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Abstract

Understanding cellular regulation of metabolism is a major challenge in systems biology. Thus far, the main assumption was
that enzyme levels are key regulators in metabolic networks. However, regulation analysis recently showed that metabolism
is rarely controlled via enzyme levels only, but through non-obvious combinations of hierarchical (gene and enzyme levels)
and metabolic regulation (mass action and allosteric interaction). Quantitative analyses relating changes in metabolic fluxes
to changes in transcript or protein levels have revealed a remarkable lack of understanding of the regulation of these
networks. We study metabolic regulation via feasibility analysis (FA). Inspired by the constraint-based approach of Flux
Balance Analysis, FA incorporates a model describing kinetic interactions between molecules. We enlarge the portfolio of
objectives for the cell by defining three main physiologically relevant objectives for the cell: function, robustness and
temporal responsiveness. We postulate that the cell assumes one or a combination of these objectives and search for enzyme
levels necessary to achieve this. We call the subspace of feasible enzyme levels the feasible enzyme space. Once this space is
constructed, we can study how different objectives may (if possible) be combined, or evaluate the conditions at which the
cells are faced with a trade-off among those. We apply FA to the experimental scenario of long-term carbon limited
chemostat cultivation of yeast cells, studying how metabolism evolves optimally. Cells employ a mixed strategy composed
of increasing enzyme levels for glucose uptake and hexokinase and decreasing levels of the remaining enzymes. This trade-
off renders the cells specialized in this low-carbon flux state to compete for the available glucose and get rid of over-
overcapacity. Overall, we show that FA is a powerful tool for systems biologists to study regulation of metabolism, interpret
experimental data and evaluate hypotheses.
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Introduction

In their natural habitat, most microbes are exposed to

constantly changing physical and chemical environments. To

perform optimally in these conditions, they must finely regulate

their metabolism. Understanding how microbes regulate metab-

olism to achieve a desired objective, or how they adapt to

changing conditions, is a major challenge [1]. Quantitative

analyses relating changes in metabolic fluxes to changes in

transcript or protein levels have further revealed a remarkable

lack of understanding of the regulation of these networks; it

remains unclear how and to what extent metabolic networks are

regulated through the modulation of enzyme levels [2]. Regulation

analysis has shown that metabolic networks are controlled via non-

obvious combinations of metabolic and hierarchical regulation

[3,4].

Thus far, in systems biology two main model-based approaches

are used to study metabolic regulation: top-down and bottom-up. The

top-down approach employs genome-wide constraint-based mod-

eling techniques, such as Flux Balance Analysis (FBA), to find

viable intracellular flux distributions based on measured external

fluxes and thermodynamical considerations. Constraint-based

models have been shown useful in exploring cellular capabilities

of biological systems and have enabled in silico characterization of

several phenotypic features, such as growth yield under gene

knockouts (see [5] for a review). However, an inherent limitation of

constraint-based models is that they are based solely on

stoichiometry and thus are limited to predicting steady-state flux

distributions. In general, they do not contain explicit regulation

terms and cannot predict the effect of gene or enzyme dosage via

knock-ins or point mutations. It is however possible to constrain

the solution space by incorporating series of physiological

parameters [6] or additional -omics data [7], or by assuming

certain objectives for the cell [8]. The list of such objectives ranges

from maximization of biomass to minimization of redox potential.

A systematic evaluation [9] revealed that Escherichia coli employs

different objectives under different conditions.

In contrast, the bottom-up approach combines detailed kinetic

models with the theorems of Metabolic Control Analysis (MCA,

[10]) or Biochemical Systems Theory (BST, [11]) to study
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regulation. While kinetic models describe metabolic reaction rates

as a function of enzyme levels and metabolite concentrations, the

inverse models describing (changes in) enzyme levels required to

obtain desired metabolite concentrations or reaction rates are

more useful for studying regulation. However, as most kinetic

models are highly nonlinear, explicit inversion is often impossible.

Both within the framework of MCA and BST, a number of

approximative kinetic formats [12–14] have therefore been

proposed as a solution [15–17]. Although useful, these kinetic

descriptions usually offer limited mechanistic insights.

In this paper, we employ a method of studying regulation,

Feasibility Analysis (FA), combining elements of bottom-up and

top-down approaches. FA starts from an explicit kinetic model

describing the interactions between enzymes and metabolites.

Inspired by the well-established constraint based approach of FBA,

it then defines a number of physicochemical constraints on the

cell, as well as three physiologically relevant objectives: function,

robustness and temporal responsiveness, for which quantitative

measures are introduced. Assuming that the cell follows one or a

combination of these objectives, FA then searches for (a) set(s) of

enzyme levels necessary to achieve these. Given the problem of

inversion of general non-linear kinetic models, FA uses a

straightforward sampling-based method, commonly used for

various computational biology purposes, e.g. for ensemble

modeling [18], or modeling the uncertainty in biochemical

reaction networks [19,20]. For each sampled set of enzyme levels,

the kinetic model is integrated to steady state and objective

measures are calculated on the resulting phenotype. We call the

subspace encompassing all feasible enzyme levels the feasible

enzyme space. Once this space is constructed, we can study how

different objectives can (if possible) be combined, or evaluate the

conditions under which these objectives are traded-off.

A similar approach of using physiological constraints to find

feasible sets of enzyme levels was successfully applied to identify

the required changes in gene expression in yeast upon heat shock

[21] and, more generally, to attain certain cellular adaptive

responses [22]. This method was adapted to study general design

principles of metabolic networks, employing optimization tech-

niques to explore the space of feasible enzyme levels [21,23].

While mathematically advanced, it is derived from a specific type

of approximative kinetic model (Generalized Mass Action or

GMA models), which limits its general use. FA aims (1) to

generalize the GMA-based analysis by defining more generic,

quantitative objectives that can be evaluated for any kinetic model;

and (2) to get deeper understanding of regulation by explicitly

incorporating the modes of regulation (metabolic or hierarchical)

under physiological constraints and objectives.

The feasible enzyme spaces found by FA can also be used to

enhance currently available kinetic models. These models are

usually derived starting from an ab initio selected set of kinetic

interactions; subsequently, parameter values are set or estimated

by fitting to a (small) number of measurements. Methods to

expand/shrink the model by adding/removing interactions and

inspect the feasibility of the resulting models are of great interest.

Using FA, we can thus discriminate between available hypotheses

on how metabolism is regulated and evaluate potential changes in

model structure.

In this paper, we first describe FA in detail, listing a number of

constraints and introducing quantitative measures for the

proposed objectives. We then exemplify the approach using two

cases: (1) an illustrative small model with tractable kinetics and (2)

a larger dynamic model of yeast glycolysis [24]. For yeast

glycolysis, we analyze two scenarios: the adaptation of yeast cells

during long-term chemostat cultivation under carbon limitation

and the regulation of hexokinase to infer robustness to the

glycolytic pathway. In each case, we also perform regulation

analysis to determine the modes of regulation, and inspect on the

relation between the physiological objectives and hierarchical or

metabolic regulation. Additionally, we employ FA to investigate

putative regulatory links, by extending the corresponding meta-

bolic model with novel interactions and studying the changes

obtained in the feasible enzyme space. We end with a discussion of

our results and an outlook on further applications and possible

extensions of feasibility-based approaches in systems biology.

Results and Discussion

Biological systems constantly adapt to their environment and

regulate their metabolism for optimal performance. In this paper,

we study this regulation at a system level and use feasibility analysis

(FA), considering physiological constraints and a list of potential

objectives. We first describe these constraints and objectives and

then apply FA to analyze two illustrative cases, a toy model and a

model describing the glycolysis in yeast.

