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Abstract

Background: The aim of this study was to investigate the anticancer activity and mechanism of action of Noscapine alone
and in combination with Doxorubicin against triple negative breast cancer (TNBC).

Methods: TNBC cells were pretreated with Noscapine or Doxorubicin or combination and combination index values were
calculated using isobolographic method. Apoptosis was assessed by TUNEL staining. Female athymic Nu/nu mice were
xenografted with MDA-MB-231 cells and the efficacy of Noscapine, Doxorubicin and combination was determined. Protein
expression, immunohistochemical staining were evaluated in harvested tumor tissues.

Results: Noscapine inhibited growth of MDA-MB-231 and MDA-MB-468 cells with the IC50 values of 36.1663.76 and
42.764.3 mM respectively. The CI values (,0.59) were suggestive of strong synergistic interaction between Noscapine and
Doxorubicin and combination treatment showed significant increase in apoptotic cells. Noscapine showed dose dependent
reduction in the tumor volumes at a dose of 150–550 mg/kg/day compared to controls. Noscapine (300 mg/kg),
Doxorubicin (1.5 mg/kg) and combination treatment reduced tumor volume by 39.465.8, 34.265.7 and 82.964.5 percent
respectively and showed decreased expression of NF-KB pathway proteins, VEGF, cell survival, and increased expression of
apoptotic and growth inhibitory proteins compared to single-agent treatment and control groups.

Conclusions: Noscapine potentiated the anticancer activity of Doxorubicin in a synergistic manner against TNBC tumors via
inactivation of NF-KB and anti-angiogenic pathways while stimulating apoptosis. These findings suggest potential benefit
for use of oral Noscapine and Doxorubicin combination therapy for treatment of more aggressive TNBC.
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Introduction

Approximately 30–40% of breast cancers are estrogen receptor

(ER) negative and the triple negative breast cancer (TNBC i.e.

negative for ERa, PR and Her2 amplification) are the most

clinically aggressive breast tumors [1,2]. TNBC relapses quickly in

response to clinical treatment as this subtype of breast cancer has a

high histological grade and poor prognosis [3]. Patients with

TNBC, which account for about 10–17% of all breast cancer cases

[4], are often unresponsive to endocrine agents such as tamoxifen

and less responsive to standard adjuvant therapy [5]. Specific

targeted therapies are not available to improve clinical outcome

among TNBC patients. [4,5] TNBC do not respond to endocrine

agents or trastuzumab and can only be treated with chemotherapy

and treatment options for these tumors are limited by frequent de

novo or acquired resistance to chemotherapy [6]. The limited

availability of current systemic treatment options for TNBC

necessitates the search for newer chemotherapeutic regimens. A

promising target for the treatment of these ER2 breast tumors is

the microtubule cytoskeleton [7]. The effectiveness of microtubule-

interfering agents, taxanes and vinca alkaloids in treatment of

various cancers has been well studied [8]. However, the clinical

utility of taxanes has been limited due to drug-resistance, need of

i.v. infusion over a long period of time and associated toxicities

[9,10]. This has prompted search for microtubule targeting agent

that may be administered orally, display favorable toxicity profiles

and have better therapeutic indices in the treatment of TNBC.

Noscapine attenuates microtubule dynamics just enough to

activate the mitotic checkpoints to stop cell cycle and does not

alter the steady state monomer/polymer ratio of tubulin [11,12].

Noscapine showed antitumor activity against a variety of cancer

types (melanoma [13], ovarian [14], lymphoma [15], human

myelogenous leukemia [16], gliobastoma [17], lung, [18] and

breast [19]) both in vitro and in vivo while exerting minimal

adverse side effects. Furthermore, Noscapine also showed little or

no toxicity to the kidney, heart, liver, bone marrow, spleen, or

small intestine and did not inhibit primary humoral immune

responses in mice. Previous studies demonstrated that oral

administration of Noscapine at 120 mg/kg and 300 mg/kg

showed significant reduction in tumor volume in MCF-7 [19]

and MDA-MB-231 [20] xenografts in nude mice. However, the

effectiveness of Noscapine in combination with other anticancer
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agents for treatment of TNBC has not been studied yet. At

present, the lack of highly effective therapeutic targets for TNBC

leaves standard chemotherapy, for example use of combination of

anthracycline and taxane, however these agents are insufficiently

efficacious [21]. Doxorubicin is an anthracycline drug which is

used as a chemotherapeutic agent for patients with metastatic

breast cancer and has shown overall response rates between 35

and 50% in patients with TNBC who have not previously received

chemotherapy [22]. Despite its excellent anti-tumor activity,

Doxorubicin has a relatively low therapeutic index and its clinical

utility is limited due to acute and chronic toxicities such as

myelosuppression, immunosupression and dose-cumulative car-

diotoxicity [23]. Therefore, combination treatment with another

highly effective novel non-toxic drug which can lower the dose of

chemotherapeutic agents would be desirable.

Given the challenge in treating ER2 breast tumors and its

inherent poor prognosis, the use of Noscapine in combination

Doxorubicin will have major clinical implications for the treatment

of ER2 breast cancer. Based on the individual activity of these

agents and their distinct mechanisms of action, we hypothesize

that Noscapine in combination with Doxorubicin will produce

additive or synergistic cytotoxic effects in human TNBC in vitro

and in vivo possibly by inactivation of NF-KB and also via

antiangiogenic and apoptotic activity. The objectives of this study

are (a) to examine the anticancer activity of Noscapine alone and

combination with Doxorubicin against TNBC cells, and (b)

evaluate the antitumor effect of Noscapine alone and combination

in mice bearing MDA-MB-231 xenograft TNBC tumors and

elucidates underlying mechanism of action.

Materials and Methods

Noscapine and Doxorubicin were purchased from Sigma

Chemicals, St. Louis, MO, USA and Spectrum Chemicals USA.

The human breast cancer cell lines MDA-MB-231 and MDA-

MB-468 were obtained from American Type Culture Collection

(Rockville, MD, USA). Cells were grown in DMEM:F12K

medium (Sigma, St. Louis, MO, USA) supplemented with 10%

fetal bovine serum. The cell culture media contained antibiotic

antimycotic solution of penicillin (5,000 U/ml), streptomycin

(0.1 mg/ml), and neomycin (0.2 mg/ml). The cells were main-

tained at 37uC in the presence of 5% CO2 in air. The cells were

maintained at 37uC in the presence of 5% CO2. All other

chemicals were either reagent or tissue culture grade.

