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A B S T R A C T   

Gene transcription is an essential process involved in all aspects of cellular functions with significant impact on 
biological traits and diseases. This process is tightly regulated by multiple elements that co-operate to jointly 
modulate the transcription levels of target genes. To decipher the complicated regulatory network, we present a 
novel multi-view attention-based deep neural network that models the relationship between genetic, epigenetic, 
and transcriptional patterns and identifies co-operative regulatory elements (COREs). We applied this new 
method, named DeepCORE, to predict transcriptomes in various tissues and cell lines, which outperformed the 
state-of-the-art algorithms. Furthermore, DeepCORE contains an interpreter that extracts the attention values 
embedded in the deep neural network, maps the attended regions to putative regulatory elements, and infers 
COREs based on correlated attentions. The identified COREs are significantly enriched with known promoters 
and enhancers. Novel regulatory elements discovered by DeepCORE showed epigenetic signatures consistent 
with the status of histone modification marks.   

1. Introduction 

Gene transcription displays complicated spatiotemporal patterns 
that vary between tissue and cell types, developmental stages, disease 
phenotypes, and environmental exposures [1,2]. Such variations are 
regulated by a set of mechanisms that induce or repress gene tran-
scription as part of a large network [3,4]. Many factors attribute to gene 
transcription regulation, such as genetic alterations [5,6], epigenetic 
changes [7,8], and chromatin structure [9–11]. Deciphering and cata-
loging these regulatory codes are a grand challenge. 

Computational mining of multi-omics data is a promising approach 
to investigate the mechanisms of gene transcriptional regulation. As 
early attempts, several models used genetic sequence information such 
as transcription factor binding sites (TFBS) to predict gene transcription 
levels. [12–18] However, relying on genetic sequences that cannot 
capture tissue-specific information is a major limitation of these models. 
Epigenetic features, such as histone post-translational modifications 
(hPTMs), are introduced to address this issue. DeepChrome [19] is one 

of the early deep learning method that models the relationship between 
epigenetic and transcriptional profiles. It retrieves the hPTM signals in 
the ± 5kbps region around the transcription start site (TSS) of a gene, 
uses a convolutional neural network (CNN) to extract local features, and 
passes these features to a feedforward neural network (FNN) to make 
binary prediction of gene transcription levels. ExPecto [20] expands the 
TSS-flanking region to 40kbps, includes ChIP-seq data of hundreds of 
TFs as input, and predicts gene expression in continuous values. 
Although these models reported high accuracy of predicting gene tran-
scription levels, they do not identify regulatory elements (REs) in the 
genome that are essential to understanding the regulatory mechanisms. 

Because deep neural networks (DNN) are often considered a black 
box, extracting biological meanings from these models can be chal-
lenging. Recently, several algorithms have been developed to interpret 
and visualize patterns learned in DNN [21–23]. DeepChrome summa-
rized the hPTM patterns coded in the CNN model, which were consistent 
with known active and repressive marks. However, a high-level sum-
mary cannot identify and locate REs. Furthermore, epigenetic signals 
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highly depend on genetic features. For example, chromatin structure 
changes involving TFBS will have a larger impact on gene transcription 
than those outside TFBS. In this study, we present a novel method to 
address this knowledge gap and model co-operative regulatory elements 
(COREs). 

This new method, named DeepCORE, uses a multi-view architecture 
to integrate genetic and epigenetic profiles in a DNN. It captures short- 
range and long-range interactions between REs through bidirectional 
Long short-term memory (BiLSTM). It leverages the attention mecha-
nism to pinpoint the most informative regions harboring REs and 
enhance the interpretability of the model. The output of DeepCORE 
includes prediction of gene transcription level, locations of REs in the 
genome, and correlations of multiple REs. We applied DeepCORE on 
various tissues and cell lines and showed that DeepCORE has signifi-
cantly higher accuracies than existing state-of-the-art methods. Deep-
CORE model has good generalizability across samples and identifies 
COREs in high resolution. These putative REs are enriched with known 
promoters and enhancers. 