Feasibility Analysis
Figure 1 illustrates our overall approach. FA is inspired by the

constraint-based approach used in FBA where an initial flux space

is delimited by thermodynamic, mass balance and capacity

constraints and the model is then optimized for a certain

predefined objective to find the operational point or subspace

(panel fig:Feasibility-FBA). Central to our FA approach, we

incorporate a detailed kinetic model, taking mechanistic interac-

tions between the enzymes, metabolites and rates quantitatively

into account. The multi-dimensional space composed by enzyme

levels e, which we call enzyme space, is mapped to the

physiological space (containing fluxes J and metabolites x) by

the parametrized kinetic model.

We start by considering a large range of enzyme levels as the

initial enzyme space. To construct the feasible enzyme space, this set

should further be constrained. However, direct measures that can

be applied as constraints are generally available for the physio-

logical space only. In theory, since the enzyme space is mapped to

the physiological space with the kinetic model, constraints in one

space can be translated into the other by simply inverting the

kinetic model. Yet, this inversion is generally not possible in

practice due to the non-linear nature of the system. To solve this,

similar to [19], we use Monte Carlo (MC) sampling. For each MC

sample (a point in the enzyme space) the kinetic model is simulated

until it reaches a steady state, yielding the corresponding point in

the physiological space.

We first apply the ‘‘hard constraints’’ (thermodynamic, mass

balance etc) on the physiological space and, via the kinetic model,

on the enzyme space. These constraints yield the viable enzyme

and physiological space. Next, we evaluate each feasibility

criterion for each of the viable physiological states. The labels

‘‘feasible’’ or ‘‘infeasible’’ are thus assigned to each state and the

feasible space is constructed (panel fig:Feasibility-Feasible). Finally,

hierarchical regulation analysis can be applied to inspect where

metabolism is regulated mainly hierarchically or metabolically,

allowing to study the relation between physiological objectives and

type of regulation (see Methods for more details).

Constraints
The first step in FA is the application of the hard constraints.

We take thermodynamic, stability, kinetic, capacity and total protein

constraints into account (See Methods for a more formal definition

of these constraints). We start by demanding that every

Feasibility Analysis to Study Regulation
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biochemical reaction should obey thermodynamic laws. In

general, this is formulated as discrete irreversibility constraints

for fluxes through reactions operating far from equilibrium. When

measurements on metabolites are available, thermodynamic

properties such as Gibbs free energy can be calculated [25],

which can be further used as continous constraints. Next, we

consider stability, requiring that for each sampled point in enzyme

space, the resulting model should be stable. As an approximation,

this can a priori be computed by calculating the eigenvalues of the

jacobian of the system at a selected steady state and requiring that

all should have negative real parts. Then, owing to the available

kinetic model, we take kinetic constraints into account. The

relation between an enzyme, the metabolites and the rate for any

reaction is constrained by its kinetic law. When extracellular fluxes

Figure 1. Feasibility Analysis (FA) explained. Panel fig:Feasibility-FBA illustrates constraint-based modeling often used within Flux Balance
Analysis, starting from the unconstrained solution space and ending in the optimal solution (adapted from [8]). Feasibility Analysis is inspired from
this constraint-based approach and combines it with the molecular rigor of a detailed kinetic model. The regulatory and physiological spaces are
connected to each other with available kinetic rate equations for each reaction (usually a non-linear function of enzyme levels e, metabolite levels x
and kinetic parameter set p). Under a number of constraints (e.g. thermodynamic, kinetic etc), only a subspace of both the enzyme and physiological
space in panel fig:Feasibility-Spaces is viable, i.e. fulfills the constraints, as represented in panel fig:Feasibility-Allowed. Considering the list of
feasibility criteria, only a subspace of this viable space is also feasible (panel fig:Feasibility-Feasible). The feasible enzyme space is constructed by
evaluating the list of feasibility criteria for each physiological state in the viable space. The final feasible enzyme space can further be inspected within
the scope of regulation analysis.
doi:10.1371/journal.pone.0039396.g001
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are known and the entire network is considered, if any two of

either enzyme, independent metabolite or intracellular flux levels

are fixed, the third can be deduced using this set of laws for each

enzyme in the network. Next, the capacity constraints provide

upper limits for fluxes. Lastly, we assume that the cell economizes

the change in total enzyme levels, so that when adapting to a new

environment, the total enzyme level is kept within limited range.

We also note that, though the total enzyme level is constrained,

individual enzyme levels can vary independently within the

allowed range.

Objectives
FA continues by further constraining the viable space to obtain

the feasible space, by considering a number of quantitiative,

physiologically relevant objectives. Three feasibility objectives

related to function, robustness, homeostasis and temporal responsiveness are

proposed (for formal definitions of each of the criteria, see

Methods).

Function. Biological systems have evolved to function opti-

mally in a given environment. Within FBA, this optimal function is

considered to be a flux towards a pathway, usually the growth rate;

yet alternative optimality criteria such as minimization of uptake

rate or redox potential provide adequate prediction of flux

distribution [9]. Generalizing this, we consider a set of enzymes as

functionally feasible if that set yields optimal (or near optimal) flux

for a selected pathway. We also note that in FA, the total enzyme

levels are constrained when maximizing flux, considering therefore

the cells as optimal strategists for the use of resources, from a cost-

benefit point of view [26,27].

Robustness and Homeostasis. Robustness and homeostasis

are two fundamental characteristics of biological systems [28, and

references therein] and has long been recognized and studied from

many aspects [29–33]. Following the definition in [28], we

consider robustness as a property of systems that maintain their

function under perturbations and uncertainty, and homeostasis as

maintaining the state via coordinated physiological processes.

Despite detailed qualitative descriptions [34] and ad hoc defined

metrics, (e.g. [32,35]), a general measure to quantify robustness in

metabolism is lacking. To adress this, we first concretely define state

and function for a given metabolic network as metabolite levels and

the flux for a selected pathway in that network, respectively. We

then consider the changes in enzyme levels as perturbations. To

quantify robustness and homeostasis, we propose to use the

metrics defined within the framework of MCA, namely co-

response coefficients (see methods). Where MCA’s control

coefficients quantify relative change in one variable (state or

function) upon change in another variable (perturbation), co-

response coefficients measure the ratio of relative change in two

different variables (state and function) in a network, resulting from

a change in a third variable (perturbation). This coefficient is

especially interesting to measure robustness and homeostasis of the

network, since all three entities can be in different parts of the

network.

We consider a set of enzyme levels to be feasible with respect to

robustness if the function is maintained (or changes marginally)

upon a change of level of any of the enzymes in this set. In that

case, metabolite levels are expected to change, resulting in a small

co-response coefficient for robustness (DeOJ
x D%1). Similarly, we

consider a set of enzyme levels to be homeostatically feasible, if the

state is maintained (or changes marginally) upon a change of

enzyme levels of any of this set, resulting in a small overall co-

response coefficient for homeostasis (
P

DeOx
J D%1, note the swap of

indices for x and J ) for a series of metabolites located on a

pathway, taking into account the global coordination in the

network.

