin Hamiltonian using the least-squares method to estimate the parame-
ters [74,122–124]. Ways of choosing spin configurations can depend on which parameters
to estimate.

In Ref. [74], for the four Mn sites in a unit cell of YMnO3, the polar and azimuthal
angles (θ,ϕ) of their spins are given by (0, 0), (0, 0),

(
θ, 3π

2
)
, and

(
θ, π

2
)
, respectively. By

changing the θ from 0◦ to 180◦, different configurations are produced. If the effective spin
Hamiltonian only contains Heisenberg terms, there will be a systematic deviation between
the predicted value given by the effective Hamiltonian and the calculated value given by
first-principles calculations. Such a deviation is well remedied by adding biquadratic ex-
change interactions into the effective Hamiltonian model. Thus, the biquadratic parameters
can be fitted. Similar approaches were adopted by others to calculate and show the impor-
tance of biquadratic parameters and topological chiral–chiral contributions [122–124,128].
Apart from using an angular variable for generating spin configurations, using two or more
variables is also practicable, or randomly chosen directions [106] can also be considered.
Thus, more diverse configurations will be produced. The least-squares fitting will also
work, but whether a systematic deviation exists will not be as apparent as the case when
only one angular variable is used for generating configurations, and the fitting task may be
more laborious.

The main virtues of this method are that the reliability of the model can be checked
by the fitting performance and that the uncertainties of the parameters can be estimated
if needed. This method is especially suitable for calculations of biquadratic parameters
and topological CCI. However, when talking about calculations of Heisenberg parameters,
this method needs more first-principles calculations and is thus less efficient. Furthermore,
the fitted result of the Heisenberg parameter Jij is vulnerable to the effects of other fourth-
order interactions such as terms as

(
Si · Sj

)
(Si · Sk) and

(
Si · Sj

)
(Sk · Sl). Therefore, the

estimations of the Heisenberg parameters may not be very reliable if any of such fourth-
order interactions are essential. This problem can be remedied by adding the related terms
into the effective Hamiltonian model, while it is not easy to decide which terms to include
in the model beforehand.

A possible way to get rid of the effects of other high-order terms is to perform artificial
calculations where most of the magnetic ions are replaced by similar but nonmagnetic ions
(e.g., substituting Fe3+ ions with nonmagnetic Al3+ ions) except for one or more ions to be
studied [150]. For example, when calculating SIA, only one magnetic ion is not substituted,
and by rotating this magnetic ion and calculating the total energy, the SIA can be studied.
When studying two-body interactions between Si and Sj, only two magnetic ions (at site
i and j) are not substituted, and by rotating the spins (or magnetic moments) of these
two magnetic ions, the interactions between them can be studied. Such a technique of
substituting atoms can be applied to energy mapping analysis based on either the four-state
method or least-squares fitting. In this way, effects from interactions involving other sites
are effectively avoided. Nevertheless, this substitution method can make the chemical
environments of the remaining magnetic ions different from those in the system with no
substitution. This may make the calculations of the interaction parameters untrustworthy.

3.1.3. Methods Based on Expansions and Selecting Important Terms

The traditional energy-mapping analysis needs to construct an effective spin Hamil-
tonian first and then fit the undetermined parameters. However, it is not easy to give a
perfect guess, especially when high-order interactions are essential. Such problems can be
solved by considering almost all the possible terms utilizing some particular expansion
with appropriate truncations. Usually, there are too many possible terms to be considered,
so a direct fitting is impracticable; it requires at least as many first-principles calculations
as the number of terms to determine, but leads to over-fitting problems due to too many
parameters to determine. So, it is necessary to decide whether or not to include each
term into the effective spin Hamiltonian on the basis of their contributions to the fitting
performance.
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In Ref. [145], SCE is adopted for the expansion of spin interactions of bcc and fcc Fe.
After truncations based on the interacting distance and interaction orders, they considered
154 (179) possible different interaction terms in bcc (fcc) Fe. They randomly generated 3954
(835) different spin configurations in a 2 × 2 × 2 supercell for fitting. Their method of
choosing terms is as follows: starting from the effective Hamiltonian model with only a
constant term, try adding each possible term into the temporary model and accept the one
providing the best fitting performance, in which way the terms are added to the model
one by one. This method is the forward selection in variable selection problems, which is
simple and straightforward, and it works well in most cases. However, this method may
include unnecessary interactions to the effect Hamiltonian.