2. Methods and materials 

2.1. Overall design and data sets 

In the ENCODE [24] project and the RoadMap Epigenomics project 
(REMC) [25], we searched for samples that had transcriptomic data 
(RNA-seq) and epigenetic data (ChIP-seq of H3K4me, H3K4me3, 
H2K27ac, H3K9me3, and H3K27me3). We randomly selected two of 
these samples (E061 and E071) and used them for algorithm develop-
ment and parameter tuning. We randomly selected additional 23 sam-
ples to systematically evaluate the performance of DeepCORE, 
DeepChrome, and ExPecto. To compare with Xpresso [26] predictions, 
we trained DeepCORE on two more samples (E116 and E123) that were 
tested in the Xpresso study. These samples included cancer cell lines, 
embryonic stem cell-derived cell lines, primary cell cultures, and pri-
mary tissues (Supplementary Table 1). 

DeepCORE has two components (Fig. 1A). The first component is a 
deep neural network (DNN) that predicts transcription level of a gene 
based on its genetic and epigenetic features. The second component is an 
interpreter that analyzes the attention matrices in the DNN to discover 
COREs. 

For a given gene, DeepCORE focuses on the ± 5kbps region 

Fig. 1. The DeepCORE architecture. (A) DeepCORE consists of two components. In the DNN component, genetic and epigenetic signals go through a CNN layer, a 
BiLSTM layer, an Attention layer, and an FNN layer to predict transcript abundance of a gene. In the Interpreter component, attention scores extracted from the 
output of the Attention layer is analyzed to identify informative and correlated regions as COREs. (B) The DNN has a genetic view and an epigenetic view, each 
consisting of a CNN layer and a BiLSTM layer. These two views are joint before fed into an attention layer and subsequently an FNN layer to predict gene transcription 
level. Nc = 10,000 in both genetic and epigenetic feature matrices. 
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surrounding the TSS. To derive genetic features, we extracted the 
± 5kbps nucleotide sequences for each gene and converted into a one 
hot encoding format. This gives us the genetic feature matrix with four 
rows corresponding to the nucleotides and 10,000 columns corre-
sponding to genomic regions with the value in each cell corresponding 
to the presence or absence of a specific nucleotide. It is worth noting that 
the human reference genome sequence is used, and genetic alterations 
are not considered. 

To derive epigenetic features, we obtained ChIP-seq data of 25 tissue 
or cell line samples from the ENCODE [24] project and the REMC [25] 
project. The ChIP-seq data contained normalized read counts measuring 
five hPTMs including known transcription activator marks (H3K4me, 
H3K4me3 and H2K27ac) and repressor marks (H3K9me3 and 
H3K27me3) [27]. Given a gene, we examined the ± 5kbps TSS-flanking 
region and recorded position-specific normalized read count for each 
histone modification mark. These data from each sample were organized 
into an epigenetic feature matrix with five rows corresponding to hPTMs 
and 10,000 columns corresponding to genomic positions. 

The ENCODE and REMC projects also contained RNA-seq data. For 
each sample, we obtained the Reads Per Kilobase of transcript per 
Million mapped reads (RPKM) value for each gene. These data were 
organized into a single-column vector with rows corresponding to genes. 
For each sample, we removed genes with missing values of RNA-seq data 
and missing values of ChIP-seq data across all five histone marks. 

2.2. Multi-view attention-based DNN 

The DNN architecture consists of two separate paths representing the 
genetic view and the epigenetic view, respectively (Fig. 1B). Each path 
starts with a CNN layer consisting of NCNN filters with size k and stride 1. 
The output of the CNN layer is passed to a ReLU function connected to 
max pooling over non-overlapping interval of length p. These steps 
produce a vector of size (NC − K+1)/p for filter fi, i ∈ {1,…,NCNN}

encoding sequence motifs and another vector of equal size encoding 
combinations of histone modification patterns. To avoid overfitting, 
dropout [28] with a probability of 0.5 is applied to the max-pooled 
vector. While CNN captures local patterns within a genomic region, it 
does not consider interactions between regions. Since enhancers and 
promoters separated by thousands of base pairs can interact to regulate 
gene transcription, DeepCORE uses bi-directional long short-term 
memory (BiLSTM) networks [29] to capture short-range and 
long-range dependencies. 