Animals
Female Nu/Nu mice (six weeks old form Harlan, Indianapolis,

IN) were grouped and housed (n = 8 per cage) in sterile

microisolator caging unit supplied with autoclaved Tek-Fresh

bedding. The animals were kept under controlled conditions of

12:12 hour light: dark cycle, 2262uC and 50615 percent relative

humidity. The mice were fed (irradiated rodent chow Harlan

Teklad) and autoclaved water ad libitum. The animals were

housed at Florida A and M University in accordance with the

standards of the Guide for the Care and Use of Laboratory Animals and the

Association for Assessment and Accreditation of Laboratory

Animal Care.

In-vitro cytotoxicity studies
The MDA-MB-231 or MDA-MB-468 TNBC cell lines were

plated in 96-well micro titer plates, at a density of 16104 cells/well

and allowed to incubate overnight and were treated with various

dilutions of Noscapine made in cell growth medium (10 to

160 mM) from Noscapine stock solution in DMSO. The cells were

incubated for 72 h at 3760.2uC in a 5% CO2-jacketed incubator.

To study the interaction between Noscapine and Doxorubicin, the

MDA-MB-231 or MDA-MB-468 cells were treated with various

dilutions of Doxorubicin in the presence or absence of Noscapine

at 10, 20 and 30 mM. The plates were incubated for 72 h at

3760.2uC in a 5 percent CO2-jacketed incubator. Cell viability in

each treatment group was determined by crystal violet dye assay.

Separate study was done to find out the IC50 values of Noscapine

and Doxorubicin for the MDA-MB-231 and MDA-MB-468 cells.

Data analysis for the combination treatments
The percentage of cell survival as a function of drug

concentration was then plotted to determine the IC50 value (the

drug concentration needed to prevent cell proliferation by 50%)

[18,24]. The interactions between Doxorubicin and Noscapine

were evaluated by isobolographic analysis, a dose-oriented

geometric method of assessing drug interactions [25]. For 50

percent toxicity, the combination index (CI) values were calculated

based on the equation stated below.

CI~
D1

Dx1
z

D2

Dx2
za

D1 �D2

Dx1 �Dx2

� �
ð1Þ

Where,

Dx1 = Dose of drug 1 to produce 50 percent cell kill alone;

D1 = Dose of drug 1 to produce 50 percent cell kill in

combination with D2;

Dx2 = Dose of drug 2 to produce 50 percent cell kill alone;

D2 = Dose of drug 2 to produce 50 percent cell kill in

combination with D1;

a= 0 for mutually exclusive or 1 for mutually non-exclusive

modes of drug action.

Induction of apoptosis in MDA-MB-231 cells
To detect apoptotic cells, the ApoTag Red In Situ Apoptosis

detection kit R (Chemicon R International, CA, USA) was used.

MDA-MB-231 cells were plated at a density of 16106 cells/well in

6-well plates and incubated overnight. Cells were treated with

Doxorubicin (0.4 mg/ml), or Noscapine (30 mM), or combination.

Untreated cells were used as control. After 72 h, cells were fixed in

4% paraformaldehyde and mounted onto slides using Cytospin R

(Shandon). Equilibration buffer was added to slides and incubated

for 10 minutes followed by incubation in working strength TdT

enzyme at 37uC for 1 hour. The slides were incubated in stop/

wash buffer for 10 minutes at room temperature. Working

strength anti-digoxinenin conjugate (rhodamine) was added to

each slide for 30-minute incubation at room temperature. The

images on the slides were visualized with an Olympus BX40

fluorescent microscope equipped with a computer-controlled

digital camera (DP71, Olympus Center Valley, PA, USA). To

quantify the apoptotic cells from terminal deoxynucleotidyl

transferase-mediated nick end labeling (TUNEL) assay, 100 cells

from 6 random microscopic fields were counted.

In-vivo antitumor effect against MDA-MB-231 tumors
The adherent MDA-MB-231 tumor cells were washed with

PBS, harvested from confluent cultures by 5-minute exposure to

0.25 percent trypsin and 0.02 percent EDTA solution in an

incubator. Trypsinization was stopped with medium containing 10

percent FBS. The cells were centrifuged at 500 g for 4 min at 4uC
and the floating cells in the supernatant were discarded. The cell

pellet was resuspended in medium containing 10 percent FBS and

mixed thoroughly. Trypan blue staining was used to determine the
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number of viable cells. The resuspended cells were dilutions of

36106 cells/100 ml were prepared in cell growth medium. The

100 ml of cell suspension was injected subcutaneously into right

flank area of each mouse [18]. The protocol for in-vivo experiments

with nude mice was approved by the Animal Care and Use

Committee, Florida A and M University, Tallahassee, FL. The

mice were randomized into vehicle control and treatment groups

(n = 8) when xenografts were palpable with a tumor size of

approximately 50 mm3. The mice were treated with i) 160 ml of

vehicle; ii) Noscapine (150 mg/kg/day); iii) Noscapine (300 mg/

kg/day); iv) Noscapine (450 mg/kg/day); v) Noscapine (550 mg/

kg/day); vi) Doxorubicin (1.5 mg/kg/week, i.v.), vii) Noscapine

(300 mg/kg/day)+Doxorubicin (1.5 mg/kg/week. i.v.). To check

for evidence of toxicity, the animals were weighed twice weekly.

The tumor dimensions were measured using a linear caliper and

tumor volume was calculated using following equation:

V
mm3ð Þ~a � b2

2

� �
ð2Þ

Where,

V = tumor volume

a = largest diameter of tumor

b = smallest diameter of tumor

The mice were fed with food and water ad libitum. On day 38,

all animals were sacrificed by exposure to a lethal dose of

halothane in a desiccator. After dissection and removal of the

tumor tissues, the tumors were washed in sterile PBS. For

immunohistochemistry (IHC), and TUNEL assay procedures,

some of the tumors were fixed in formalin while others were

rapidly frozen in liquid nitrogen and stored in 280uC.

