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Antibiotics widely exist inmedical wastewater, which seriously endanger human

health. With the spread of the COVID-19 and monkeypox around the world, a

large number of antibiotics have been abused and discharged. How to realize

the green and efficient treatment of medical wastewater has become a hot

research topic. As a common electrochemical water treatment technology,

electrochemical oxidation technology (EOT) could effectively achieve

advanced treatment of medical wastewater. Since entering the 21st century,

electrochemical oxidation water treatment technology has received more and

more attention due to its green, efficient, and easy-to-operate advantages. In

this study, the research progress of EOT for the treatment of medical

wastewater was reviewed, including the exploration of reaction mechanism,

the preparation of functional electrode materials, combining multiple

technologies, and the design of high-efficiency reactors. The conclusion and

outlook of EOT formedical wastewater treatment were proposed. It is expected

that the review could provide prospects and guidance for EOT to treat medical

wastewater.
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Introduction

Antibiotics are one of the ubiquitous refractory organic pollutants (ROPs) in the water

environment, and have attracted widespread attention due to their long-term residual,

semi-volatile, and high toxicity (Scott et al., 2016). In particular, a large number of

antibiotics exist in medical wastewater, and the concentration could reach the level of mg/

L (Khan et al., 2020). The high toxicity and resistance to degradation of antibiotics could

seriously endanger human health after entering the environment (Patangia et al., 2022).

Trace amounts of antibiotics in the environment could increase the resistance of

microorganisms, which leads to the development of drug-resistant superbugs

(Sandegren, 2019). In addition, the number of papers related to the advanced
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treatment of medical wastewater continues to increase with the

spread of the COVID-19 and monkeypox virus around the world

(Figure 1). Therefore, it is urgent to find a green and efficient

method to remove antibiotics in aqueous solution.

Currently, EOT is gradually becoming a favorable

technology for degrading antibiotics from wastewater due

to the mineralization of antibiotics into carbon dioxide and

water (Lima et al., 2020). In particular, EOT has the

advantages of green, high efficiency, easy operation, and

mild reaction conditions (Xue et al., 2021). In addition,

EOT could carry out biochemical and disinfection

treatment of medical wastewater at the same time, which

effectively cuts off the transmission path of pathogens (Lei

et al., 2020). It has been widely concerned by researchers

because of its unique application value. At present, the

reaction rate of EOT was mainly improved through the

development of functional electrode materials (Shestakova

and Sillanpää, 2017). In addition, electrochemical oxidation

water treatment technology could achieve deep purification

of low-concentration medical wastewater by combining with

photocatalytic technology and membrane treatment

technology (Cho et al., 2019).

In this paper, the current research progress of EOT in

medical wastewater treatment was reviewed. The advantages

of EOT in water treatment are highlighted, and new research

directions for EOT to treat medical wastewater were proposed,

including functional electrode materials, multi-technology

integration, and electrochemical reactors. Overall, this review

provided new ideas for the development and engineering

application of electrochemical oxidation water treatment

technology.

Electrochemical indirect oxidation

Electrochemical indirect oxidation exhibited unique

advantages compared with electrochemical direct oxidation.

For example, the rate of migration of contaminants from the

solution to the electrode surface would not be inhibited; the

oxidation reaction on the anode surface would increase the

electrochemical oxidation rate. In particular, a large amount

of reactive intermediates (•OH, •O2−) was generated in the

anode during the reaction process, and the medical

wastewater was treated advanced through a single electron

transfer process (Garcia-Segura et al., 2018).

Reactive intermediates

Hydroxyl radicals (•OH), active chlorine, chlorine-

containing oxidants, etc. are the main reactive intermediates

in the electrochemical indirect oxidation process. In particular,

•OH exhibits stronger oxidative properties (E = 2.8V) compared

to others (Miao et al., 2020). The generation of chemisorbed •OH
was attributed to lattice oxygen in the anode material (Xu et al.,

2022). However, physisorbed •OH was generated through the

reaction between electrons and water molecules (or OH−)

(Martínez-Huitle and Brillas, 2009). In addition, active

chlorine species, including •Cl, Cl2, and HClO, were

efficiently generated when electrochemical oxidation was used

to treat chlorine-containing wastewater (Huang et al., 2020).

Also, high health risk by-products chlorite and perchlorate were

generated (Hao et al., 2022).