As the input sequences to the BiLSTM get longer, it becomes more 
difficult for the hidden states to capture the context, leading to 
decreased performance [30,31]. Furthermore, epigenetic signals are 
abundantly distributed throughout the human genome, but not all 
epigenetically modified regions have regulatory functions. To pinpoint 
the most functionally important elements and capture their local and 
distal interactions, DeepCORE employs an encoder-decoder [32] with 
attention mechanism [33]. The encoder is the BiLSTM model, and the 
decoder predicts the importance score of the next genomic region based 
on importance scores of the regions it has already predicted. This allows 
the prediction to be made based on a series of important hidden states 
from the encoder instead of only the last state. Furthermore, DeepCORE 
highlights the most informative regions contributing to gene transcrip-
tion regulation by replacing the default softmax function in the attention 
model with a sparsemax function [34] that introduces sparsity of 
probability distribution. The learnt attention is a vector of length equal 
to the number of output nodes from the CNN layer containing impor-
tance score of each genomic region. DeepCORE then gives the decoder 
outputs to a fully connected FNN to predict continuous gene transcrip-
tion levels. 

2.3. Training DNN 

We trained a multi-view attention-based DNN model for each 

sample. Given a sample, the data were randomly split into disjoint 
training, validation, and test sets, each comprised of 80 %, 10 %, 10 % of 
all genes, respectively. The test set was kept hidden and was used only 
after hyperparameter tuning and parameter learning were completed to 
avoid information leak. Mean Squared Error (MSE) was computed as the 
loss function and fed back to the network through backpropagation. We 
used Adam (Adaptive Moment Estimation) optimizer [35] to train the 
model for 100 epochs. Early stopping criteria (training is stopped if the 
model performance on the validation set does not improve over 5 
epochs) is employed to avoid overfitting. We noted that the performance 
of all models stabilized before reaching 50 epochs, after which the 
training was terminated. 

The optimization was performed in two stages., In the first stage, the 
hyperparameters in the DNN model were optimized via grid search 
(Supplementary Table 2). The optimal configuration was selected based 
on the performance on the validation set. The second stage of optimi-
zation is done on the attention mechanism to achieve sparsity. The pa-
rameters in the DNN model for both stages were jointly learned. The 
model was trained on Titan Xp GPU donated by the NVIDIA Corporation. 
The total runtime was recorded by varying the sequence length from 
500 bps to 10kbps (Supplementary Fig. 1). 

2.4. Interpreting attention matrices to discover COREs 

The DeepCORE model trained on each sample contains an attention 
probability matrix with rows corresponding to genes and columns cor-
responding to 50 bps windows (bins). For each gene, we extracted the 
tissue-specific attention probabilities of the bins and computed the cu-
mulative distribution (CDF) of the attention probabilities. We then 
calculated empirical p-values based on the CDF and applied correction 
of multiple comparison to derive the false discover rate (FDR). Bins with 
FDR< 0.05 indicated genomic regions with significant regulatory 
function. 

After extracting the significant bins for each gene across all tissues, 
we obtained a matrix with rows representing different tissue or cell line 
samples and columns representing the bin probabilities. Pearson’s 
pairwise correlation [36] was then applied to this matrix to estimate 
correlations between bins to infer interactions of different genomic re-
gions. Blocks of bins that have significantly correlated attention prob-
abilities and are at least 1kbps apart are putative COREs, i.e., regulatory 
elements that co-operatively modulate gene transcription. 

3. Results 

3.1. DeepCORE accurately predicts within- and cross- sample gene 
transcription levels 

We first used two samples of different types: E061 (melanocyte cells) 
and E071(brain hippocampus middle) to assess the performance of 
DeepCORE models with various DNN architectures and the performance 
of two existing methods (ExPecto and DeepChrome). The DeepCORE 
DNN hyperparameters selected via grid search are K= 50, NCNN= 50, 
p = 50, NLSTM= 15, NATTN= 25, and NFNN= 100. With this setting, ge-
netic sequences and epigenetic signals in each 50 bps window are 
convolved separately. BiLSTM with attention layer produces 200 bins 
(50 bps long), each receiving attention probabilities before being fed to 
the FNN. 