In Ref. [125], a machine learning method for constructing Hamiltonian (MLMCH) is
proposed, which is more efficient and more reliable than the traditional forward selection
method. Firstly, a testing set is used to avoid over-fitting problems. Secondly, not only
adding terms but also deleting and substituting terms are considered during the search for
the appropriate model. Thus, if an added term is judged to be unnecessary, it can still be
removed from the model afterward. A penalty factor p˘ (λ ≥ 1), where p is the number
of parameters in the temporary model and λ is a given parameter, is used together with
the loss function σ2 (the fitting variance) to select models with fewer parameters. Several
techniques are used to reduce the search space and enhance the search efficiency to select
important terms out of tens of thousands of possible terms. The flow charts of this method
of variable selection as well as the forward selection method are shown in Figure 5.
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This method is advantageous in two ways: (a) Constructing the effective spin Hamil-
tonians is carried out comprehensively, which makes it less likely to miss some critical
interaction terms; (b) this method is general, so it can be applied to most magnetic materials.
The least-squares fitting needed in this approach can also provide the estimations for the
uncertainties of the parameters. The flaw is that it needs lots of (typically hundreds of)
first-principles calculations, which could be impracticable when a very large supercell
is needed (especially when the material is metallic so that long-range interactions are
essential). The way to generate spin configurations (typically randomly distributed among
all possible directions, sometimes deviating only moderately from the ground state) may
have some room for improvement.

3.2. Green’s Function Method Based on Magnetic-Force Linear Response Theory

In Green’s function method based on magnetic-force linear response theory [151–159],
we need localized basis functions ψimσ(r) (i, m, σ indicating the site, orbital, and spin
indices, respectively) based on the tight-binding model. The localized basis functions can
be provided by DFT codes together with Wannier90 [160,161] or codes based on localized
orbitals. By defining

Himjm′σσ′(R) = 〈ψimσ(r)|H|ψimσ(r + R)〉 (24)

Simjm′σσ′(R) = 〈ψimσ(r)|ψimσ(r + R) (25)

H(k) = ∑
R
H(R)eik·R (26)

S(k) = ∑
R
S(R)eik·R (27)

the Green’s function in reciprocal space and real space are defined as

G(k, ε) = (εS(k)−H(k))−1 (28)

and
G(R, ε) =

∫
BZ

G(k, ε)e−ik·Rdk (29)

Based on the magnetic force theorem [162], the total energy variation due to a pertur-
bation (which is the rotation of spins in this case) from the ground state equals the change
of single-particle energies at the fixed ground-state potential:

δE =
∫ EF

−∞
εδn(ε)dε = −

∫ EF

−∞
δN(ε)dε (30)

where
n(ε) = − 1

π
ImTr(G(ε)) (31)

and
N(ε) = − 1

π
ImTr(ε−H) (32)

where traces are taken over orbitals. By defining

Pi = Hii(R = 0) = p0i l+
→
p i ·
→
σ (33)

with its component
Pimm′ = p0

imm′l+ pimm′
→
e imm′ ·

→
σ (34)

where
→
σ is the vector composed of Pauli matrices. By defining

Gim,jm′ = G0
im,jm′l+

→
Gim,jm′ ·

→
σ (35)
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the energy variation due to the two-spin interaction between sites i and j is

δEij = −
2
π

∫ EF

∞
ImTr

(
δHiGδHjG

)
dε (36)

with δHi = δφi × pi. After mathematical simplification, the expression of δEij can be
mapped to that given by the effective Hamiltonian model

Hspin = ∑
i

ST
i AiSi + ∑

i,j>i

[
JijSi · Sj + Dij ·

(
Si × Sj

)
+ ST

i KijSj

]
+ ∑

i,j>i
Kij
(
Si · Sj

)2 (37)