Temporal responsiveness. Temporal responsiveness re-

flects how quickly the network responds to perturbations or

external stimuli. It is based on the dynamic characteristics of (a

subpart of) the system, such as the response time. From an

evolutionary perspective, it is likely that certain pathways or cell

types are selected based on their fast (or slow) response to changes

in their environment. The key importance of dynamic properties

for the cell to adapt to external stimuli has been exemplified for

metabolic [36] and signaling networks [37,38]. We consider a set

of enzyme levels to be feasible with respect to temporal

responsiveness, if it results in a small turn-over time for a

metabolite of interest.

Illustration on a small network
Initially, to get insight in the shape and properties of the feasible

enzyme space, we focused on a small model illustrated in Figure 2.

We sampled 2:104 enzyme level triplets (e1,e2,e3), relative to their

reference values, uniformly distributed in 0ƒei=e0
i ƒ2. We then

simulated the model to find the physiological space (the flux J and

metabolite levels x1,x2 at steady state) corresponding to each

triplet of enzyme levels. We then applied all constraints and finally

evaluated each feasibility objective.

Constraints. For this small problem, the kinetic expressions

allow to explicitly express metabolite levels as a function of enzyme

levels. Starting by assuming linlog kinetics for each reaction yields:

v1 ~J0
1

e1

e0
1

1{0:5 ln
x1

x0
1

� �� �

v2 ~J0
2

e2

e0
2

1z ln
x1

x0
1

� �
{0:5 ln

x2

x0
2

� �� �

v3 ~J0
3

e3

e0
3

1z ln
x2

x0
2

� �� � ð1Þ

Considering steady state mass balance, (v1~v2,v2~v3) and

substituting the values for J0
1,2,3 and rearranging yields:

ln
x1

x0
1

� �

lnðx2

x0
2

�
2
6664

3
7775~

{0:5
e1

e0
1

{
e2

e0
2

0:5
e2

e0
2

e2

e0
2

{0:5
e2

e0
2

{
e3

e0
3

2
664

3
775

{1

:

e2

e0
2

{
e1

e0
1

e3

e0
3

{
e2

e0
2

2
664

3
775ð2Þ

where, x=x0 and e=e0 are the metabolite and enzyme levels

relative to their reference state. Eq. 2 describes an explicit model

(metabolite concentrations as functions of enzyme levels); fluxes

can be obtained by substituting Eq. 2 into Eq. 1. To construct the

feasible enzyme space, we start with the thermodynamic constraint

and require the steady state flux and metabolite levels to be

positive. The constraints on metabolites can analytically derived

from Eq. 1, and are represented in Figure 3:

v1w0[x1ve2 v2w0[x2v2e2x2
1 v3w0[x2w2=e

where e is the base of the natural logarithm. For the toy problem,

all sampled enzyme level sets yielded physiological states that obey

the thermodynamic and stability constraints. Finally, we constrain

the total enzyme level to change by not more than 50% with

respect to the reference state, noting that individual enzyme levels

are allowed to vary freely within this constraint (i.e. Tenz in Eq. 5

Feasibility Analysis to Study Regulation
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equals 0.5). By constraining the sum of all enzyme levels, around

85% of the sampled enzyme triplets remained viable.

Feasibility objectives. After applying the constraints, we

analyzed the remaining viable space for each feasibility criterion.

As a first step, we did not use any cut-off value (e.g. Tflux,Tt) to

discriminate a selected state as feasible or not; rather we visualized

feasibility by assigning a color to each state according to a specific

criterion (e.g.
v

Jmax
,t,eOx

J ; see Methods).

Function. We first consider function feasibility, by coloring

each state according to the flux criterion defined in Eq. 6a. The

resulting enzyme and physiological spaces are given in Figure 4(A).

An immediate observation is that the flux increases as all three

enzyme levels increase simultaneously (red points fall around the

line e1=e0
1~e2=e0

2~e3=e0
3, the main diagonal). The red colored

points in the right plot show the enzyme levels that allow the

network to achieve roughly the top 25% of possible fluxes. Note

that FA takes the cost of the enzyme into account while evaluating

the flux objective; for this problem, all enzymes are at equal cost as

the optimum lies around the main diagonal. Since the total

enzyme level is constrained, the flux is bounded and exhibits an

optimal point (indicated by black square on the 3D plot).

Furthermore, by taking metabolite levels into account, FA

illustrates the effect of metabolic regulation. That is, in physiolog-

ical space, metabolite level x1 changes only over a limited range

(increasing around 7-fold), while x2 can increase up to 500 fold

without affecting the flux, since x2 has no inhibitory effect on any

of the rates.

Homeostasis and temporal responsiveness. Next, we

analyze the homeostasis and temporal responsiveness feasibility.

For homeostasis, the resulting enzyme and physiological space is

presented in Figure 4(B), where the blue points in the right plot

represent the enzyme levels that are homeostatically feasible, i.e.

homeostasis can only be maintained if the enzymes in the network

assume levels in the blue area of the enzyme space. Notably, to

maintain homeostasis, all enzymes should change in concert, i.e.

the blue points lie around the main diagonal

(e1=e0
1~e2=e0

2~e3=e0
3) in the enzyme space. Given that metabolite

levels change only marginally, while the flux levels do vary, the

changes in flux are mainly attributed to changes in the enzyme

levels. In order for the metabolite levels to remain unchanged

while the flux is increasing, all enzyme levels should increase

synchronously. Comparing Figures 4(A) and 4(B) we observe an

interesting trade-off between homeostasis and function. Decreas-

ing all enzymes simultaneously is homeostatically feasible, yet

functionally not (the flux decreases). Similarly, increasing all

enzymes simultaneously is homeostatically feasible, yet function-

ally not feasible (production of the enzymes would be too costly).

For temporal responsiveness (Figure 4(C)), we find that the effect

of e1 is small compared to that of e2 or e3: when either of these

latter two is low enough, x1 increases, therefore t increases (red

points). Similarly, a decrease in e3 triggers the accumulation of x2,

which in turn increases t2 (not shown). This indicates that

temporal responsiveness of this metabolic network is regulated by

the last enzyme in this pathway, i.e. that the network has a

‘‘brake’’ at the end-point.

Combining feasibility objectives. We next investigated

how the three objectives can be combined. For this, we first set a

cut-off value for each criterion, as opposed to scanning the entire

space as performed in the previous section. The results are given in

Figure 5, showing the objective space (Figure 5(A)), the combined

feasible enzyme space (Figure 5(B)) and a number of 2D-slices at

different levels of e3 (Figure 5(C)). In the objective space, black

points represent a very small subset of the feasible states satisfying

all three objectives: high levels of e1, e2 and e3. Interestingly, low

levels of e1, e2 and e3 are homeostatically feasible, yet these

enzyme levels result in a low flux, therefore functionally not

feasible (Figure 5(B)). These states are especially interesting if a cell

economizes on total enzyme levels. For the trade-offs, the optimal

combination of objectives depends on the experimental context

(see also the section ‘‘illustration on yeast glycolysis’’). Another

observation from Figure 5(C) is that only high levels of e2, the

enzyme that consumes x1, are feasible in terms of temporal

responsiveness.