We initialized all the trainable weights by 0 to avoid randomness in 
the model’s performance. To avoid any other randomness in the per-
formance, we repeated the data splitting step and the model training 
step 20 times. Evaluated on the held-out test sets from these 20 repeats, 
the multi-view DNN reported the lowest error rate in both samples 
(mean and standard deviation of RMSEE061 = 1.80 ± 0.014 and 
RMSEE071 = 1.79 ± 0.015) compared to the two baseline single-view 
models (genetic-view model: RMSEE061 = 2.68 ± 0.004 and 
RMSEE071 = 2.31 ± 0.002, and epigenetic-view model: (RMSEE061 =
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1.87 ± 0.015 and RMSEE071 = 1.85 ± 0.055, Fig. 2A). It also produced 
lower error rates than ExPecto (RMSEE061 = 2.86 ± 0.034 and 
RMSEE071 = 3.02 ± 0.019). As DeepChrome only makes binary classi-
fications, we converted the continuous prediction scores from Deep-
CORE and ExPecto using a median cutoff. Again, DeepCORE reported 
the highest accuracy (F1E061 = 0.845 ± 0.11 and F1E071 =

0.749 ± 0.089) compared to the genetic-view model (F1E061 =

0.69 ± 0.37 and F1E071 = 0.627 ± 0.062) epigenetic-view model 
(F1E061 = 0.834 ± 0.25 and F1E071 = 0.734 ± 0.084), ExPecto (F1E061 
= 0.82 ± 0.057 and F1E071 = 0.753 ± 0.3), and DeepChrome (F1E061 
= 0.706 ± 0.017 and F1E071 = 0.69 ± 0.023,Fig. 2B). Because multi- 

view models consistently outperformed single-view models in these 
two samples, we built only multi-view models in the subsequent 
analyses. 

For each of the 25 cell-line and tissue samples, we built a DeepCORE 
multi-view model. As expected, samples of similar origins shared similar 
epigenetic profiles and those of distinct origins showed different 
epigenetic profiles (Supplementary Fig. 2). Using these samples, we 
evaluated the performance of DeepCORE, ExPecto, and DeepChrome in 
predicting gene expression levels. Across all sample, DeepCORE 
consistently reported a lower error rate (RMSE) than ExPecto on pre-
dicting continuous gene expression levels (Fig. 2C). The best 

Fig. 2. Performance of DeepCORE and other methods. (A, B) Evaluated on two samples, E061 and E071, the boxplots of RMSE (A) and F1-score (B) show DeepCORE 
has the lowest error rate and the highest accuracy in predicting gene transcription levels, as compared to single-view DNN, ExPecto, and DeepChrome models. (C, D) 
Evaluated on 25 samples, DeepCORE has consistently the lowest error rate of predicting continuous gene transcription levels (C) and consistently the highest ac-
curacy of predicting binary gene transcription classes (D). (E, F) Evaluated on cross-sample predictions in which a model trained the source sample is applied to 
predict gene transcription in different target samples, DeepCORE shows consistently lower error rate than ExPecto (E) and higher accuracy than DeepChrome (F). (b) 
Gray lines denote performance in source samples. 
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performance of DeepCORE was observed in the E084 sample with an 
RMSE of 1.65, and the lowest performance was observed in the E006 
sample with an RMSE of 2.06. Similarly, DeepCORE consistently re-
ported a higher accuracy than DeepChrome on binary classification 
(Fig. 2D). On average DeepCORE outperformed ExPecto and Deep-
Chrome with an improvement of over 10 % in most samples. 

Recently, another method, Xpresso [26], reported good performance 
of predicting gene expression levels based solely on genetic sequence. It 
provided sample-specific predictions for two ENCODE samples, namely 
E116 and E123. We trained DeepCORE on each of the two samples. 
Given that the gene expression values used in Xpresso and DeepCORE 
were in different scales, their RMSEs were not comparable. We therefore 
evaluated the performance based on r [2] value, Pearson correlation 
coefficient (PCC), and Spearman correlation coefficient (SCC) that 
measure the correlation between true and predicted gene expression. 
For both samples, DeepCORE outperformed Xpresso (r2 = 0.67 vs. 0.46, 
PCC=0.82 vs. 0.68, SCC=0.79 vs. 0.68 for E116 sample, and r2 = 0.71 
vs. 0.52, PCC=0.84 vs. 0.72, SCC = 0.81 vs. 0.72 for E123 sample, 
Supplementary Fig. 3). 