Western blotting analysis of xenograft MDA-MB-
231tumors

Tumor tissues harvested at 38 days post tumor implantation

from control, Noscapine, Doxorubicin and combination treated

mice were cut into small pieces and homogenized in PBS. The

homogenate was centrifuged at top speed for 10 min to sediment

the tissue fragments. The proteins were extracted using RIPA

buffer (50 mM Tris-HCL, pH 8.0, with 150 mM sodium chloride,

1.0 percent Igepal CA-630 (NP-40), 0.5 percent sodium deoxy-

chlolate, and 0.1 percent sodium dodecyl sulfate) with protease

inhibitor (500 mM phenylmethylsulfonyl fluoride). Samples were

vortexed, incubated on ice for 30 min, centrifuged again and the

supernatants were stored at 280uC. For WB, equal amounts of

supernatant protein (50 mg) from the control and different

treatments were denatured by boiling for 5 min in SDS sample

buffer (0.25 M Tris-HCl pH 6.8, 8% SDS, 30% Glycerol, 0.02%

Bromophenol Blue and 10% 2-beta-mercaptoethanol), separated

by 15% SDS-PAGE and transferred to nitrocellulose membranes

for immunoblotting. The membranes were blocked with 5 percent

skim milk in Tris-buffered saline with Tween 20 [10 mM Tris-

HCl (pH 7.6), 150 mM NaCl, 0.5 percent Tween 20] and probed

with NF-kb (1:500), IKBa (1:500), P-IKBa (1:500), Bax (1:1000),

Bcl2 (1:1000), caspase 3 (1:1000), cleaved caspase 3 (1:1000),

caspase 8 (1:1000), caspase 9 (1:1000), VEGF (1:500), survivin

(1:500) and b-actin antibodies (1:500). All primary antibodies were

purchased from Cell Signaling Technology (Beverly, MA). Bound

antibodies were revealed with HRP conjugated secondary

antibodies (1:2000) using SuperSignal West pico chemilumines-

cent solution (Pierce, Rockford, IL). Beta actin (Santa Cruz

Biotechnology) protein was used as a loading control. The

densitometric analysis of the bands was performed using the

program ImageJ v1.33u.

TUNEL assay of xenograft MDA-MB-231 tumors
Formalin-fixed tumor tissues harvested 38 days after tumor

implantation were embedded in paraffin and sectioned (4–5 mm

thick). DeadEndTM Colorimetric Apoptosis Detection System

(Promega, Madison, WI) was used to detect apoptosis in the tumor

sections placed on slides according to the manufacturer’s protocol.

Briefly, the equilibration buffer was added to slides and incubated

for 10 minutes followed by 10-minute incubation in 20 mg/ml

proteinase K solution. The sections were washed in PBS and

incubated with TdT enzyme at 37uC for 1 hour in a humidified

chamber for incorporation of biotinylated nucleotides at the 39-

OH ends of DNA. The slides were incubated in horseradish

peroxidase-labeled streptavidin to bind the biotinylated nucleo-

tides followed by detection with stable chromagen DAB. The

images on the slides were visualized with an Olympus BX40 light

microscope equipped with a computer-controlled digital camera

(DP71, Olympus Center Valley, PA, USA). Three slides per group

were stained and apoptotic cells were identified by dark brown

cytoplasmic staining.

Immunohistochemistry for Cleaved Caspase 3 and VEGF
Expression of MDA-MB-231 tumors

Tumor tissue sections prepared from formalin-fixed, paraffin-

embedded tumor tissues were used for IHC studies according to

the protocol specified in the SignalStainTM Cleaved Caspase-3

(Asp 175) IHC kit (Cell Signaling, Beverly, MA). The section slides

were washed in xylene and hydrated in different concentrations of

alcohol. The slides were heated in sodium acetate solution at 95uC
for 10 minutes for antigen retrieval. The slides were washed three

times in PBS and incubated with the primary antibody against

cleaved caspase-3 overnight at 4uC. Horseradish peroxidase-

conjugated secondary antibody was applied to locate the primary

antibody. The specimens were stained with Nova Red stain and

counterstained with hematoxylin. The presence of brown staining

was considered a positive identification for activated caspase-3. For

VEGF staining, the tissue sections were washed, hydrated and

processed for antigen retrieval as described above for cleaved

caspase-3 staining. The samples were incubated overnight at 4uC
with either 1:50 dilution of VEGF antibody incubated with

biotinylated secondary antibody followed by streptavidin. The

color was developed by exposing the peroxidase to a substrate-

chromagen, which forms a brown reaction product. VEGF

expression was identified by the brown cytoplasmic staining.

The Olympus BX40 light microscope equipped with computer-

controlled digital camera (DP71, Olympus Center Valley, PA,

USA) was used to visualize the images on the slides.

CD31 expression and Assessment of Microvessel Density
of MDA-MB-231 tumors

Paraffin-embedded tumor tissues were deparaffinized and

blocked for peroxidase activity as described under methodology

for IHC for VEGF Expression. After washing with PBS, the

sections were pretreated in citrate buffer in a microwave oven for

20 min at 92–98uC. After two washes with PBS, specimens were

incubated in 10 percent normal goat serum (Atlanta Biologicals,

GA,USA) for 20 min to reduce the nonspecific antibody binding.

Subsequently, the sections were then incubated with a 1:500

diluted mouse CD31 monoclonal antibody (Cell Signaling Tech,

MA), which is recognized as an endothelial cell surface marker, at
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room temperature for 1 h, followed by a 30 min treatment with

HRP Rabbit/Mouse (Santa Cruz Biotechnology, Santa Cruz,

CA,USA). After three washes with PBS, the section was developed

with diaminobenzidene-hydrogen peroxidase substrate, and lightly

counterstained with hematoxylin. To calculate microvessel density

(MVD), three most vascularised areas of the tumour (‘hot spots’)

were selected and mean values obtained by counting vessels. A

single microvessel was defined as a discrete cluster of cells positive

for CD31 staining, with no requirement for the presence of a

lumen. Microvessel counts were performed at6400 (640 objective

lens and 610 ocular lens; 0.74 mm2 per field).