Next, we performed regulation analysis for this system and

analyzed its relation with FA. To calculate the regulation

coefficients (rm and rh) for each sampled point in the enzyme

space, we considered the transition from the reference state to the

perturbed state (sampled point) and made use of Eq. 7. We find

that exclusively hierarchically controlled states (rh*1) are

homeostatically feasible. This is expected, since from the FA point

of view, the homeostasis feasibility requires that the perturbation

results in minimal changes in metabolite levels, and from the

regulation analysis point of view the rate of a hierarchically

Figure 2. The small synthetic pathway used for illustration of the feasibility analysis. fig:ToyModel: The metabolic reaction network used.
The solid arrows represent the base network and dashed lines indicate the additional kinetic interactions considered. fig:ElasticityMatrix: the
reference steady state and the kinetic parameters for the small model.
doi:10.1371/journal.pone.0039396.g002

Figure 3. Thermodynamic constraints as limits to the physio-
logical space. For the synthetic small problem, these constraints can
be implemented before sampling. x2 is presented in logarithmic scale.
doi:10.1371/journal.pone.0039396.g003

Feasibility Analysis to Study Regulation
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regulated enzyme is exclusively affected by the level of that enzyme

(therefore the metabolite levels do not change). Equivalently,

exclusively metabolically controlled states (rm*1) are also feasible

with respect to robustness.

Regulation for feasibility: Feedback inhibition

economically maintains homeostasis. In order to assess the

effect of a given regulatory mechanism (e.g. end-product feedback

inhibition), we modified the initial network and inspected the

changes in the objectives and feasible enzyme space. We added a

feedback inhibition of x2 on v1, a regulatory mechanism

ubiquitous in metabolic reaction networks (the dashed line from

x2 to v1 in Figure 2). We explored the model by changing the

value of ev1
x2

from zero to 20.5 (mild inhibition), up to 25 (strong

inhibition).

The effect of this additional feedback inhibition on homeostasis

feasibility is presented in Figure 6. It results in a decreased range of

x2, yet an increased range of x1 (Figure 6(B)). For the function

feasibility, to have the same flux, higher e3 and lower e1 levels are

needed with increasing feedback inhibition. For combining

homeostasis and function feasibility, more states are feasible as

inhibition strength increases (the feasible volume increases by 2.5

fold as ev1
x2

changes from 0 to 25, w.r.t. initial model). With

increasing feedback strength, e3 becomes more and more

hierarchically regulated, in line with the previous result on

combining regulation analysis with homeostasis feasibility. Similar

observations, relating the effect of adding regulatory links in a

metabolic network to the network sensitivity to perturbations, are

reported in [39,40]. The authors illustrated, using a frequency

domain approach, that introducing feedback inhibition reduces

the effect of perturbations on the output, but additionally showed

that extreme feedback inhibition makes the system more sensitive

to perturbations.

We also considered a possible feedforward activation of v3 by x1

with various strengths (dashed line in Figure 2), and its effect on

the feasible enzyme space. This activation further increases the

control of e1 on the pathway flux (the flux control coefficients at

the reference state are calculated as CJ
ei
~½0:7 0:2 0:1� for e1, e2

Figure 4. Feasibility analysis for the toy problem. The first two columns are the physiological space (first colum: flux vs. x1 , second column: x2

vs x1), and the last two columns are the enzyme space (third column: viable enzyme space with all enzymes, fourth column: selected 2D slices from
the third column at e3=e30~1). fig:FluxFeasToy: Optimal flux as feasibility criterion for function. fig:HomeostasisFeasToy: Homeostasis of the both
metabolites as feasibility criterion. fig:PromptFeasToy: Turn-over time as feasibility criterion for temporal responsiveness. The red-blue color gradient
indicates continuous values for the feasibility criteria in consideration, red indicates feasible states while blue indicates infeasible states The feasibility

criteria are 2:v=Jmax,{
P2

i~1D
eOxi

J Dz2,{tx1
z2, for function, homeostasis and temporal responsiveness respectively. The quantitative measures for

homeostasis and temporal responsiveness have been changed sign and added offset for visualization purposes. The gray points in the physiological
states are those for which the corresponding enzyme levels are outside the viable range, after applying the constraints. All axes in all plots are
presented relative to their reference state, and x2 is presented in logarithmic scale.
doi:10.1371/journal.pone.0039396.g004

Feasibility Analysis to Study Regulation
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and e3 respectively at ev3
x1

~2.), as v1 produces x1 which in turn

activates e3. A further increase in ev3
x1

results in fewer homeostat-

ically feasible states, illustrating that there is an optimal level of

feedforward activation that maximizes the volume of homeostat-

ically feasible space (data not shown).

Illustration on glycolysis in yeast
Next, we applied FA to study yeast glycolysis under evolutionary

pressure, especially focusing on trade-offs between alternative

objectives. We used a model describing glycolysis in yeast [24] and

analyzed two scenarios: the adaptation of the yeast cells during

long-term chemostat cultivation under carbon limitation and the

so-called ‘‘danger of turbo design’’.

Feasibility analysis of prolonged chemostat cultivation of

yeast. We first consider the scenario, where yeast cells were

grown in a carbon limited chemostat for *250 generations,

resulting in a number of changes in their morphology as well as in

metabolite and enzyme levels reported in [41–43]. Using FA, we

explore the three objectives, find corresponding enzyme levels and

compare these with the experimental measurements from [43].

In MC sampling the enzyme levels, we appended fermentor

balances to the model in [24] and the extracellular metabolites

were allowed to change freely. To construct the initial space, we

randomly perturbed each enzyme in the network and monitored

all resulting 17 fluxes and 13 metabolites. To obtain the viable

enzyme space, each stable state was recorded and lastly all

feasibility criteria were calculated for each state to construct the

feasible enzyme and physiological spaces. We plotted the data

from [43] on top of these spaces to inspect the actual changes in

the enzyme levels.

We first evaluated the hypothesis that the cells, under constant

carbon influx, would economize the enzyme levels while coping

with the constant carbon flux, as proposed in [41]. This hypothesis

successfully predicts the enzyme levels for PGI and ALD

(Figure 7(A), blue points towards to lower left corner having

decreased cost). However, it fails to predict the change in enzyme

level for the glucose transporter GLT and HK (Figure 7(B)). The

levels of these two enzymes increase over the course of the

experiment.

To explain this increase, we consider the homeostasis objective,

and check the co-response coefficient of extracellular glucose and

uptake flux for both enzymes (Figure 7(C)). To take the

competitive advantage into account, we drop the absolute values

in Eq. 6c. Cells operating in the upper right part of this plot have a

competitive advantage for extracellular glucose, since these leave

decreased residual glucose levels in the fermentor. Overall, we

conclude that cells, being under limited substrate carbon

conditions for a long time, increase the levels of those enzymes

to compete for the available glucose in the environment.

To illustrate the advantage of considering the trade-off between

enzyme economy and competitive ability, we designed a synthetic

competition experiment. Four organisms differing by their enzyme

levels are grown in a carbon limited chemostat, and the time

course for each organism during this competition is simulated. The

organisms are (1) wild-type, (2) only considering enzyme economy,

(3) only considering competitive ability and (4) considering the

trade-off between these two. The enzyme levels, relative to wild

Figure 5. Combining feasibility criteria. fig:ObjSpace represents the objective space, where each feasibility criterion is taken along (no cutoff is
used in this plot). fig:CombinedObj presents a 3D plot of the feasible enzyme space fig:CombinedObjLayers presents decompositions of the feasible
enzyme space into a series of 2D slices, each differing by the value of e3=e0

3 (indicated on the plot). Blue points describe the functionally feasible

enzyme levels (Tflux~0:75 i.e. fluxes with top 25% are considered as feasible), red points are homeostatically feasible enzyme levels (
P2

i~1D
eOxi

J Dv1),
green points are the feasible enzyme levels considering the temporal responsiveness and black points are the states that are feasible for all three
criteria.
doi:10.1371/journal.pone.0039396.g005
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type and the time course of each organism are given in Figure 8.

We find that the organism that considers the trade-off takes over

the entire population in time.