Following the success of DeepCORE on predicting within-sample 
gene transcription, we tested if a DNN model trained on one sample 
performed well on other samples, which indicate the generalizability of 
the model. We chose four tissues representing very different cell types 
(E058: keratinocyte, E061: melanocyte, E071: brain hippocampus 
middle, and E100: psoas muscle). In this analysis, we trained a DNN 
model using data from one sample and tested it using data from the 
remaining three samples. We first compared DeepCORE and ExPecto on 
predicting continuous values of gene expression levels. The results from 
our analysis indicated that in general, cross-sample predictions had 
lower performance than within-sample predictions for all three methods 
(Fig. 2E). The only exceptions were ExPecto models trained for E071 
sample, where cross-sample prediction is better than within-sample 
prediction. Nevertheless, the RMSE error rate of DeepCORE on 
average was 27.5 % lower than that of ExPecto in cross-sample pre-
dictions (mean RMSE=2.06 vs. 2.85). We then compared DeepCORE 
and DeepChrome on binary classification (Fig. 2F). The F1-score was 18 
% higher in DeepCORE than in DeepChrome (mean f1-score =0.79 vs. 
0.671). Overall, the performance of DeepCORE decreased only slightly 
by 6 % for cross-sample predictions, while the ExPecto and DeepChrome 
showed a huge performance reduction by more than 15 % and 10 % 
respectively. These results implied that the patterns captured by Deep-
CORE likely represented general relationships between genetic, epige-
netic, and transcriptional changes. 

Using the E061 cell line, we experimented with training a model 
without BiLSTM. This reduced model reported a lower predictive ac-
curacy than the full model that contained BiLSTM (RMSE = 3.4 vs. 1.8). 
The attended bins in the reduced model were closer to TSS compared to 
the full model (mean distance = 1835 bps vs. 3063 bps). These results 
demonstrated that BiLSTM detected long-range dependencies which in 
turn helped improve the prediction accuracy. 

We also tested pooling data from multiple samples, which gave rise 
to models with higher errors. For example, we trained a model using 
pooled data from the E096 lung sample and the E071 brain sample. The 
RMSE of this model was 2.09 based on cross-validation. Conversely, the 
models trained on each of these two samples separately reported RMSE 
of 1.81 and 1.76, respectively. 

Large language models based on the transformer architecture have 
reported unprecedent successes [37–39]. We also experimented with 
building a transformer model to predict gene expression in the E061 
sample. Unfortunately, this model exhibited suboptimal performance 
compared to DeepCORE (RMSE=2.4 vs. 1.8, F1-score=0.74 vs. 0.85, 
Supplementary Fig. 4). A potential reason might be insufficient training 
data that fell several orders of magnitude below the scale used in large 
language models. 

3.2. DeepCORE identifies regions with biologically meaningful histone 
markers 

Attended bins receiving non-zero attention probabilities corre-
sponded to genomic regions that contributed to the prediction of gene 
expression values. We found that hPTMs were present in most attended 
bins. Using genes from the held-out test set, we found that each gene on 
average had 33 attended bins containing hPTMs, but only 0.42 attended 
bins containing no hPTMs (Mann-Whitney test p-value = 9.1 ×10− 25,  
Fig. 3A). We then randomly selected 25 test genes that were transcribed 
above the median cutoff value and 25 genes transcribed below the 
median cutoff in the E071 sample. We extracted bins with highly sig-
nificant attentions and counted the presence of hPTMs in the corre-
sponding regions (Fig. 3B). Among genes with high transcription level, 
the attended genomic regions were enriched with H3K4me3 and 
H3K27ac that are known marks of active promoters and enhancers to 
enhance transcription [40,41]. Conversely, the enrichment of H3K9me3 
and H3K27me3 in the attended regions near low-transcription genes 
were consistent with their known roles in formation of heterochromatins 
to repress transcription [42]. 