Statistics
One-way ANOVA followed by Tukey’s Multiple Comparison

Test was performed to determine the significance of differences

among groups using GraphPad PRISM version 3.0 software

(SanDiego, CA). Differences were considered significant in all

experiments at P,0.01 (*, significantly different from untreated

controls; **, significantly different from Noscapine and Doxorubi-

cin single treatments.

Results

Cell proliferation inhibition by Noscapine and synergistic
behavior in combination with Doxorubicin

Noscapine inhibited proliferation of MDA-MB-231 and MDA-

MB-468 cells with an IC50 value of 36.1663.76 and 42.764.3 mM

respectively. Doxorubicin showed IC50 of 0.2160.09 mg/ml and

0.2060.08 mg/ml against MDA-MB-231 and MDA-MB-468

TNBC cells respectively. The combined effects of Doxorubicin

and Noscapine on cell proliferation were evaluated by isobolo-

graphic analysis method. The CI values ranged from 0.5160.03 to

0.6060.05 for 50 percent cell kill suggesting synergistic behavior

between Noscapine and Doxorubicin against both TNBC cells

(Table 1).

Induction of apoptotic DNA fragmentation in MDA-MB-
231 cells

Figure 1 shows that apoptosis is induced in MDA-MB-231 cells

following treatment with Doxorubicin, or Noscapine, or combi-

nation. Fig. 1A & 1B shows MDA-MB-231 cells undergoing

apoptosis following treatment with Noscapine 30 mM compared to

untreated cells. Combination treatment led to apoptosis in 7964

percent of treated MDA-MB-231 cells compared to 3263.0

percent and 2262.0 percent in Doxorubicin and Noscapine

respectively after 72 h (Fig. 1A and 1B). All treatments were

significantly different from control (* P,0.01). Doxorubicin or

Noscapine treatment was significantly different from combination

treatment (**, P,0.001).

Anti-tumor effect of Noscapine against MDA-MB-231
xenograft model

Figures 2A shows the tumor volume-time data profiles following

Noscapine administration at a dose of 150–550 mg/kg/day by

gastric lavage in mice xenografted with MDA-MB-231 tumors

compared to control. At 38 days post tumor implantation, the

tumor volumes were found to be 21026225 mm3, 16486

172 mm3, 1485.936146 mm3, 11396103 mm3 and 748683

mm3 (expressed as mean6SEM) in control, Noscapine 150, 300,

450 and 550 mg/kg/day treated mice, respectively (Fig. 2A). Oral

administration of Noscapine at 150–550 mg/kg/day showed

significant (p,0.01) reduction in tumor volume in MDA-MB-

231 xenografts. However, Noscapine administered at 450 and

550 mg/kg/day showed very significant (p,0.001) reduction in

tumor volume. At the end of the study period (38 days), there were

21, 29, 45, and 64 percent reduction in the tumor volume

following Noscapine 150, 300, 450, 550 mg/kg/day treated mice

respectively compared to control. We found that Noscapine

treatment did not cause any apparent body weight loss in mice

(Fig. 2C).

Anti-tumor effect of Noscapine (300 mg/kg/day) and
Doxorubicin combination in MDA-MB-231 xenograft
model

The results (Fig. 2B) show that tumor volume significantly

decreased after treatment with Doxorubicin (1.5 mg/kg/week i.v.

bolus, P,0.01), Noscapine (300 mg/kg oral, P,0.01), or combi-

nation (P,0.001) compared to control. Tumor volume for the

combination treatment averaged 361664 mm3 compared with

16486172 mm3 for Noscapine treatment or 1259699 mm3 for

Doxorubicin treatment on day 38 post tumor implantation. It is

evident that combination treatment was most effective in

inhibiting tumor growth compared to Doxorubicin or Noscapine

treatments. Furthermore, we did not observe any weight loss or

other signs of toxicity in the mice treated with combination or

Noscapine or Doxorubicin (Fig. 2D).

Inactivation of NF-KB, activation of proapoptotic and
inhibition of antiapopototic proteins in MDA-MB-231
xenograft model

Noscapine treatments significantly (P,0.001) decreased expres-

sion of NF-kB, IkBa, P-IkBa, BCl2 and increased expression of

cleaved PARP, Bax, activated caspase8, activated caspase 9,

Table 1. Combination Index (CI) values of the interaction between Nos with Dox against human MDA-MB-231 and MDA-MB-468
TNBC cells.

Drug Combinations MDA-MB-231 MDA-MB-468

CI at IC50 Interpretation Drug Combinations CI at IC50 Interpretation

Dox+Nos 10 0.5560.03 Synergism Dox+Nos 10 0.5160.03 Synergism

Dox+Nos 20 0.5960.04 Synergism Dox+Nos 20 0.5360.07 Synergism

Dox+Nos 30 0.6060.05 Synergism Dox+Nos 30 0.6060.04 Synergism

The human lung cancer cell lines MDA-MB-231 and MDA-MB-468 breast cancer cells were obtained from American Type Culture Collection (Rockville, MD). Different
concentrations of Nos were employed to study the effect on IC50 of Dox. Variable ratios of drug concentrations and mutually non-exclusive equations were used to
determine the CI. The CI values represent mean of four experiments. CI.1.3: antagonism; CI 1.1–1.3: moderate antagonism; CI 0.9–1.1: additive effect; CI 0.8–0.9: slight
synergism; CI 0.6–0.8: moderate synergism; CI 0.4–0.6: synergism; CI 0.2–0.4: strong synergism.
doi:10.1371/journal.pone.0017733.t001
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caspase 3 and cleaved caspase 3 proteins compared to control

(Fig. 3) except Noscapine administered at 150 mg/kg/day

(P.0.05). The observed protein responses were found to be dose

dependant. The Bax/Bcl2 ratio of 0.62 was observed in control

tumors, while the Bax/Bcl2 ratio of 0.8, 1.1, 1.3, and 1.6 were

observed with Noscapine 150 mg/kg 300, 450, and 550 mg/kg

treated tumors respectively. A non-significant (P.0.05) increase in

Bax/Bcl2 ratio was observed with Noscapine 150 mg/kg/day,

while a significant (P,0.001) increase in Bax/Bcl2 ratio was found

with Noscapine 300, 450 and 550 mg/kg/day (Fig. 3A & 3B).

