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ABSTRACT Heterosis is an important phenomenon in agriculture. However, heterosis often greatly varies
among hybrids and among traits. To investigate heterosis across a large number of traits and numerous
genotypes, we evaluated 12 life history traits on parents and hybrids derived from five Arabidopsis thaliana
ecotypes (Col, Ler-0, Cvi, Ws, and C24) by using a complete diallel analysis containing 20 hybrids. Parental
contributions to heterosis were hybrid and trait specific with a few reciprocal differences. Most notably, C24
generated hybrids with flowering time, biomass, and reproductive traits that often exceeded high-parent
values. However, reproductive traits of C24 and Col hybrids and flowering time traits of C24 and Ler hybrids
had no heterosis. We investigated whether allelic variation at flowering time genes FRIGIDA (FRI) and
FLOWERING LOCUS C (FLC) could explain the genotype- and trait-specific contribution of C24 to hybrid
traits. We evaluated both Col and Ler lines introgressed with various FRI and FLC alleles and hybrids
between these lines and C24. Hybrids with functional FLC differed from hybrids with nonfunctional FLC
for 21 of the 24 hybrid-trait combinations. In most crosses, heterosis was fully or partially explained by FRI
and FLC. Our results describe the genetic diversity for heterosis within a sample of A. thaliana ecotypes and
show that FRI and FLC are major factors that contribute to heterosis in a genotype and trait specific fashion.
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The occurrence of heterosis, or hybrid vigor, is a phenomenon in
which the hybrid offspring between two parental lines has trait values
that surpass the trait values of the parents (Crow 1948). The phenom-
enon of heterosis was noted as far back as 1876 by Charles Darwin
(Shull 1908). Heterosis is often referred to in traits associated with
vigor, such as size, yield, and reproductive success (Lippman and
Zamir 2007), but the term is also used more broadly to describe
any trait for which a hybrid exceeds parental levels (Xiao et al.
1995). Heterosis in both the narrow and broad senses is prevalent
in numerous species and has been critical for agricultural productivity
for many decades (Whaley 1944).

Arabidopsis thaliana offers a tractable model system to investigate the
genetic basis of heterosis. Although A. thaliana is autogamous, and
heterosis is predicted to be low, heterosis has been found to be wide-

spread among various A. thaliana hybrids. Heterosis has been reported
for the rate of early biomass accumulation and for yield-related traits,
including biomass yield, number of seeds, and 1000-seed weight (Barth
et al. 2003; Meyer et al. 2004; Kusterer et al. 2007a; Kusterer et al. 2007b).

In most studies within Arabidopsis investigators have focused on
elucidating the genetic basis for heterosis by examining one or a small
number of traits or by using a small number of crosses. However,
heterosis is variable across traits and across genotypes (Barth et al.
2003; Meyer et al. 2004; Syed and Chen 2005; Springer and Stupar
2007; Stupar et al. 2008; Flint-Garcia et al. 2009). One hybrid trait may
exhibit heterosis, whereas a second trait may have a lower level of
heterosis, be unaffected, or be lower than parental trait values (Barth
et al. 2003; Syed and Chen 2005; Springer and Stupar 2007; Stupar
et al. 2008; Flint-Garcia et al. 2009). One genotype may exhibit ex-
tensive heterosis for a trait, whereas another genotype may have little
to no heterosis for the same trait (Barth et al. 2003; Meyer et al. 2004;
Stupar et al. 2008). Furthermore, reciprocal hybrids may differ in trait
expression. A number of A. thaliana reciprocal hybrids, including
Col-0 x C24 and Cvi x Ler, differed for biomass, seed size, and seed
yield. These reciprocal differences have been attributed to nonmater-
nal genetic factors and to maternal nuclear or cytoplasmic effects
(Alonso-Blanco et al. 1999; Barth et al. 2003).