Further analysis of the attended regions of the CYFIP2 gene in two 
samples revealed interesting patterns. In the E007 sample where CYFIP2 
gene was highly expressed, DeepCORE paid attention to regions that 
were close to the TSS and were occupied with the active histone mark 
H3K4me3 (Fig. 3C). In contrast, in the E058 sample where this gene was 
lowly expressed, DeepCORE paid attention to regions that were down-
stream of the TSS and were occupied with the repressor histone mark 
H3K27me3 marker and avoided regions with the activator histone mark 
H3K4me3 around the TSS (Fig. 3D). These results provided evidence 
that DeepCORE selects regions that are biologically relevant and reflect 
the underlying mechanisms of transcription regulation. 

As no model can learn and explain all the features, we examined false 
positive attentions in the DeepCORE model trained on the E065 sample. 
Out of a total of 597,094 bins that contained no epigenetic signals, only 
3291 received attention, indicating a very low false positive rate of 0.6 
%. Our examination of false positive attentions revealed two distinct 
types of occurrences. In the first type, epigenetic signals were abundant 
in the ± 5kbps TSS-flanking regions, and bins receiving false positive 
attentions were next to bins receiving true positive attentions (Supple-
mentary Fig. 5A). This phenomenon can be attributed to the CNN layer, 
which convolves epigenetic signals across positions, causing the spread 
of signals between neighboring bins. Addressing this issue might involve 
reducing the filter size and increasing the stride size of the CNN layer 
and increasing the interval of max-pooling. However, such changes will 
impact the bin length and subsequently the resolution of predicted. In 
the second type, epigenetic signals were scarce in the ± 5kbps TSS- 
flanking region, and bins at the leftmost or rightmost borders received 
false positive attentions (Supplementary Fig. 5B). This occurrence can 
be attributed to the BiLSTM layer, which carries epigenetic signals over 
an extended distance, leading to accumulation at the two ends. Potential 
solutions to this issue may include increasing the forget bias or the 
dropout rate in the BiLSTM layer. Nevertheless, considering the already 
very low false positive rate and the possibility that adjustments to these 
parameters may compromise performance, we have chosen to retain the 
original configuration of the DeepCORE models. 

3.3. DeepCORE can identify and fine map regulatory elements 

The Eukaryotic Promoter Database (EPD) [43] contains a compre-
hensive list of 29,598 experimentally validated human promoters. The 
GeneHancer [44] database annotated 250,512 candidate enhancers in 
the human genome. We then scanned our attended regions to identify 
the presence of these known promoters or enhancers. To match the 
attended regions with the promoters, we restricted the attended regions 
to be within 1kbps around the TSS. No such restrictions were applied for 
matching enhancers. 
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We hypothesize that the attended regions identified by DeepCORE 
were enriched with known REs. To test this hypothesis, we considered 
promoters and enhancers annotated in the EPD and GeneHancer 

databases as known REs, although many of these annotations were not 
experimentally validated. We then calculated the frequency of the 
attended regions containing known REs across all samples and the 

Fig. 3. Distribution of hPTMs in attended regions. (A) Density plots show distribution of attended bins with hPTMs vs. distribution of attended bins with no hPTMs. 
(B) Counts of bins with specific hPTMs in attended regions. Data were from randomly selected 25 highly expressed genes and 25 low expression genes. Transcription 
activating hPTMs are in orange background. Transcription repressing hPTMs are in blue background. (C, D) Heatmaps show the raw hPTM read counts and 
DeepCORE attention probabilities for the CYFIP2 gene. Transcription of this gene was low in the E007 sample (C) and high in the E058 sample (D). The ± 5kbps TSS- 
flanking region is encoded into 200 bins each with an attention probability. 

Fig. 4. Attention analysis for regulatory elements (A) Density plot of the frequency of attended bins with known promoters or enhancers across 25 samples in 
comparison to random bins with high attention scores. (B) In the TMEM88 gene, attended bins matched to known enhancers and promoters. Signals from repressing 
hPTMs did not receive attention. (C-E) In the ARF5 gene, hPTM signals form two clusters (indicated with blue boxes). The right cluster mapped to the promoter of the 
ARF5 received attentions. The left cluster mapped to the promoter of another gene GCC1 did not receive attention. 
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frequency of the remaining regions. On average, each gene had 23 
attended bins containing known promoters and 10 attended bins con-
taining known enhancers, but only 5 attended bins containing no known 
REs (Mann-Whitney test p-value = 4.0 ×10− 25 and 6.1 ×10− 18 respec-
tively, Fig. 4A). 