(including all the second-order terms and a biquadratic term) to obtain the expressions of
the parameters:

Jij = Im
(

A00
ij − Axx

ij − Ayy
ij − Azz

ij − 2Azz
ij Sref

i · S
ref
j

)
(38)

Kuv
ij = Im

(
Auv

ij + Avu
ij

)
(39)

Du
ij = Re

(
A0u

ij − Au0
ij

)
(40)

Bij = Im
(

Azz
ij

)
(41)

where

Auv
ij =

1
π

∫ EF

−∞
Tr
{
pzi G

u
ijp

z
jG

v
ji

}
dε (42)

with u, v ∈ {0, x, y, z} (the trace is also taken over orbitals), and Sref
i indicates the un-

perturbed vector Si. An xyz average strategy can be adopted so that some components
inaccessible from one first-principles calculation can be obtained [157].

The main advantages of this method are that it only requires one or three DFT calcula-
tions to obtain all the parameters of second-order terms and biquadratic terms between
different atoms, using only a small supercell (with a dense enough k-point sampling) to ob-
tain interaction parameters between spins far away from each other. Therefore, it saves the
computational cost compared to the energy-mapping analysis, especially when long-range
interactions are essential. It also avoids the difficulties of reaching self-consistent-field
convergence in DFT calculations for high-energy configurations, which may occur in the
energy-mapping analysis. This method is good at describing states near the ground state
but may not be so good at describing high-energy states. A limitation is that this method
cannot obtain SIA parameters, and its calculations for biquadratic parameters are not very
trustworthy [157]. The calculated Heisenberg parameter Jij is mixed with the contributions
of other fourth-order interactions such as terms like

(
Si · Sj

)
(Si · Sk) and

(
Si · Sj

)
(Sk · Sl).

Therefore, the results may be unreliable if any of such fourth-order interactions are essential.
Another little flaw is the noise of a typical order of magnitude of a few µeV introduced by
the process of obtaining the Wannier orbitals [157]. In addition, the uncertainties of the
parameters cannot be obtained by this method.

A recent study [140] considered the rotations of more than two spins as the pertur-
bation and mapped the δE to the corresponding quantity given by an effective Hamil-
tonian with more types of interactions, including terms proportional to Si ·

(
Sj × Sk

)
,(

Si · Sj
)
(Sk · Sl) and

(
Si × Sj

)
(Sk · Sl). This enables one to obtain the expressions needed

for calculating the associated parameters. The derivations and forms of the expressions
are much more complicated compared with those from the second-order interactions dis-
cussed above. This generalization of the traditional approach for calculating second-order
interaction parameters remedied the problem of ignoring the effects of other high-order
interactions to some extent. However, it is still a challenging task to get rid of the effects of
high-order interactions on calculating the Heisenberg parameters (and other second-order
parameters). The noise introduced by Wannier orbitals, the inability to determine SIA and
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the uncertainties of the resulting parameters are still the drawbacks of this approach. In
addition, this method cannot give the derivatives of exchange interactions with respect to
the atomic displacements, in contrast to the four-state method discussed above.

3.3. More Discussions on Calculating Spin Interaction Parameters

We should notice that, for all the methods discussed above, a rigid spin rotation
approximation is used. The latter is equivalent to the supposition that the magnitudes
of the spins should be constant in different configurations. However, this is not always
true. For example, the magnitudes of the spins may be a little different in FM and AFM
states. In Ref. [128], the energy-mapping analysis based on direct least-squares fitting (with
configurations generated with different θ values) is adopted to study the spin interactions
of MnGe and FeGe, to find that the agreement between the calculations and the model is
enhanced by allowing the magnitudes of the spins to depend on the parameter θ (which
decides the configurations) instead of using the fixed magnitudes (see Supplementary
Materials of Ref. [128]). It is possible to obtain the relationship between the magnitudes
of the spins and the parameter θ with an appropriate fitting or interpolation so that for
a configuration with a new value of θ, the magnitudes of spins and the total energy can
be predicted. Nevertheless, for a general spin configuration that cannot be described by a
single θ, the prediction for the magnitudes of the spins can be very difficult. This is why
one commonly employs the effective spin Hamiltonian by assuming that the magnitudes
of the spins are constant.