Heterosis within A. thaliana has been attributed to dominance,
overdominance, pseudo-overdominance, and/or epistasis depending
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on the traits and the crosses examined. Heterosis for viability in a cross
between the Niederzenz and Landsberg ecotypes of A. thaliana was
attributed to overdominance, i.e. F2 progeny homozygous for one
locus had 50% lower viability than heterozygotes (Mitchell-Olds
1995). Single-locus heterosis attributable to overdominance has been
observed for stem length, total number of buds, flowers and fruit, and
fresh and dry weight (Rédei 1962). Kusterer et al. (2007a) and Kusterer
et al. (2007b) examined C24 x Col-derived recombinant inbred lines
crossed to both parents and the F1 and found that heterosis for bio-
mass-related traits within 29 days of sowing was caused by domi-
nance, overdominance or pseudo-overdominance, and epistasis. The
authors of an analysis of early growth in C24 x Col near isogenic line
hybrids found a significant role for epistasis (Melchinger et al. 2007).

The flowering time genes FRIGIDA (FRI) and FLOWERING
LOCUS C (FLC) interact epistatically and have a large effect on flow-
ering time. Genotypes with functional alleles at both the FRI and FLC
loci flower much later than genotypes that carry only one functional
allele when plants are not vernalized (Lee et al. 1994; Sanda and
Amasino 1995). Late flowering in interspecific allotetraploids between
A. thaliana and A. arenosa has also been attributed to functional
alleles of FRI and FLC because a functional A. arenosa FRI allele
trans-activated an A. thaliana FLC allele (Wang et al. 2006). FRI
and FLC may affect other traits because mutations in flowering time
genes can cause changes in leaf number, the number of axillary flow-
ering shoots, final height, silique number, total number of seeds, floral
organ development, as well as other traits (Tienderen et al. 1996;
Koornneef et al. 1998; Alonso-Blanco et al. 1999).

In this study, we first investigated how heterosis varies across 12
diverse traits measured in 20 hybrids derived from five parental
genotypes. We used a complete diallel design to determine the
contribution of each genotype on each trait by estimating general
(additive) and specific (nonadditive) combining abilities as well as
reciprocal effects. Second, we determined the degree to which genetic
variation at FRI and FLC explains a number of hybrid traits across
different genotypes. We suggest that genes or genotypes interpreted as
having additive effects may interact nonadditively to generate hybrid
trait variation.

MATERIALS AND METHODS

Plant growth conditions, trait measurements
Plants were grown under long day conditions with 16 hr (07:00–
23:00) of ~150 mmol m-2 s-1 light and 8 hr of dark at a constant
temperature of 23�. Eleven traits were measured, and one reproductive
trait, total seed per plant, was estimated (Table 1). Days to bolting,
days to flowering, and days to mature seed were the three flowering
time traits. Rosette diameter at bolting, shoot biomass at death, and
final height at death were the three biomass traits. Total number of
siliques, average silique length, average number of seeds per silique,
and total number of seeds per plant were the four reproductive traits.
The total number of seeds for each plant was estimated by multiplying
the total number of siliques by the average number of seeds per
silique. We also measured height at flowering and lifespan. Death
was defined as the day the last silique matured and the plant was
no longer producing new branches. Additional details on growth
conditions and trait measurements are given in the supporting in-
formation (File S1).

Diallel plant material and experimental design
Five A. thaliana parental lines, i.e. Columbia (Col), Wassilewskija
(Ws), Landsberg erecta (Ler), Cape Verde Islands (Cvi), and C24,

were mated by the use of a complete diallel mating design. The
diallel consisted of 20 hybrids, including reciprocals, and the man-
ually crossed five parental genotypes, for a total of 25 lines. The
diallel plants were examined by the use of a split plot design con-
sisting of four split-plots with 25 cells each that formed two whole
plot replicates. The whole-plot factor, density, had two levels, high
and low. Density stress was imposed upon plants as an environ-
mental effect because heterosis may be more evident in conditions
of stress (Tollenaar and Wu 1999). The high-density treatment
consisted of the plant of interest located in the center of a 3.5-inch
pot surrounded by four Ler parent plants (2 cm spacing) within the
same cell. The low-density treatment consisted of only the geno-
type of interest centered in a pot. The split-plot factor, genotype,
with 25 levels was randomly assigned to the 25 cells within each
flat. Each pot was re-randomized within its flat every 6 days to
ensure homogeneity within the flat and to eliminate edge effects.
Rearranging ceased approximately 3 months after the start of the
experiment. Cleaved amplified polymorphic sequences marker
analysis of DNA extracted from each hybrid and inbred plant
was used to confirm plant genotypes. Manual pollinations were
used to produce all seed. Among the 100 plants, three were not
of the expected genotype and were removed (two Ws x Cvi and one
Col x Ws).