The TMEM88 gene is a representative example in which the attended 
bins matched known promoters and enhancers. TMEM88 was highly 
expressed in the E004 sample. The ± 5kbps TSS-flanking region was 
occupied with various active and repressive hPTMs. The EPD database 
annotated three promoters for this gene, one immediately upstream of 
the TSS and the other two towards the downstream. The enhancer an-
notated in the GeneHancer database spans a wide range starting at 
1200 bps upstream of the TSS to 4000 bps downstream of the TSS. These 
REs all matched to the attended bins identified by DeepCORE (Fig. 4B). 
Furthermore, despite the repressive hPTM (H3K27me3) had high read 
counts, the DeepCORE model did not pay attention to it. Instead, acti-
vating hPTMs received attention, which was consistent with the high 
transcription level of TMEM88 in this sample. Interestingly, inside the 
annotated enhancer region that spans more than 5kbps, only 30 bins 
covering 1500 bps received attention. Because only attended bins were 
used to predict gene transcription level, they likely were more relevant 
to transcription regulation than the unattended bins. 

Another interesting example is the ARF5 gene. Signals from hPTMs in 
three samples (E095, E065, and E100) consistently highlighted two re-
gions (Fig. 4C–E). The right region corresponded to the promoter of this 
gene and received DeepCORE attention. The left region was 2500 bps 
upstream of the TSS and corresponded to the promoter of another gene 
GCC1. DeepCORE correctly identified the histone signals corresponding 
to ARF5 gene and did not pay attention to the left peak. These results 
demonstrate that DeepCORE can identify and fine-map REs at a reso-
lution of 50 bps that corresponds to the bin size of the model. 

3.4. Concordant attentions identify putative COREs 

The interpreter of DeepCORE includes correlation analysis of atten-
tion probabilities across samples to discover COREs. As an example, we 
examined the PSMD8 gene that was consistently and highly expressed 
across all samples. We retrieved the attention vectors of this gene from 
25 samples and calculated their pair-wise correlations (Fig. 5A). At FDR 
rate < 0.05, we found two blocks for which DeepCORE attentions were 
highly correlated (Fig. 5B). The first block is centered around the TSS 
and the second block is 3kbps downstream of the TSS. These two blocks 

received concordant attention across samples, implying that they jointly 
regulate transcription of the PSMD8 gene. Indeed, these two blocks 
corresponded to the promoter and the enhancer of this gene. 

We validated these COREs using established annotations and 
experimental data. As an illustrative example, we investigated the 
TMUB1 gene and analyzed its attention vectors across all samples. While 
the EPD and GeneHancer annotations hinted at the presence of pro-
moters and other cis-regulatory elements in this region, they offered 
limited resolutions (Fig. 6). DeepCORE attentions revealed three distinct 
blocks that finely mapped the REs in this region. The first block was 
located approximately 2.5kbps upstream of the TSS, the second block 
encompassed the TSS, and the third block was located approximately 
2.5kbps downstream of the TSS. The correlated attentions observed 
among these three blocks strongly suggest their coordinated regulation 

Fig. 5. COREs in the PSMD8 gene: (A) Heatmaps show attentions in 5 cell lines. (B) Correlation plot shows two blocks (A and B) with significant corre-
lated attentions. 

Fig. 6. CORE in the TMUB1 Gene. The ± 5 kb TSS-flanking region is displayed, 
which has cis-regulatory roles as annotated in the EPD and GeneHancer data-
bases. DeepCORE identified three blocks (A, B, and C) as putative REs, which 
received attentions in multiple samples. The correlation matrix of attentions 
revealed local interaction between B and C, and distal interaction between A 
and the other two elements. The distal interaction is confirmed in an Hi-TrAC 
study showing these REs are inside chromatin-chromatin loops. 
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of the gene’s transcription and function as COREs. Furthermore, it is 
plausible that the distal interactions between the first block and the 
other two blocks occur via chromatin-chromatin loops, a phenomenon 
confirmed in a Hi-TrAC study [45]. 