Cl → •Cl + e− (1)
2Cl → Cl2 + 2e− (2)

Cl2 → •OH → HClO + Cl− (3)

Anode material

The electrode material not only affected the oxygen evolution

overpotential of the electrode, but also determined the amount

and type of active intermediates generated. Chemisorbed •OH
was generated on the surface of active electrodes (such as

ruthenium, titanium) and interacted with the electrodes to

generate superoxide. Moreover, the refractory organic

pollutants were selectively oxidized into small molecular

substances (Nakayama and Honda, 2021). However,

physisorbed •OH was generated on the surface of inactive

electrodes (such as Pb, Sn, Sb), which could mineralize

organic matter into carbon dioxide and water (Mameda et al.,

2020). At present, Dória et al. (2021) and Zhu et al. (2021)

presented active electrodes such as Ti/RuO2−Sb2O4 and Ti/RuO2-

ItO2 have been developed, indicating that the stability of active

FIGURE 1
Papers related to Covid-19/Monkeypox virus and waste
water.
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anodes could be effectively improved by loading metal oxides.

The stability and activity of inactive anode materials were

enhanced by means of doping or intercalation (Rai and Sinha,

2022). The oxidation rate of chlorinated hydrocarbons was

increased by 60% when using the inactive anode compared to

the active anode, which might be attributed to the free radicals

generated by the inactive anode (Zhang et al., 2016).

Interestingly, the removal efficiency of organics by the active

electrode was significantly higher than that of the inactive

electrode in the treatment of chlorinated wastewater. This

might be attributed to the higher instantaneous current

efficiency of metal active electrodes compared with graphite

electrodes and diamond electrodes (Kraft et al., 2002). As

reported, the generation efficiency of active chlorine of Ru, Ir,

and Pt electrodes is significantly higher than that of inactive

electrodes (such as PbO2 and SnO2) (Sirés et al., 2014). Zinc

oxide-coated electrodes could effectively degrade perfluorinated

compounds in wastewater, removing 66% of pollutants within

40 min (Zhang et al., 2016). Therefore, active electrodes were

preferentially used in the treatment of chlorine-containing

wastewater.

Mediated electrochemical oxidation

Mediated electrochemical oxidation degrades organic

pollutants by reversible redox couples. The redox substances

could not only be recycled, but also could avoid the surface of the

anode material from being polluted by organic substances

(Figure 2A). Ag2+ is a strong oxidant and could react with

halide ions to form precipitates during water treatment,

thereby reducing the rate of electrochemical oxidation

(Kakiuchi and Samec, 2020). As reported, Co3+ as an oxidant

could not only improve the kinetics of the oxidation reaction, but

also effectively avoid the formation of precipitates (Sequeira et al.,

2006). Ce4+ acted as a medium to participate in the

electrochemical oxidation process, and the solution pH,

electrolyte, and current density affected the oxidation rate of

cerium and then changed the degradation rate of phenolic

pollutants (Matheswaran et al., 2008). In particular, Ce4+

exhibited excellent stability during the reaction. Moreover, the

reaction temperature, reaction time, and reactor flow rate were all

factors that affected the rate of the mediated electrochemical

oxidation reaction (Balaji et al., 2008). Overall, the mediated

oxidation process could be enhanced by adding redox substances,

thereby improving the removal efficiency of pollutants in the

treatment of actual wastewater.

Photo/electrochemical oxidation

Photo/electrochemical oxidation is a photoresponse that

generates holes and electrons under illumination conditions,

which are enhanced by the action of an electric field

(Figure 2B). TiO2 is currently a commonly used photocatalyst,

and electron-holes are generated by electron transitions from the

valence band (VB) to the conduction band (CB) under UV

(<380 nm) light irradiation (Liu et al., 2019a). Reactive oxygen

species (ROS) could be efficiently generated by single-electron

transfer of photogenerated electrons (holes), thereby

decomposing organic pollutants (Tao et al., 2020). In addition,

the applied electric field could effectively inhibit the

recombination of electron-holes and accelerate the generation

of ROS. The photo-assisted electrochemical system was

constructed using TiO2 as the electrode material, which

improved the degradation efficiency of bisphenol A (Liu et al.,

2019b). The TiO2/Ti electrode exhibited good stability under low

current density conditions and was suitable for application in a

three-electrode system. It has been reported that the TiO2/Ti

electrode could effectively degrade pollutants under UV

irradiation, which was attributed to the generation of ROS

(Carneiro et al., 2004). Due to the stability at high current

density, Ru0.3Ti0.7O2/Ti electrodes were widely used in two-

electrode systems. The degradation efficiency of total organic

carbon (TOC) increased by 50% in the Ru0.3Ti0.7O2/Ti/UV

system, which might be due to the photoelectric synergistic

generation of ·OH (Hussain et al., 2017). In particular, BiOCl/

NaNbO3 nanomaterials exhibited high current density and

FIGURE 2
(A) Mediated electrochemical oxidation system, (B) Photo/electrochemical oxidation system.
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electron-hole separation efficiency due to their special bandgap

position and layered structure (Li et al., 2022). Overall, the photo/

electrochemical oxidation synergistic system could effectively

improve the degradation efficiency of wastewater.