Introgression plant material and experimental design
To investigate the effects of FRI and FLC in nearly isogenic back-
grounds, we used lines homozygous for the four combinations of
functional and nonfunctional FRI and FLC alleles. Each FRI and
FLC combination was obtained in the Col background and the Ler
background. For simplicity, each line has been given a short nota-
tion to refer to its FRI and FLC alleles. A +/+ indicates a line with
a functional FRI and a functional FLC allele, whereas +/2 indicates
a line with a functional FRI allele and a nonfunctional FLC allele. A
2/+ indicates a genotype with a nonfunctional FRI allele and
a functional FLC allele, whereas 2/2 indicates a genotype with
nonfunctional alleles for both FRI and FLC. We investigated two
Ler 2/+ genotypes. In one, the functional FLC was introgressed
from Col. In the other, it was introgressed from Sf2. Additional
details on the lines are given in supporting information. To in-
vestigate the effect of FLC in hybrid backgrounds, we generated
(C24 x Col) +/+ and (C24 x Ler) +/+ F1 hybrids and (C24 x Col)
+/2 and (C24 x Ler) +/2 F1 hybrids.

Introgression lines and their hybrids with C24 were evaluated by
the use of a randomized complete block design with six blocks. Each

n Table 1 The 12 traits measured in diallel and introgression
experiments

Trait

Days to bolting (A)
Days to flowering (B)
Days to mature Seed (C)
Rosette diameter (D)
Shoot biomass (E)
Final height (F)
Total number of siliques (G)
Total number of seeds (H)
Average silique length (I)
Average number of seeds per silique (J)
Height at flowering (K)
Lifespan (L)
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of the nine isogenic genotypes [Col 2/2, 2/+, +/2, and +/+, as well
as Ler 2/2, 2/+ (Sf2), 2/+ (Col), +/2, and +/+], the four hybrid
genotypes [(C24 x Col) +/+, (C24 x Col) +/2, (C24 x Ler) +/+, and
(C24 x Ler) +/2], and the C24 +/2 parental genotype were randomly
placed within each block for a total of 84 plants (14 plants per block
with six blocks).

Statistical analyses
To partition phenotypic variation to density and genotypic effects,
data from the five parent complete diallel design was analyzed with
DIALLEL-SAS05 via the use of Griffing’s method 1 (Griffing 1956;
Zhang and Kang 1997; Zhang et al. 2005). Genotypes were treated as
fixed effects. Variances attributed to interactions between density and
genotype were also determined. Genotypic variance was partitioned
into general combining ability (GCA), specific combining ability
(SCA), and reciprocal effects, which were further partitioned to ma-
ternal and nonmaternal effects.

We also used a split-plot analysis to analyze diallel data to estimate
hybrid deviations from mid-, low-, and high-parent values and to
perform contrasts between genotypes. Finally, we used the following
equation to calculate heterosis of the diallel hybrids:

% Heterosis ¼ ðF1 2 XÞ
X

· 100

where F1 is the mean trait value of a specific hybrid. For mid-parent
heterosis (MPH), X is the mean trait value of the two parents of the
hybrid; for high-parent heterosis (HPH), X is the mean trait value of
the high parent.

The introgression line and hybrid introgression line experiment
was analyzed with a randomized complete block design model.
Within the introgression line analysis, contrasts were performed
among Col and Ler introgression lines to evaluate the effects of FRI
and FLC on trait values within the inbred genotypes. For the hybrids
between C24 and the introgression lines, we contrasted the hybrid
with FLC to the hybrid without FLC to determine the effect of FLC
when a functional FRI was present.

A type I error rate of alpha ¼ 0.01 was used to define statistical
significance unless otherwise stated. Analyses were performed with SAS
9.1 (SAS Institute Inc., Cary, NC, USA 2002-2003) general linear model
procedure. Data used in all analyses are given in the supporting infor-
mation (Table S2, Table S3, Table S4, Table S5, and Table S6).