4. Discussion 

Multiple REs interact to regulate gene transcription. We designed the 
DeepCORE architecture to consider such inter-dependences in multiple 
aspects. In the input step, it uses two views to capture genetic and 
epigenetic features. In the DNN modeling step, it uses BiLSTM to allow 
short-range and long-range interactions, In the interpretation step, it 
detects correlated attentions between genomic regions. By training the 
DNN to predict gene transcription levels based on genetic and epigenetic 
features within the ± 5kbps TSS-flanking region, DeepCORE learns the 
most informative regions that are relevant to gene transcription 
regulation. 

We evaluated the performance of DeepCORE and other methods on 
predicting gene transcription in diverse tissues and cell lines, although 
the assessment did not include all existing models such as Enformer [46] 
and Borzoi [39] for practical reasons. In these comparisons, DeepCORE 
was consistently the top performer. The high accuracies support that the 
DNN model captures informative features relevant to transcriptional 
regulation. It builds the foundation for subsequent analysis to further 
interpret the results, specifically attentions paid to each genomic region, 
to help mapping promoters, enhancers, and other REs. We further 
introduce COREs that are REs receiving concordant attentions across 
multiple samples. 

DeepCORE uses only five hPTMs as epigenetic features. However, 
many other types of epigenetic signals, such as DNA methylation and 
transcription factor binding, provide complementary information to 
hPTM. Including these additional features may further increase the 
prediction accuracy and enhance the RE identification. Currently, 
DeepCORE examines ± 5kbps TSS-flanking region where promoters and 
proximal enhancers reside. Expanding the range to 2000kbps will allow 
us to detect distal REs. Furthermore, as enhancers are often clustered 
and selective activation of different enhancers in the same cluster is 
tissue-specific [47–49], concurrent modeling of multiple tissues is 
promising to capture the boundary between these enhancers and sub-
sequently increase the resolution. This will also identify tissue-specific 
gene-promoter and gene-enhancer interactions, which is valuable 
knowledge that has not been annotated in existing databases. 

In silico mutagenesis can be combined with gene expression pre-
diction models to identify functional elements. For example, ExPecto 
[20] supports in silico mutagenesis by introducing DNA alterations into 
a genomic position, predicting the expression level of the target gene 
with and without the DNA alterations, and comparing the difference. 
Assuming mutations disrupting a regulatory element will be predicted 
with significant impact on gene expression, this approach can help 
identify regulatory elements. However, in silico mutagenesis usually 
tests simple alterations, such as single nucleotide variants, most of which 
have neutral or nearly neutral functional impact. Identification of reg-
ulatory elements based on these predictions may lead to many false 
negatives. Furthermore, DeepCORE is designed based on the rationale 
that epigenetic alterations can lead to gene expression changes with or 
without genetic alterations. However, in silico mutagenesis does not 
perform epigenetic alterations. The epigenetic features in our model 
include five quantitatively measured histone modification marks, which 
vary in intensity and cover different lengths of genomic regions. 
Epigenetic changes may involve alterations in one or several histone 
modification marks, entail varying extent of intensity changes, and 
affect different lengths of genomic regions. Given such high variability 
of potential epigenetic changes, it is challenging to simulate them 
computationally. The DeepCORE algorithm can identify regulatory el-
ements without performing in silico genetic or epigenetic alterations, 
which is complementary to existing methods. In the future, we will 

explore if DeepCORE models combined with in silico mutagenesis can 
improve fine mapping of regulatory elements. 

In summary, DeepCORE is a novel method to catalog cis-acting REs 
and COREs that influence gene transcription in tissue and cell line spe-
cific context. This knowledge can be used to discover novel REs and 
prioritize existing REs, which will help improve our understanding of 
transcription regulatory mechanisms. To facilitate evaluation and 
further analysis, we created an interactive web server at https://liliulab. 
shinyapps.io/deepcore/, which allows users to query, view, and down-
load of DeepCORE predictions and attended bins in 27 human tissue and 
cell line sample. The DeepCORE source code is available at the GitHub 
site https://github.com/liliulab/DeepCORE. 
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