Results illustrated in Fig. 3A and 3B show that Noscapine,

Doxorubicin and combination treatment showed significant

(*, p,0.001) increased expression of Bax, activated caspase8,

activated caspase 9, caspase 3 and cleaved caspase 3 proteins and

decreased expression of NF-KB, IKBa, P-IkBa and Bcl2 compared

to control group. The expression of apoptotic and antiapoptotic

proteins in combination treatment was significantly (*, **, p,0.01)

different from single agent treatment groups.

Effects on angiogenic and cell survival proteins in
MDA-MB-231 xenograft model

We compared expression of angiogenic and survival protein in

tumor lysates from control and treated mice by western blotting

analysis using b-actin as loading control (Fig. 4). Noscapine

treatment significantly (P,0.001) decreased expression of VEGF

(Fig. 4A), and survivin (Fig. 4B) proteins except Noscapine at a

dose of 150 mg/kg (P.0.05) compared to control. Noscapine

treatment at 300, 450 and 550 mg/kg/day showed 0.14, 0.26 and

0.28 Fold decreased in VEGF expression inregressed tumor

compared to vehicle treated control group. Combination treat-

ment decreased expression of VEGF protein expression signifi-

cantly (**, P,0.001) to 0.45-fold compared to 0.14-fold with

Figure 1. Fluorescence Micrographs of cells stained with rhodamine and DAPI after 72 h (A) with Doxorubicin 0.4 mg/ml , Noscapine
30 mM, and, Noscapine and Doxorubicin combination in MDA-MB-231 cells and (B) Quantitation of apoptotic MDA-MB-231 cells
from TUNEL assay. DNA fragmentation indicated by positive staining (red) and nuclear condensation indicated by DAPI nuclear staining (blue).
Micron bar = 100 mm. Cells were quantitated by counting 100 cells from 6 random microscopic fields. Data are expressed as mean+SD (N = 6). One-
way ANOVA followed by post Tukey test was used for statistical analysis to compare control and treated groups. * P,0.01; all treatments significantly
different from control and ** P,0.01; significantly different from Noscapine and Doxorubicin single treatments.
doi:10.1371/journal.pone.0017733.g001
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Noscapine (*, P,0.01) and 0.20-fold with Doxorubicin (*, P,0.01)

treatment, respectively of controls in regressed tumors (Fig. 4A).

The expression of survivin protein were significantly decreased by

0.44 fold (*, P,0.01), 0.15 fold (*, P,0.05) and 0.08 fold

(*, P,0.05) with combination, Doxorubicin and Noscapine

treatment compared to control group respectively (Fig. 4B).

DNA fragmentation and expression of cleaved caspase-3
in MDA-MB-231 xenograft model

To further investigate the role of apoptosis, tumor sections

were stained with TUNEL for detection of DNA and expression

of cleaved caspase-3 (Fig. 5). Noscapine (150–550 mg/kg/day)

treated regressed tumors showed DNA fragmentation (Fig. 5A

and 5C) and widespread staining of activated cleaved caspase-3

expression compared to controls (Fig. 5B and 5D), indicating

that Noscapine induced apoptosis in a dose dependent fashion of

MDA-MB-231 breast cancer cells in-vivo. Single-agent treatment

with either Noscapine or Doxorubicin induced DNA fragmen-

tation (brown staining) that was further significantly (** P,0.001)

increased by combination treatment. The combination treatment

led to apoptosis in 6565 percent of the tumor cells, whereas

Noscapine and Doxorubicin induced apoptosis in percent 2063

and 3263 percent of the tumor cells respectively (Fig. 5A and

5C). Doxorubicin, Noscapine, and combination induced caspase-

3 expression in tumors which was significantly (P,0.01) different

compared to control tumors (Fig. 5 B and 5D). Combination,

Doxorubicin and Noscapine treatment showed 6864, 3362, and

2263 percent increased expression of cleaved caspase 3 in

tumors tissues respectively compared to control group (Fig. 5B

and 5D).

Inhibition of angiogenesis by combination in
MDA-MB-231 tumors

The highest expression of VEGF was seen in tumor tissues

harvested from untreated mice (Fig. 6A & 6C). Decreased VEGF

staining was observed in tumors treated with Noscapine (150–

550 mg/kg/day) in dose dependent manner and combination

(0.44-fold) compared to tumors treated with Doxorubicin (0.21-

fold) or Noscapine 300 mg/kg/day (0.1-fold) alone (Fig. 6A and

6C). CD31+ endothelial cells were identified using IHC

technique in harvested tumor tissues and the results are shown

in Fig. 6B and 6D. The staining of CD31+ in Noscapine treated

groups were significantly decreased to 0.05, 0.09, 0.18, and 0.28-

fold at doses of 150, 300, 450, and 550 mg/kg/day compared to

control group respectively. The staining of CD31+ in combina-

tion, Doxorubicin (1.5 mg/kg) and Noscapine (300 mg/kg)

treated groups were significantly decreased to 0.40, 0.17, and

0.09-fold compared to control group. The average microvessel

per field in groups treated with Noscapine, Doxorubicin and

combination were found to decreased by 1062.6 (P,0.05),

17.663.5 (P,0.01), and 40.665.0 (P,0.001) respectively

compared control group.