Interestingly, we also predict that the evolved state is prompter

for ATP response, i.e. in the evolved strain, ATP responds quicker

to perturbations (Figure 7(D)). This is further confirmed by a

glucose perturbation experiment (Figure 7(E), data taken from

[41]). An important observation follows for PFK: based on both

the function feasibility and the ATP temporal responsiveness

feasibility, the level of PFK should decrease. However, if there is

any decrease in the level of this enzyme, the cell can not survive in

the chemostat, meaning that the cells are already at the edge of

their feasible enzyme space for PFK (Figure 7(F)). Overall, the cells

evolve to a state where they balance the competition for

extracellular transport and getting rid of unused overcapacity.

This transition makes the cells ‘‘specialists’’ in a specific condition,

at the expense of loosing the capability of buffering large changes

in the environment. We expect that FA will contribute to our

understanding of trade-offs and the resulting evolutionary

trajectories.

Feasibility analysis of alternative metabolic redesign in

yeast glycolysis. To demonstrate how FA can serve to study

metabolic (re)design, we consider the so-called turbo design in

glycolysis. The turbo design is a general strategy followed by many

catabolic pathways, consisting of first activating a substrate in a

reaction that requires ATP, after which further metabolism yields

a surplus of ATP [44]. In glycolysis, 2 ATP is initially invested in

reactions catalysed by HK and PFK while 4 ATP are gained from

reactions catalysed by PGK and PYK. The ‘‘danger’’ of this design

is that when there is excess glucose, the upper part of glycolysis

may run at a very fast rate that the lower part can not cope with.

This can lead to accumulation of hexoses in the upper glycolysis

(G6P, F6P, F16P), even though ATP and ADP are in steady state,

resulting in substrate accelerated cell death [44].

To illustrate the case, we consider the scenario where the cells

are in glucose-rich conditions and inspect the homeostasis criterion

of hexoses and ethanol flux (JADH ). Figure 9(B) shows that in this

initial design (Figure 9(A)) high levels of both GLT and HK

(simulating a large load of substrate), are infeasible, as metabolite

levels do not reach steady state. To resolve this handicap of the

turbo design, we add a metabolite T6P and two reactions (tps1 and

tps2) to the trehalose producing branch. We change the kinetic

expression for HK, in line with [45], such that T6P inhibits HK

via a feedback inhibition (Figure 9(C), see Methods for the new

rate equation). The newly added reactions towards the trehalose

pathway follow linear kinetics, and parameters are chosen to keep

the metabolite and flux levels the same as the reference state (see

caption, Figure 9). All other parameters remain the same as in

[24]. A range of enzyme states that were previously infeasible

become feasible with the new design (Figure 9(D)). When there is a

large push of glucose, T6P acts as a ‘‘brake’’ to the glucose uptake,

so that neither of the hexoses can increase uncontrollably.

Overall, our FA illustrates how a given metabolic design can be

understood within the context of cellular objectives. An interesting

observation on cellular trade-offs is that to overcome the danger of

the turbo design, the cells have two options: increasing the

capacity of reactions consuming the substrate (e.g. storage

branches), or introducing T6P inhibition of HK. The first option

is costly for the cell since the capacities of all enzymes in the

storage pathway have to be increased. The second option is

economical and homeostatically feasible, as already illustrated with

the FA on the toy model. We finally speculate that evolution

Figure 6. The effect of additional feedback inhibition of x2 on v1 on the feasible enzyme space with respect to homeostasis

(
P2

i~1 DOxi

J Dv1) and function (Tflux~0:75). fig:HomeostasisEv1x2: The feasible enzyme space for ev1
x2

~{0:5 (left), ev1
x2

~{2 (center), and ev1
x2

~{5

(right). In every subplot, red points: solely homeostatically feasible enzyme levels; blue points: solely functionally feasible enzyme levels; black points:
feasible enzyme levels on both criteria. The axes for all 3 plots are the same, enzyme levels relative to the reference state.
fig:AdditionalFeedbackEv1x2-MetLev: The maximum achievable metabolite levels as function of the inhibition strength.
doi:10.1371/journal.pone.0039396.g006
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pushes cells to acquire this inhibition, in order to adapt to

conditions where glucose levels significantly change. Note that

such a ‘‘brake’’ system is not present for less-favorable carbon

sources (e.g. maltose, [46]), an excess of which still results in

substrate accelerated cell death.

Two main observations on FA follow from this illustration on

the yeast glycolysis. First, for the prolonged chemostat scenario,

although there is no prior fitting of model parameters to the

experimental data, there is a remarkable quantitative correspon-

dence between the enzyme data from long-term chemostat

experiments and the prediction from FA using a dynamic model

from literature. This clearly shows that FA can be used to explore

the model, to evaluate alternative metabolic strategies, and to

hypothesize about cellular trade-offs. Finally, mapping the

experimental data clearly reveals which of the objectives is

actually selected.

Sampling based methods
We use a Monte Carlo sampling based method to construct the

feasible enzyme space. Such a sampling based approach is,

intuitive, unbiased and useful as illustrated by the examples.

Similar methods are frequently used for exploring biological

features, to build model families [18,47], modeling of uncertainties

in biochemical networks [19], robustness analysis [48], or

designing synthetic networks [49]. Exploring the feasible space

by sampling allows to study the trade-offs, and suboptimal

behavior, frequently observed feature in biological systems [50–

52].

Figure 7. Feasibility analysis of the changes in enzyme levels during long term chemostat cultivation. In each plot, the dots (N)
describe the sampled enzyme levels relative to reference state, colored according to the feasibility criteria specified in each plot above the color
legend bar; the squares (&) are the experimental data either from [41] or [43], white being the ‘‘wild-type’’ (10th generation) and black being the
‘‘evolved strain’’ (200th generation) and the arrow indicates the direction of the number of generations during the experiment (time). Enzymes not
shown change only 10% from their reference state. fig:LongChemostatPGI-ALD: The function feasibility in terms of PGI and ALD, the color

corresponds the total cost of the enzymes (
Pi~5

i~1

ei

e0
i

,i~GLT ,HK ,PGI ,PFK ,ALD). The experimental data from [43] shows that the cells evolved to

an economized state.fig:LongChemostatGLT-HK: Function feasibility inspected for glucose transporter (GLT) and hexokinase (HK). The colouring is

similar to fig:LongChemostatPGI-ALD, the sum of enzyme levels. The hypothesis on enzyme economy fails to predict the levels of these two enzymes

for the evolved strain. fig:LongChemostatPGI-GLT: The evolution of glucose transporter and PGI enzymes inspected via homeostasis feasibility, as the

co-response of extracellular glucose and uptake rate (OGlcext

vGLT ). Cells evolve to a state where they are more apt to use extracellular resources.
fig:LongChemostatPGI-ALD-ATP: The evolved state is predicted to allow yeast to respond quicker to external perturbations, as indicated by ATP
temporal responsiveness feasibility as the color code for PGI and ALD. The experimental verification of this prediction is presented in

fig:LongChemostatATPpulse where the response of ATP to a glucose perturbation (taken from [41]) is presented. The y-axis is the ATP level relative to

the state before perturbation and x-axis represent the time in seconds. Evolved cells (N) respond quicker to glucose perturbation, when compared to
wild-type cells (¤). fig:LongChemostatPGI-PFK: the function feasibility inspected for PFK and PGI. PFK levels, being already at the edge of the feasible

space, can not further be decreased.

doi:10.1371/journal.pone.0039396.g007
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Despite its advantages, sampling methods generally suffers from

a number of limitations, mainly that they require lots of samples to

cover the entire space, tend to waste too much effort and time on

regions which are of no real interest and are therefore not scalable

to large systems. In the future, our approach and the quantitative

measures for feasibility can be combined with a smarter sequential

sampling scheme, e.g. [53–55] to efficiently explore the initial

space for a feasible sub-space.