Electrochemical reactor

The electron transfer rate and the degradation efficiency of

organic pollutants during the reaction are not only related to the

electrode material, but also to the configuration of the reactor. At

present, the commonly used electrochemical reactors are submerged

and penetrating. Due to the free diffusion method, the submerged

electrochemical reactor had the disadvantages of low current

efficiency and low mass transfer rate, and could not treat low-

concentration wastewater (Figure 3A). In particular, penetrating

electrochemical reactors exhibited numerous advantages due to their

unique sandwich structure, including small plate spacing, high

electron transfer rate, and low energy consumption (Figure 3B)

(Wangwang et al., 2019). In comparison to the submerged

electrochemical reactor, Santos et al. (2014) showed the

degradation efficiency of pollutants increased by 200% using the

penetrating electrochemical reactor, which was attributed to its

sandwich reactor structure. Using carbon-based catalysts as

electrocatalytic anodes, the degradation efficiency of pollutants

was increased by 600% in the penetrating electrochemical

reactor, which was due to the efficient mass transfer efficiency

(Han et al., 2012). A novel type of flow reactor was invented,

and the degradation efficiency of synergistic electrochemical

oxidation of levofloxacin increased by 95% (Pieczyńska et al.,

2019). A tubular electrode reactor was designed to enhance

electrochemical wastewater treatment, which was attributed to

the titanium oxide (M-TiSO) anode and superior reactor

configuration (Liang et al., 2021). The construction of an electric

Fenton/double anode reactor system significantly improved the

degradation efficiency of bisphenol A, which was attributed to

the slow release of Fe2+ (Zhao et al., 2022). Also, this indicated a

good synergistic effect between the electric Fenton and the double

anode reactor. A penetrating electrochemical reactor was

constructed using graphene as the electrode material to treat

chlorine-containing wastewater and exhibited good removal

efficiency, which was attributed to the HClO generated during

the reaction (Liu et al., 2014). Moreover, the rate of

electrochemical oxidation reaction was affected by the mode of

power supply. Compared with DC power supply, pulse power

supply not only improved the utilization rate of electric energy,

but also effectively reduced the deposition of organic matter on the

anode surface. As reported, the degradation efficiency was increased

by 80% using the pulse power supply method, and the effects of the

initial pollutant concentration and current density were investigated

(Jiang et al., 2021). Overall, the penetrating electrochemical reactor

in the pulse power supply mode and the electric fenton could

effectively improve the treatment efficiency of wastewater.

Conclusion and outlook

With the development of material technology and

electrochemical technology, the research work on

electrochemical oxidation water treatment technology showed

a continuous and in-depth trend. Novel electrode materials and

electrochemical reactors were constantly being developed,

forming a green, efficient, and energy-saving electrochemical

oxidation water treatment technology. In addition, the research

on the joint application of various technologies had made great

progress. A large number of articles discussed the application of

EOT in water treatment, but most of them remained in the

laboratory stage. Various problems still exist in the application

process and need to be solved urgently. The main research

directions in the future were proposed.

1) Preparation of high-performance electrode materials. High-

performance electrode materials could effectively improve the

rate of interfacial electron transfer and mass transfer, which was

FIGURE 3
(A) Submerged electrochemical reactor system, (B)Penetrating electrochemical reactor system.

Frontiers in Chemistry frontiersin.org04

Zhang et al. 10.3389/fchem.2022.1002038

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1002038


the key to electrochemical water oxidation treatment technology.

Furthermore, the economics of electrode materials should be

considered during practical engineering applications.

2) Optimization of electrochemical reactors. Excellent

electrochemical reactors could effectively improve the efficiency

of water treatment and the utilization of electricity by interface

regulation. Also, the design of the electrochemical reactor should

consider the ease of operation in practical applications.

3) Combined application of multiple technologies. By the

combination of electric Fenton, light, media and EOT, the

synergy between technologies could be exerted to improve the

efficiency of water treatment. Moreover, potential

environmental risks should be considered in the combined

application of multiple technologies.
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