Figure 2. Progression profile of tumor growth kinetics of in-vivo antitumor effect of different doses of Noscapine alone (A) and in
combination with Doxorubicin (B) on human MDA-MB-231 tumor xenograft model (tumor volumes, mm3 ± SEM), and
measurement of body weight following Noscapine alone (C) and combination with Doxorubicin (D). Female nude mice with xenograft
MDA-MB-231 tumor tumors received various treatments for 38 days starting on day 7 post tumor implantation. The mice were treated with
Noscapine (150–550 mg/kg/day), Doxorubicin 1.5 mg/kg i.v. bolus, q3d67 schedule, and Noscapine 300 mg/kg/day+Doxorubicin 1.5 mg/kg i.v.
bolus, q3d67 schedule. Control group received vehicle only. Statistical significance of the difference in tumor volume of treatment groups compared
with control. P,0.01 (*, significantly different from untreated controls; **, significantly different from Noscapine and Doxorubicin single treatments).
Data presented are means and SE (n = 8). This experiment was repeated twice.
doi:10.1371/journal.pone.0017733.g002
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Discussion

TNBC has a more aggressive clinical course than other forms of

breast cancer [1,4]. Traditionally, chemotherapy has been the

mainstay of systemic treatment for TNBC since currently available

endocrine and HER2-directed therapies are ineffective. [21]

Among anticancer agents, antimicrotubules (taxanes and vinca

alkaloids) constitute one of the most effective chemotherapeutic

agents for treatment of breast cancers. [7] However, their clinical

utility is limited due to the development of drug resistance and

associated severe side effects. [9,10] Noscapine is a safer orally

active antimicrotubule agent showed in-vitro and in-vivo antitu-

mor activity against variety of cancers including tumors resistant to

conventional antimicrotubular agents [13,14,15,16,17,18,19] and

did not exhibit severe side effects that are commonly seen with

many chemotherapeutic agents. [13,14] Doxorubicin is an

anthracycline drug which has shown significant anticancer activity

against TNBC; [22] however its clinical utility has been limited

due to low therapeutic index and associated adverse side effects

[23]. In the present study, we demonstrated that Noscapine in

combination with Doxorubicin was effective in a synergistic

manner in inhibition of tumor growth of TNBC both in vitro and

in vivo. Our results indicate that the anticancer activity of

Noscapine alone and in combination with Doxorubicin was

mediated via inactivation of NF-KB, induction of apoptosis, and

inhibition of angiogenesis.

To our knowledge, this is the first study that demonstrates

effectiveness of Noscapine in combination with Dox against

TNBC. In this study, we demonstrated that Noscapine inhibits

MDA-MB-231 and MDA-MB-468 cells proliferation in-vitro with

IC50 value of 36.1663.76 and 42.764.3 mM respectively which

was comparable with IC50 observed with MCF-7 breast

(IC50 = 42.3 mM), HeLa (IC50 = 25 mM), and thymocyte

(IC50 = 10 mM) cells. [19] The antiproliferative activity of

Noscapine was found to vary with the type and sensitivity of

cancer cells. We used MDA-MB-231 and MDA-MB-468 TNBC

cells to ascertain interaction between Noscapine (sub IC50

concentration) and Doxorubicin using isobolographic method.

We selected the isobolographic analysis method since it has been

widely used to evaluate the interaction between two antitumor

drugs and provide both qualitative and quantitative measure of

nature and extent of drug interaction. [26] In the present

investigation, isobolographic analysis showed that Noscapine

enhanced the cytotoxicity of Doxorubicin (CI values,0.59) in

MDA-MB-231 and MDA-MB-468 cells in a synergistic manner

(Table 1). We recently reported that the CI values of ,1.0 are

indicative of synergistic interactions in A549 and H460 cells using

DIM-C-pPhC6H5 in combination with Docetaxel [25]. Similarly,

our recently conducted studies showed that the interaction

between Noscapine and Cisplatin was synergistic (CI,0.6)

against non–small cell lung cancer H460 and A549 cells [27].

Also, Hiser et al demonstrated that Noscapine in combination

Figure 4. Western blotting of tumor tissue lysates to determine expressions angiogenesis-related proteins expression of (A) VEGF
and (B) survivin proteins in tumors and quantitation of protein expression. Whole-cell lysates from control-untreated and treated tumors
were analyzed by western blotting for protein expressions. Lane 1 = control; Lane 2 = Noscapine 150 mg/kg/day ; Lane 3 = Noscapine 300 mg/kg/day
; Lane 4 = Noscapine 450 mg/kg/day; Lane 5 = Noscapine 550 mg/kg/day; Lane 6 = Doxorubicin 1.5 mg/kg i.v. bolus, q3d67 schedule; Lane
7 = Combination (Noscapine 300 mg/kg/day+Doxorubicin ). Similar results were observed in replicate experiments. Protein expression levels (relative
to b-actin) were determined. Mean 6 SE for three replicate determinations. One-way ANOVA followed by post Tukey test was used for statistical
analysis. P,0.01 (*, significantly different from untreated controls; **, significantly different from Noscapine and Doxorubicin single treatments).
doi:10.1371/journal.pone.0017733.g004

Figure 3. Western blotting of tumor tissue lysates to determine expressions apoptosis-related proteins (A) expression of NF-kb,
IKBa, P-IKBa, Bax, Bcl2, caspase 3, cleaved caspase 3, activated caspase 8 and activated caspase 9 proteins in tumor lysates by
western blotting and (B) quantitation of apoptotic protein expression. Tumor tissue lysates harvested tumor tissues from control-untreated
and treated groups were analyzed by western blotting for protein expressions. Lane 1 = control; Lane 2 = Noscapine 150 mg/kg/day; Lane
3 = Noscapine 300 mg/kg/day; Lane 4 = Noscapine 450 mg/kg/day; Lane 5 = Noscapine 550 mg/kg/day; Lane 6 = Doxorubicin 1.5 mg/kg i.v. bolus,
q3d67 schedule; Lane 7 = Combination (Noscapine 300 mg/kg/day+Doxorubicin1.5 mg/kg i.v. bolus, q3d67 schedule). Similar results were observed
in triplicate experiments. Protein expression levels (relative to b-actin) were determined. Mean 6 SE for three replicate determinations. One-way
ANOVA followed by post Tukey test was used for statistical analysis. P,0.01 (*, significantly different from untreated controls; **, significantly different
from Noscapine and Doxorubicin single treatments).
doi:10.1371/journal.pone.0017733.g003
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with vincristine showed synergistic (CI,1) in vitro against acute

lymphoblastic CCRF-CEM and acute myelogenous leukemia

HL-60 cells. [28] Inhibition of cell proliferation and/or induction

of apoptotic cell death are key mechanisms by which chemo-

therapeutic agents exert their action [29]. To study the possible

mechanism involved in the anticancer activity of Noscapine and

combination, we evaluated induction of apoptosis of MDA-MB-

231 cells. The TUNEL assay results showed induction of

apoptosis at Noscapine 30 mM alone and in combination with

Doxorubicin at 0.4 mg/ml of compared to untreated cells which

was evident from positive TUNEL staining and chromatin

condensation (Fig. 1). Induction of apoptosis has been demon-

strated following Noscapine treatment in various types of human

cancer cells like ovarian [14], H460 lung, [18] Hela and mouse

thymocytes [19]. Combination treatment showed significant

(P,0.001) induction of apoptosis in a synergistic manner in

compared to single agent (Fig. 2). Similar to our results,

combination treatment of Noscapine (150 mg/kg by gavage once

daily) and 60Co radiation (single fraction - 25 Gy) showed

significant (P,0.01) decreased proliferation and increased

apoptosis (TUNEL positive cells) of GL261 tumor cells compared

to single agent treatment [30].