Feasibility analysis to study regulation at system level
Traditionally, regulation of metabolic networks is studied either

by choosing a cellular objective for a genome scale model and

optimizing the flux for that objective (top-down, FBA approach),

or by constructing a kinetic model with detailed molecular

interactions (bottom-up) and applying theorems of MCA or

BST. Our method aims to combine elements of the two

approaches and allows to study objectives other than flux.

Furthermore, as we propose quantitative objectives for feasibility,

Figure 8. The competition experiment, to illustrate the optimal enzyme distribution considering the trade-off between enzyme
economy and competitive ability for extracellular glucose. The radar plot on the left represents the enzyme levels, relative to wild-type, and
the plot on the left represents the competition of each subpopulation with a specific enzyme setting as described in the radar plot. The color for each
subpopulation is the same in both plots and is described in the legend.
doi:10.1371/journal.pone.0039396.g008

Figure 9. The danger of Turbo design and a potential solution investigated using FA. fig:TurboDesignAnalysisA: The original model
considered in [24]. fig:TurboDesignAnalysisB: The feasible regulatory space of relative enzyme activities of HK and GLT. Increasing the enzyme levels
leads to infeasible states for hexoses (red points on the upper right corner on the plot). fig:TurboDesignAnalysisD: The new design of the system with
added metabolite T6P and its inhibition on HK. The new model parameters for storage branch are: Kglycogen~5:8,Ktps1~Ktps2~2:32.
fig:TurboDesignAnalysisE: the same regulatory space as in fig:TurboDesignAnalysisB after addition of the feedback inhibition of T6P on HK. In
fig:TurboDesignAnalysisA and fig:TurboDesignAnalysisD, only interactions within the focus are shown for simplicity where blue arrows indicate the
kinetic activation and red arrow indicates inhibition. In fig:TurboDesignAnalysisB and fig:TurboDesignAnalysisE, only HK and GLT are monitored,
remaining enzymes are held at their reference levels. The color code used in plots fig:TurboDesignAnalysisB and fig:TurboDesignAnalysisE is the co-
response coefficient

P
i~G6P,F6P,F16P

DeOi
Jadh

D.

doi:10.1371/journal.pone.0039396.g009
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rather than studying ‘‘viable’’ or ‘‘lethal’’ changes, we can study

sub-optimality and trade-offs. By exploring the feasible enzyme

space, FA allows evaluating alternative hypotheses and interpret-

ing experimental data.

FA assumes the availability of a kinetic model. Despite a long list

of challenges, e.g. a high degree of non-linearity, lack of sufficient

experimental data, coexistence of multiple time scales etc. [16,56],

currently available information on the kinetics of individual

enzymes [57] as well as the list of available reliable kinetic models

is increasing [58–60]. Our example with the detailed kinetic model

of glycolysis illustrates how FA can be applied to realistic

problems. This is urgently needed, given the growing accumula-

tion of experimental data obtained from different omics layers of

cells. Tools to analyze such data are of high value.

Previous computational efforts to understand regulation of

metabolism include searching for design principles using optimi-

zation principles [23], exhaustively searching and identifying

enzyme-based motifs while seeking adaptive properties in a library

of network topologies [61], designing synthetic networks for

specific tasks [49] or the use of constraints in kinetic parameters to

constrain the solution space in steady state models [62]. In

particular, the approach taken by Sorribas and co-workers is

similar to our FA approach, in that they also investigate feasible

enzyme activity patterns leading to cellular (adaptive) responses

[63]. Their analysis efficiently finds a global optimum for a given

objective, under a given list of physiological constraints. Their

mathematically involved approach is tightly coupled to the GMA

formulation, elegantly exploits the mathematical structure of the

non-convexities of the model. This coupling, in turn, limits its

general use. Our proposed FA differs from [63] and [23] in two

points. First, it is more general and can be used with any system

that can be simulated with a model. Second, central to FA, we

propose and use generic quantitative measures for cellular

objectives, aiming to eliminate ad hoc definitions. This allows us

to consider objectives other than thresholds on fluxes or

concentrations, such as robustness/homeostasis and temporal

responsiveness.

Conclusions
In this paper, we addressed the following question: being under

constraints and evolutionary pressure, why and how is metabolism

regulated? To answer this question, we took a top-down approach

and speculated that cells, under physiological constraints, are

regulated to optimize (one or a combination of) a number of

objectives and can hence only assume enzyme levels falling in a so-

called feasible enzyme space. We further analyzed how metabo-

lism should be designed from a feasibility perspective, i.e. we

addressed the question what are the necessary kinetic interactions

in order for cells to attain an objective. Unique to our approach,

we proposed quantitative metrics to measure proposed cellular

objectives.

One of the fundamental characteristics of biological systems,

homeostasis, requires globally coordinated regulation of enzyme

levels. An interesting observation for homeostatically feasible states

is that these fall in two distinct sub-regimes: a low-flux regime,

where all enzymes are downregulated, and are less costly for the

cell; and a high-flux regime, where all enzymes are upregulated,

therefore costly for the cell. The actual regime chosen by the cell is

defined with respect to the environment. In the prolonged

chemostat scenario, the cell optimizes the enzyme levels for

function, since the carbon influx is externally kept constant. From

an enzyme budget point of view, the ubiquitously present feedback

inhibition is an economical way to ensure homeostasis. This is

especially important for keeping metabolite levels within limits

upon a wide range of fluctuations in the environment.

In contrast to homeostasis, maintaining robustness requires a

local metabolic effect, meaning that the function can still be

maintained by locally adjusting the metabolite levels around

specific perturbed enzymes. In line with our findings, Sauer and

co-workers recently showed in yeast that alterations in enzyme

capacity are buffered by converse changes in substrate metabolite

concentration, thereby minimizing the difference in metabolic flux

caused by the alteration [52]. In this work, we took homeostasis or

robustness as objectives so that we could also study sub-optimal

states and the trade-offs between various objectives. This is in

contrast to previous attempts where homeostasis has been

considered as constraint for the metabolic design problem [15].

Temporal responsiveness reflects a dynamic property of the

system. We speculate that this objective is especially applicable to

networks whose dynamic properties are of evolutionary impor-

tance, e.g. ultrasensitivity, response time etc. As an example, for

signaling pathways the effect of network structure on dynamic

properties has already been discussed [37,38,64]. Note, that our

approach can equally well be used for any other kinetic model,

although the physiological objectives may need to be customized.

The objective functions we have formulated in this study are

illustrations of a more general approach: it may as well be that

other objectives turn out to be more relevant under different

conditions. It should also be noted that, here, we proposed three

‘‘container’’ objectives that are physiologically relevant, which

need to be further specified depending on the case evaluated.

Additional quantifiable objectives such as overcapacity (which may

be defined as the ratio of actual flux to the maximum possible flux)

can easily be considered as well.