RESULTS

Analysis of diallel components
To determine the parental genotypic contributions to A. thaliana
hybrid traits, we evaluated 12 traits by using a complete diallel
design comprising five parental ecotypes (Col, Cvi, Ler, Ws, and
C24) and 20 F1 hybrids. Genotype explained a highly significant
(P , 0.0001) proportion of the variation for every trait except
plant lifespan (Table 2). The genetic components of variation for
rosette diameter and days to bolting, flowering and mature seed
were especially high. The mean square estimates for genotype were
over 60x the mean square errors for these traits (Table 2). The
genotype mean square estimates for the remaining 7 traits ranged
from 5 to 32 times the mean square error.

For the 11 traits that had significant genotypic effects, the variance
of GCA, that is, the difference between the average trait value of
a specific parent’s offspring and the average trait value of the popu-
lation, was highly significant (P , 0.0001; Table 2). Of the five pa-
rental lines, C24 consistently had the largest effect on traits, having

positive GCA estimates for 10 of 12 traits (Figure 1). This was also
seen in heterosis measurements (e.g., Figure 2). Of the 75 hybrid-trait
combinations with significant HPH, 62 were in hybrids that had C24
as a parent (Figure 2, A–D, Figure 3, and Figure S1). For eight of the
traits (days to bolting, flowering and mature seed; rosette diameter;
shoot biomass; final height; total siliques; and total seeds), HPH was
predominately restricted to hybrids where C24 was used as a parent
(Figure 2, A–C, Figure 3, and Figure S1). Interestingly, height at
flowering was often shorter in the late flowering C24 hybrids than
in the early flowering parental lines (Figure 2E).

Although the C24 parent had a large, positive effect on many
hybrids, this effect varied greatly. Largely because of the different
effects of C24 on hybrids, the SCA, the estimated deviation of the trait
value of an individual cross from the sum of the parental GCA effects,
explained a highly significant proportion (P , 0.0001) of the genetic
variance for all 11 traits (Table 2). For most flowering time traits (days
to bolting, flowering, and mature seed) and biomass traits (rosette
diameter, shoot biomass, final height), C24 hybrids with Ws had very
high SCA estimates, C24 hybrids with Col and Cvi had high SCA
estimates, and C24 hybrids with Ler had negative SCA estimates
(Figure 1, A2F). The effect of C24 on hybrids also varied for repro-
ductive traits. Almost all of the reproductive traits in hybrids between
C24 with Cvi, Ler, and Ws (3 hybrids · 2 reciprocals · 4 yield traits¼
24 hybrid · reproductive trait combinations) had significant (17) or
marginally significant (3) HPH (Figure 3), a pattern mimicked in the
SCA estimates (Figure 1, G2J). In contrast, no reproductive trait
exhibited HPH in the hybrids between C24 and Col. These hybrids
had 228 fewer siliques, 11,000 fewer seeds, 1-mm shorter siliques, and
over 2 fewer seeds per silique than predicted by parental GCA esti-
mates (Figure 1, G2J).

A small number of hybrids without C24 as a parent, most notably
hybrids with Ler, exhibited heterotic traits. For example, hybrids be-
tween Ler and Ws exceeded both parental lines in silique length,
height at flowering, and number of seeds per silique (Figure 2, D–E,
Figure 3). The Ler x Ws hybrid was 43% taller than the tallest parent
at flowering (Figure 2E). Ler is homozygous for the recessive erecta
gene that reduces plant height at flowering and silique length. All eight
Ler hybrids had significant MPH for silique length, and all but one Ler
hybrid had significant MPH for height at flowering (Figure S1). Het-
erosis was rare in hybrids that had neither C24 nor Ler as a parent. Of
the 72 parent-hybrid trait comparisons among Col, Cvi, and Ws, three
had marginally significant HPH (Figure 3).

Reciprocal effects explained less genotypic variance than did GCA
and SCA, but they were marginally significant for four traits and
significant for five others: number of days to bolting, days to
flowering, days to mature seed, average silique length, and average
seeds per silique (Table 2). The five significant reciprocal effects were
partitioned into maternal and nonmaternal effects. These were signif-
icant or marginally significant for all five traits (Table 2). For example,
C24 had a positive, maternal effect on flowering time, and Ws had
a marginally significant (P, 0.05) negative, maternal effect on flower-
ing time (Table S1). However, the difference between C24 x Ws and
Ws x C24 flowering times (e.g., days to flowering was 43% later than
the high parent vs. 15% later than the high parent, respectively) was
greater than could be accounted for by maternal effects (Figure 2A,
Table S1).