After establishing the efficacy of Noscapine alone and

combination with Doxorubicin on TNBC cells in-vitro, we

designed in-vivo experiments to test the efficacy of Noscapine in

combination with Doxorubicin against MDA-MB-231 xenograft

model in nude mice. Our previous studies have shown dose

dependant tumor reduction following oral administration of

Noscapine (300–550 mg/kg) against lung cancer [18]. Therefore,

we evaluated Noscapine in-vivo antitumor efficacy at different dose

levels ranging from 150 to 550 mg/kg/day against MDA-MB-231

xenograft model in mice administered by oral gavage. Our results

demonstrated that Noscapine at 550 mg/kg (p,0.01) through oral

gavage showed higher reduction in tumor volume in MDA-MB-

231 xenograft model compared to lower doses used (Fig. 3A).

Similarly, Aneja et al reported that oral Noscapine (300 mg/kg)

was able to suppress breast cancer progression in a xenograft

model (s.c. inoculated 106 MDA-MB-231 cells) by 66 percent

compared to control treatment at 24 days post tumor inoculation

[20]. We observed 29 percent reduction in the tumor volume

following Noscapine 300 mg/kg/day treatment compared to

control due to use of 36106 MDA-MB-231 cells for s.c.

inoculation and assessment of in vivo efficacy at 38 days post

tumor inoculation.

Previous reports have indicated that Noscapine (120 mg/kg/

day, intraperitoneally) was effective in regressing MCF-7 breast

tumors but the cell lines used were different than in our study. [19]

In another investigation, oral administration of Noscapine at a

dose of 300 mg/kg/day showed a significant regression of

melanoma tumors compared to untreated animals [13]. The dose

dependant antitumor activity of Noscapine in TNBC xenograft

model may be attributed to: a) short plasma half life and its

Figure 5. Immunohistochemical staining of xenograft MDA-MB-231 breast tumor tissues for induction of apoptosis using TUNEL
assay (A); for expression of cleaved caspase 3 (B); quantitation of apoptotic cells from TUNEL staining (C); and quantitation of
caspase 3 positive cells apoptotic cells (D). Tumor sections were stained using the DeadEnd colorimetric kit and cleaved caspase-3 (Asp 175)
IHC kit for TUNEL assay and cleaved caspase 3 expression as described in materials and methods respectively. The apoptotic tumor cells are stained
brown. Percentages of TUNEL-positive and cleaved caspase 3-positive cells were quantitated by counting 100 cells from 6 random microscopic fields.
Data are expressed as mean+SD (N = 6). One-way ANOVA followed by post Tukey test was used for statistical analysis to compare control and treated
groups. P,0.01 (*, significantly different from untreated controls; **, significantly different from Noscapine and Doxorubicin single treatments).
Original magnification 640 (Micron bar = 100 mm).
doi:10.1371/journal.pone.0017733.g005
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availability at the tumor site; and b) extensive first-pass metabolism

that reduces the oral bioavailability of Noscapine [31,32]. There

are very few reports available in literature on oral Noscapine

absorption and pharmacokinetic parameters and a detailed

systematic study is desirable. Our future studies will focus on

improving the tumor targeting of Noscapine, so that it is effective

at lower doses.

We evaluated the in vivo antitumor efficacy of combination in

MDA-MB-231 xenograft tumors in Nu/nu mice using sub

therapeutic dose of Noscapine 300 mg/kg/day administered by

oral gavage and Doxorubicin 1.5 mg/kg/week by i.v. injection.

Our in vivo results demonstrate synergistic behavior of combina-

tion in murine MDA-MB-231 xenograft tumor model. Interest-

ingly, Noscapine, Doxorubicin and combination treatment

showed non-significant change in weight loss suggesting favorable

toxicity profile of Noscapine and Doxorubicin (Fig. 3C). Combi-

nation treatment will be advantageous over conventional taxane

based combination therapy in treatment of TNBC due to

improved patient compliance by oral administration of Nosca-

pine with minimal adverse side effects. Landen et al. showed

that in vivo anticancer activity of Noscapine at 300 mg/kg was

comparable to that of paclitaxel 25 mg/kg against murine B16LS9

xenograft melanoma model [13]. However, neither additive nor

synergistic effect was observed with Noscapine and Paclitaxel

combination. Studies in our laboratory also showed that

Noscapine and Docetaxel combination was neither additive nor

synergistic against NSCLC both in vitro and in vivo which

suggests that there was possibly a competition for the same target

(unpublished data). On the contrary, our recent investigation

demonstrated that Noscapine enhanced the anticancer activity of

Cisplatin in an additive to synergistic manner against H460 lung

xenografts model [27].

Several studies have provided evidence that enhanced tumor

growth inhibition of breast tumors can be achieved by combining

Doxorubicin with other agents such as zoledronic acid [33],

interleukin-2 [34], TGFb Inhibitor [35], tetrathiomolybdate [36]

as opposed to treating with single agent. In vivo studies by

Bandyopadhyay et al showed that the small TGFb Inhibitor,

TGFb1 (1 mg/kg every alternative day) and Doxorubicin (4 mg/

kg or 8 mg/kg once per 7 days) combination reduced tumor

growth and lung metastasis by inhibition of epithelial-mesenchy-

mal transition in the 4T1 orthotopic xenograft model in

comparison to single treatments [35] and these results are

consistent with those observed in our study.