Taken together, we see that FA quantitatively evaluates

alternative hypotheses, shows trade-offs between the available

objectives and provides an intuitive platform to integrate the

proteome information (enzyme space) with information on

metabolome and fluxome (physiological space). Such an integra-

tive approach is indispensable to analyse and interpret the

increasingly available multi-omics data on regulation of metabolic

networks especially when considering optimal performance or

adaptation in response to external stimuli. We illustrated

quantitatively via FA that there is a very limited set of enzyme

set that are feasible for all the considered objectives. Similar to

[51], we argued that the cells are often faced with trade-offs

between alternative strategies. Furthermore, by fully exploring the

initial viable space and quantitatively evaluating physiological

objectives, we got insights on how the metabolic systems are

designed (e.g. the ‘‘brake’’ for temporal responsiveness objective).

This aspect is similar to the ‘‘design space for biochemical

systems’’ concept in [65,66], but has the additional benefit of

direct use of the physiological objectives, making the link from

genotype to phenotype more intuitive.

Methods

Feasible enzyme space
To construct the feasible enzyme space, we first quantitatively

formulate the constraints and the objectives for physiological

states. Then we calculate the range of theoretically possible

physiological states, and call this the viable enzyme space. We

then select a feasible subspace based on the pre-defined criteria and

analyze the properties of this subspace. Overall, we construct the

feasible enzyme space Ef for enzyme levels e as

Feasibility Analysis to Study Regulation
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Ef ~feDx,v[ W\Cð Þg v~v e,x,pð Þ, ð3Þ

where C is the set of viable states considering the constraints, W
represents the set of feasible physiological states (metabolites and

fluxes (x,v)) considering the list of physiologically relevant cellular

objectives, and v~v(e,x,p) is the rate of the reaction catalyzed by

the enzyme e as a function of the enzyme level e, metabolite level x

and set of parameters p. The constraints and objectives are

detailed below. Some of the metrics for these constraints and

objectives are defined with respect to a so-called ‘‘reference state’’,

denoted with superscript ‘‘0’’. This way, all defined entities can be

measured with respect to this reference state, much like the

elasticity parameters or control coefficients in MCA literature.

Conventionally, the reference state can be chosen as the steady

state that cells achieve when they are grown under constant,

substrate limited conditions and is usually characterized by

intracellular fluxes, metabolites and enzyme levels.

The feasible enzyme space constructed is, in fact, a sampling of

a multidimensional space containing enzymes, metabolites and

fluxes. We visualize this space by slices, i.e. 2D cross-sections. A

GUI written in Matlab, and supporting functions as well as the

datasets mentioned in this paper can be downloaded at: http://

bioinformatics.tudelft.nl/. The interface takes as input a dataset,

calculates the feasibility criteria for selected objectives of the cell

and visualizes by (selected) slices.

Constraints: Thermodynamic

constraints. Thermodynamic constraints are formulated as

irreversibility constraints for fluxes through reactions operating

away from equilibrium:

Ctd~fx,vDvirr e,x,pð Þw0g ð4aÞ

When more quantitative information is available, for example

when Gibbs free energy of a reaction is known, this can also be

taken into account as

Ctd~fx,vDDG(v e,x,pð Þ)ƒ0g ð4bÞ

Note, that in a kinetic model in which the equilibrium constant is

incorporated in the rate law (e.g. implicitly through the Haldane-

relationship), this constraint would already be taken into account.

Constraint on total enzyme level. We constrain the total

enzyme level to change in a limited range, while individual

enzymes can freely be interconverted:

Cenz~ x,vDD

Pn
i

ei

Pn
i

e0
i

{1DvTenz

8>><
>>:

9>>=
>>; ð5Þ

where Tenz is a precision parameter (e.g. 0.1), and e0
i is the enzyme

level for reaction i at a reference state (denoted by ‘‘0’’). This

criterion demands that the total enzyme level stays nearly constant

(e.g. can change only within 10%, when Tenz = 0.1).

Cellular objectives: Function. We define states in which

near-optimal flux under constrained enzyme levels is obtained as

feasible:

Wfunction~ x,vD
v e,x,pð Þ

Jmax
wTflux

� �
ð6aÞ

where Tflux is a cut-off value for feasibility in terms of optimal flux.

This criterion demands that a flux can be at most 10% (when

Tflux~0:9) away of it’s possible maximal flux (denoted as Jmax).

Robustness and Homeostasis. We consider robustness as a

property that allows a system to maintain its function under

perturbations and homeostasis as the coordinated physiological

processes which maintain the current state [28]. In this work, the

perturbations are changes in enzyme levels, states are metabolite

levels and function is the flux towards a selected pathway or

reaction. In order to quantify both robustness or homeostasis, we

need a measure between state (metabolite levels), function (flux

towards the selected enzyme/pathway) and perturbation (changes

in enzyme levels). We use the co-response coefficients (ei O
yj
yk

) as a

measure, defined within the context of Metabolic Control Analysis

(MCA) [67] as:

ei O
yj
yk

~
C

yj
ei

C
yk
ei

~

Lyj
Lei

D
0

e0
i

y0
j

Lyk
Lei

D
0

e0
i

y0
k

,

where C
yj
ei

is the control coefficient of feature yj , defined as the

scaled sensitivity coefficient of yj towards the enzyme ei. The co-

response coefficient describes the effect of a perturbation in

enzyme i on both features yj and yk. For example, ei O
xj
Jk

denotes

the co-response coefficient of metabolite xj and flux vk upon

changes in enzyme ei. Note that metabolite xj and reaction rate vk

need not be connected by a kinetic expression; the co-response

coefficient describes a network property, rather than a local

property such as the elasticity of a reaction towards a substrate

or product.

Focusing on robustness, the definition implies that the effect of the

perturbed enzyme on the target flux (the function) should be small,

i.e. D
Lvk

Lei

D
0

e0
i

v0
k

D%1. In this case an enzyme perturbation would have

an effect on the metabolite levels only, i.e.D
Lxj

Lei

D
0

e0
i

x0
j

Dw0. The

resulting co-response coefficient should therefore be large:

Wrobustness~ x,vDDei Ox
v D&0

� �
: ð6bÞ

Second, homeostasis is considered. A state is called feasible if upon

enzyme perturbation, metabolite levels do not change significantly

D
Lxj

Lei

D
0

e0
i

x0
j

D%1

 !
, whereas the flux does. We formulate the

feasibility related to homeostasis for a set of M metabolites as:

Whomeostasis~ x,vD
X
j[M

DeO
xj
v D%1

( )
ð6cÞ

The summation over the metabolites ensures that homeostasis is

not only local in one metabolite but over a number of relevant

metabolites, e.g. belonging to a pathway.

Temporal responsiveness. Temporal responsiveness of

metabolite levels in a metabolic network in response to perturba-

tions is defined using the turn-over time of metabolites

Wtemporalresponsiveness~ x,vDtvTtf g ð6dÞ
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with t~
x
0

J
0 , x

0
and J

0
the physiological parameters at the steady

state reached after a perturbation and Tt is a treshold. This

criterion demands that the turnover time of a metabolite should be

smaller than e.g. 0.5 per unit time, when Tt = 0.5.

Regulation analysis
An important question is to what extent metabolic fluxes are

regulated by gene expression or by metabolic regulation. In line

with the convention in regulation analysis [4], ‘‘metabolic’’

regulation is defined as change caused by concentrations of

substrate(s), product(s) and modifier(s). ‘‘Hierarchical’’ changes are

those caused by change in enzyme concentration, via alterations in

mRNA sequestration and intracellular localization and/or rates of

transcription, translation or degradation. Both types of regulation

are quantified by the hierarchical and metabolic regulation

coefficients (rh and rm) defined as

v~v e,x,pð Þ~f eð Þ:g x,pð Þ

1~
D log f eð Þ
D log J

z
D log g x,pð Þ

D log J
~rhzrm

ð7Þ

We consider cases where DrhDv0:1 as exclusively metabolically

regulated, and cases where DrmDv0:1 as exclusively hierarchically

regulated. One immediate application of information from

regulation analysis is in metabolic engineering. In the first case,

increasing the flux could be achieved by simply increasing the

enzyme level whereas for the second case, alternative engineering

strategies such as protein engineering to change the kinetic

properties of the enzyme need to be considered.