Another perspective for the rigid spin rotation approximation, as implied in Ref. [143],
is that even if the magnitudes of the spins are highly relevant to the configurations, the
total energy can be fitted by using the directions of spins, instead of the spin vectors
themselves, as the independent variables (which is mathematically equivalent to supposing
the magnitudes of the spins to be constant) and considering an appropriate expansion of
these variables (spin directions). For example, supposing SOC can be ignored (supposing
SOC is switched off during first-principles calculations), the Heisenberg term JijSi · Sj can
be expressed as JijSi · Sj = JijSiei · Sjej; the magnitudes of the spins Si and Sj depend on
the angles between these two spins or neighboring spin directions (e.g., ek). Therefore,

JijSi · Sj = J̃0, ijei · ej + C1
(
ei · ej

)2
+ C2(ei · ek)

(
ei · ej

)
+ C3

(
ej · ek′

)(
ei · ej

)
+ · · · . (43)

That is to say, the relevance of the magnitudes of spins to the configurations can be
transferred to higher-order interactions when supposing the magnitudes of spins to be
constant. These “artificial” higher-order terms, only emerging for compensating for such
configuration dependency, are not very physical but can somewhat improve the fitting
performances (when such dependency is prominent).

All the methods discussed above assumes, besides the rigid spin rotation approxima-
tion, that magnetic moments are localized on the atoms. In addition, we note that the DFT
calculation results depend on the chosen exchange-correlation functional and the value of
DFT+U parameters [157].

In the above discussions, we have supposed the periodic boundary conditions, for
we mainly focus on the studies of crystals. When dealing with clusters (e.g., single-
molecule magnets), we can still arrange a cluster in a crystal (using periodic boundary
conditions) [159] with enough vacuum space to prevent the interactions between two
clusters belonging to different periodic cells. If no periodic boundary conditions exist,
the energy-mapping analysis can still work, while Green’s function method based on
magnetic-force linear response theory will fail because the reciprocal space is not defined.
For the cases without periodic boundary conditions, theoretical chemists have developed
several other approaches (such as wave-function based quantum chemical approaches)
for studying magnetic interactions [69,146,147,163–165], detailed discussions of which are
beyond the scope of this review.

The spin interaction parameters can also be obtained from comparing the experimental
results of observable quantities such as transition temperatures, magnetization [166], spe-
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cific heat [166], magnetic susceptibility [166,167], and magnon spectrum (given by inelastic
neutron scattering measurements) [110,124,168–171] with the corresponding predictions
given by the effective Hamiltonian model, which is similar to the idea of energy-mapping
analysis based on least squares fitting. While the transition temperatures can only be
used to roughly estimate the major interaction (typically the Heisenberg interaction be-
tween nearest pairs), the magnon spectrum can provide more detailed information and
thus widely adopted for obtaining interaction parameters. These experimental results
can also be used for checking the reliability of effective spin Hamiltonian models and the
corresponding parameters obtained from first-principles calculations [172].

4. Conclusions

In this review, we summarized different types of spin interactions that an effective
spin Hamiltonian may include. Recent studies have shown the importance of several
kinds of high-order terms in some magnetic systems, especially biquadratic terms, four-
spin ring interactions, topological chiral interactions, and chiral biquadratic interactions.
In addition, we discussed in some detail the advantages and disadvantages of various
methods of computing interaction parameters of the effective spin Hamiltonians. The
energy-mapping analysis is easier to use, and it is less vulnerable to the effects of higher-
order interactions (if carefully treated). Compared with the energy-mapping analysis,
Green’s function method requires less first-principle calculations and a relatively small
supercell. The energy-mapping analysis usually gives a relatively good description of
many kinds of states with diverse energies, while Green’s function method provides a
more accurate description of states close to the ground state (or the reference state). Both
methods usually provide similar results and are both widely adopted in the studies of
magnetic materials. We expect that first-principles based effective spin Hamiltonian will
continue to play a key role in the investigation of novel magnetic states (e.g., quantum spin
liquid and magnetic skyrmions).
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