To elucidate the underlying mechanism of action of Noscapine

and combination treatment, we have evaluated the expression of

NF-kB signaling, apoptotic, angiogenic and cell survival proteins

using western blot. NF-kB mediates survival signals that inhibit

apoptosis as well as promote cancer cell growth. [37] Recent

reports indicate that Noscapine exerts inhibitory effect on NF-KB

Figure 6. Immunohistochemical staining of MDA-MB-231 tumor tissues for (A) VEGF expression. Tumor sections were stained using the
ABC staining kit as described in Materials and Methods. Cells showing positive VEGF expression are stained brown. Original magnification 640.
(Micron bar = 100 mm). Immunohistochemical staining of MDA-MB-231 tumor tissues for (B) CD31 expression. Tumor angiogenesis was assessed by
immunohistochemical staining with anti-CD31 antibody (brown) on paraffin-embedded sections. Original magnification 640. (Micron bar = 100 mm).
(C) Quantitation of apoptotic cells from VEGF staining. (D) Assessment of microvessel density. Microvessel density (MVD) was calculated by selecting
three most vascularised areas of the tumour (‘hot spots’) and mean values obtained by counting vessels. A single microvessel was defined as a
discrete cluster of cells positive for CD31 staining, with no requirement for the presence of a lumen. Microvessel counts were performed at 6400
(640 objective lens and 610 ocular lens; 0.74 mm2 per field). The MVD was significantly different between the control group and treated groups in
sequential analysis; **, P,0.01;* P,0.05 relative to control.
doi:10.1371/journal.pone.0017733.g006
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activation [38] and in our studies Noscapine and combination

treatment inhibited NF-kB activation through inhibition of IKK

activation, IkBa phosphorylation, and IkBa degradation in MDA-

MB-231 xenograft TBNC tumors. Previous studies demonstrated

that Noscapine induces multiple proapoptotic responses that

induce apoptosis against variety of tumors [14,18,39,40,41,42].

Caspases are critical protease mediators of apoptosis triggered by

different stimuli. [43] In the present study, we found that the

Noscapine and combination treatment activated initiator caspases,

such as caspase-8 and caspase-9 followed by activation of effector

caspase-3. Results of our in vivo studies also demonstrate that

Noscapine alone and combination treatment induced proapototic

(Bax) or decreased Bcl2 proteins (Fig. 3A and 3B) suggesting

involvement of mitochondrial pathway. [39] Induction of

apoptosis and expression of cleaved caspase 3 was significantly

induced in vivo by combination treatment compared to Noscapine

or Doxorubicin alone thus confirming that apoptosis is an

important pathway associated with the anticancer activity of these

compounds (Fig. 5A–D). Our recently published studies with

Noscapine and Cisplatin combination also showed that their

anticancer activity was mediated by induction of apoptosis via

intrinsic and extrinsic pathways and inhibition of survival proteins

in H460 lung tumors [27]. Ye et al demonstrated increased

apoptotic activity in regressed tumor tissues following Noscapine

treatment at 120 mg/kg/day against MCF-7 breast and Renal

1983 bladder tumor xenografts [19]. Our previous studies also

showed induction of apoptosis and activation of cleaved caspase 3

following Noscapine treatment in the dose range of 300–550 mg/

kg/day in H460 xenografts [18]. Our in-vivo results showed

increased apoptotic activity and correlated very well with our

in-vitro results. Wang et al demonstrated that Zoledronic Acid and

Doxorubicin combination therapy led to significant (P,0.05)

increase in caspase-3–positive cells in MDA-G8 breast tumor

xenografts compared to single agent therapy. [33] To gain more

insights on the anticancer mechanisms of combination therapy,

other non-apoptotic signaling pathways need to be investigated

and these studies are in progress.

Angiogenesis is critical for establishing solid tumor growth and

metastasis [44]. In this investigation, we observed that Noscapine

and combination treatment significantly (p,0.001) decreased

expression of VEGF (Fig. 4D) in regressed tumors compared to

single agent treatment thereby suggesting inhibition of angiogen-

esis. In addition, Doxorubicin, Noscapine and combination

treatment decreased expression of cell survival protein survivin

which promotes angiogenesis in TNBC tumors (Fig. 4A and 4B).

Survivin was strongly upregulated in angiogenically stimulated

endothelium in vitro and in vivo which protects endothelial cells

from apoptosis. [44] The down regulation of survivin was

correlated with down regulation of VEGF by Noscapine and

combination treatment. Survivin also inhibits caspase activation

and acts as a negative regulator [45]. Therefore, the down-

regulation of survivin expression results in activation of caspases

and thereby induces apoptosis in tumor cells. Furthermore, our

IHC results show that Noscapine and combination treatment

decreased VEGF staining in tumor tissues harvested from mice

compared to single agent treatment and control (Fig. 6A and 6C).

The tumor regression by Noscapine and combination was also

mediated through decreased expression of VEGF and correlated

very well with our VEGF expression results obtained with

western blots of tumor lysates (Fig. 4D). MVD is a commonly

used index of tumor angiogenic activity and we counted density

of neovessels in histological sections of the tumor using CD31

staining. The CD31 expression (Fig. 6 B) and the average

microvessels per field (Fig. 6D) in combination treated group

were significantly (p,0.001) decreased compared to the single

agent treated and control group. The decreased expression of

angiogenic markers (IHC) and MVD in treatment compared to

control groups appeared to correlate with our western blot

results. Thus, Noscapine alone and in combination with

Doxorubicin exhibited antiangiogenic activity, and the underly-

ing mechanism is currently being further investigated in our

laboratories.

In conclusion, our data provides compelling evidence that

combination treatment is effective against MDA-MB-231 TNBC

cells as well as tumor xenografts by inactivation of NF-kB,

induction of apoptosis and inhibition of angiogenesis. While, the

currently available chemotherapeutic agents are associated

debilitating toxic side effects, oral Noscapine provides promise as

an effective anticancer agent with significantly lower toxicity on

normal cells. Thus the use of synergistically acting Noscapine and

Doxorubicin combination therapy could be an innovative and

promising therapeutic strategy for the treatment for TNBC and

possibly will have fewer adverse side effects compared to currently

available chemotherapeutic regimens.
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