Illustrative cases
Toy model. To illustrate feasibility analysis, we use a small

example model with tractable kinetics, where a substrate S is

converted into a product P via a linear pathway of 3 reactions and

2 intracellular metabolites (Figure 2). The model assumes a steady

state and all three rates follow linlog kinetics, allowing to calculate

an explicit steady state solution for metabolites and rates in terms

of enzyme levels and kinetic parameters [12]. In linlog kinetics, the

rate of reaction i (vi) is described relative to the steady state flux J0
i

as a function of the enzyme levels ei and intracellular and

extracellular metabolites (xj and ck) all relative to their steady state

levels
vi

J0
i

~
ei

e0
i

1z
X

j
evi

xj
ln

xj

x0
j

 !
z
X

k
evi

ck
ln

ck

c0
k

 ! ! !
.

The reference steady state conditions (X0,J0) and the elasticity

matrix Ex composed of kinetic parameters (e) are given in Figure 2.

Glycolysis model in yeast. To study feasibility analysis

applied on a real problem, we used a previously published model

of glycolysis in Saccharomyces cerevisiae [24]. The kinetic expressions

for each reaction and the parameters are the same as [24], and the

reference state used in our work is given in Table 1. For feasibility

analysis, we need to sample the enzyme levels, relative to their

reference state and in the yeast model, this is performed by

sampling the relative Vmax’es since:

Vmax
i

Vmax ,0
i

~
kcatei

kcate
0
i

~
ei

e0
i

where, superscript 0 is the corresponding entity at the reference

state.

For the feasibility analysis of alternative metabolic redesign in

yeast glycolysis, the new kinetic expression for the HK reaction is:

vhk~

Vmax ,hk GLCi

Kmhk
GLCi

ATP

Kmhk
ATP

{ G6PADP

Kmhk
GLCi

Kmhk
ATP

Keqhk

� �

1z GLCi

Kmhk
GLCi

z G6P

Kmhk
G6P

z T6P

Kihk
T6P

� �
1z ATP

Kmhk
ATP

z ADP

Kmhk
ADP

� �

Kihk
T6P~8:

Lastly, in order to illustrate the competition in the fermentor, we

added a growth equation for this and expressed the growth rate

with simple monod-growth kinetics as:

m~m0 2
P

e0
i {

P
eiP

e0
i

� �
GLCi

GLCizKg

with m0 is the growth rate at the reference conditions (and is equal

to the dilution rate in the chemostat) and Kg~0:098mM, the

extracellular glucose level at the reference conditions. The term

between the parantheses represent the effect of total enzyme cost

on growth.

Data pre-processing
In using experimental data, there were multiple measurements

for a specific time point. Since the data available was insufficient to

assume and fit a parametric model, we used non-parametric

Gaussian kernel regression (s~20hr) to estimate the average at a

specific point, taking all data into account.

Table 1. The reference conditions for the yeast problem.

Fermentation parameters

D = 0.05 hr21, Glucosefeed = 210 mM Biomass = 15 gDW21

Intracellular independent fluxes (mmol L{1
cytosol min21)

vglt 0.185

vglyc 0.011

vtr 0.00431

vatp 0.06335

Intracellular metabolite concentrations (mmol L{1
cytosol)

GLCi 0.032508

P 0.65319

G6P 0.048434

F6P 0.0092476

F16P 0.0046687

TRIO 0.029825

NADH 0.17489

BPG 1.68 1026

P3G 0.0071666

P2G 0.00084789

PEP 0.0014801

PYR 0.72143

ACE 0.028478

The reference conditions for the yeast problem.
doi:10.1371/journal.pone.0039396.t001

Feasibility Analysis to Study Regulation

PLoS ONE | www.plosone.org 13 July 2012 | Volume 7 | Issue 7 | e39396



Acknowledgments

The authors would like to thank Dr. Frank Bruggeman for insightful

comments during the work.

Author Contributions

Conceived and designed the experiments: EN DdR. Performed the

experiments: EN JB FH. Analyzed the data: EN JB DdR BT. Contributed

reagents/materials/analysis tools: MR DdR. Wrote the paper: EN DdR

MR BT JB.

References

1. Heinemann M, Sauer U (2010) Systems biology of microbial metabolism.
Current opinion in microbiology 13: 337–343.

2. Ihmels J, Levy R, Barkai N (2003) Principles of transcriptional control in the
metabolic network of Saccharomyces cerevisiae. Nature Biotechnology 22: 86–92.

3. ter Kuile BH, Westerhoff H (2001) Transcriptome meets metabolome:

hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett

500: 169–171.

4. Rossell S, Weijden C, Kruckeberg A, Bakker B, Westerhoff H (2006)

Hierarchical and metabolic regulation of glucose inux in starved Saccharomyces

cerevisiae. FEMS yeast research 5: 611–619.

5. Gianchandani EP, Chavali AK, Papin JA (2010) The application of ux balance
analysis in systems biology. Wiley Interdisciplinary Reviews: Systems Biology

and Medicine 2: 372–382.

6. Van Gulik W, Heijnen J (1995) A metabolic network stoichiometry analysis of

microbial growth and product formation. Biotechnology and bioengineering 48:
681–698.

7. Covert M, Palsson B (2003) Constraints-based models: regulation of gene
expression reduces the steady-state solution space. Journal of theoretical biology

221: 309–325.

8. Orth J, Thiele I, Palsson B (2010) What is ux balance analysis? Nature

biotechnology 28: 245–248.

9. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective

functions for predicting intracellular uxes in Escherichia coli. Molecular Systems
Biology 3: 119.

10. Heinrich R, Schuster S (1996) The Regulation of Cellular Systems. Kluwer
Academic Publishers.

11. Savageau M (1976) Biochemical systems analysis: a study of function and design
in molecular biology, volume 56. Addison-Wesley Reading, MA.

12. Visser D, Heijnen J (2003) Dynamic simulation and metabolic re-design of a

branched pathway using linlog kinetics. Metabolic Engineering 5: 164–176.

13. Heijnen J (2005) Approximative kinetic formats used in metabolic network

modeling. Biotechnology and bioengineering 91: 534–545.

14. Voit E (2000) Computational analysis of biochemical systems. Cambridge

University Press.

15. Visser D, Schmid J, Mauch K, Reuss M, Heijnen J (2004) Optimal re-design of

primary metabolism in Escherichia coli using linlog kinetics. Metabolic
Engineering 6: 378–390.

16. Nikerel I, Canelas A, Jol S, Verheijen P, Heijnen J (2011) Construction of kinetic
models for metabolic reaction networks: lessons learned in analysing short-term

stimulus response data. Math- ematical and Computer Modelling of Dynamical

Systems 17: 243–260.

17. Voit E, Neves A, Santos H (2006) The intricate side of systems biology.

Proceedings of the National Academy of Sciences 103: 9452.

18. Tran L, Rizk M, Liao J (2008) Ensemble modeling of metabolic networks.
Biophysical journal 95: 5606–5617.
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