We also examined the effects of both low- and high-density
plantings on traits. Density had a significant effect on the total number
of siliques (P ¼ 0.003) and a marginally significant effect on total
seeds, final height, and shoot biomass (Table 2). Genotype x density
interactions were not significant (Table 2).
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Contribution of FRI and FLC to hybrid traits:
Introgression analyses
C24 was a parent of most hybrids within the diallel that exhibited
heterotic traits, and the effect of C24 varied across traits and hybrids.
C24 has a functional FRI allele and a weak FLC allele (Sanda and
Amasino 1995). Col, Cvi, and Ws all have nonfunctional FRI alleles
and strong FLC alleles (Lee et al. 1993; Koornneef et al. 1994; Lee et al.
1994; Alonso-Blanco et al. 1998; Michaels and Amasino 1999; Johanson
et al. 2000; Gazzani et al. 2003). Ler has a nonfunctional FRI allele
and a weak FLC allele (Koornneef et al. 1994; Lee et al. 1994; Michaels
and Amasino 2001). As described previously, FRI and FLC have been
shown to interact epistatically within inbred genotypes to delay flow-
ering. We used Ler and Col ecotypes introgressed with functional and
nonfunctional FLC and FRI alleles to determine if allelic variation at
FRI and FLC explained the flowering time traits and other traits of
C24 hybrids. To determine if FLC contributed to C24 hybrid trait
values, we compared C24 hybrids with a functional FLC to hybrids
without a functional FLC [e.g. (C24 x Col) +/+ hybrids compared with
(C24 x Col) +/2 hybrids and (C24 x Ler) +/+ hybrids compared with
(C24 x Ler) +/2 hybrids]. To evaluate the degree to which FRI and
FLC alleles could explain the C24 hybrid phenotypes, we compared
hybrids with functional FRI and FLC (+/+) to the introgression lines
with functional FRI and FLC (+/+), and we compared hybrids with
functional FRI only (+/2) to the inbred introgression lines with FRI
only (+/2). If +/+ and +/2 introgression lines resembled +/+ and +/2
hybrid lines, respectively, then FRI and FLC fully accounted for the
hybrid phenotype.

Functional alleles of FRI and FLC explained heterosis for flowering
time traits in the hybrids between C24 and Col (Figure 4A, Figure S2,
Figure S3). For example, Col +/+ flowered after 51 days and the (C24
x Col) +/+ hybrid flowered after 50 days. The Col +/2 line flowered
after 26 days and the (C24 x Col) +/2 hybrid flowered after 29 days
(Figure 4A). Within Ler and C24 hybrids, FRI and FLC contributed to
hybrid flowering time traits but did not fully explain them. The Ler
+/2 line resembled the (C24 x Ler) +/2 hybrid for all flowering time
traits (for example, 31 days to flowering vs. 32 days). However, the Ler
+/+ inbred line bolted, flowered, and matured later than the (C24 x
Ler) +/+ hybrid (for example, 76 days to flowering vs. 50 days) (Figure
4A, Figure S3). The large effects of functional FRI and FLC on flower-
ing time traits were the result of epistasis. For example, flowering was
delayed by 114% (27 days) in Col +/+ relative to Col 2/2 (Figure
4A), but FRI and FLC individually had no effect, as Col +/2 and
Col 2/+ did not differ from Col 2/2 (Figure 4A). This finding is con-
sistent with previous reports (Lee et al. 1994; Lee and Amasino 1995;
Michaels and Amasino 1999). Although genotype was not a significant
component of lifespan variance within the diallel, in the introgression
experiment, both (C24 x Col) +/+ and (C24 x Ler) +/+ lived signif-
icantly longer than their parents (Figure 4B). The increased hybrid
lifespan of C24 x Col (+/+) could be fully ascribed to an epistatic
interaction between FRI and FLC (Figure 4B).

Among the diallel genotypes, C24 hybrids often had a low height at
flowering. Variation within FRI and FLC contribute to this trait in the
hybrids because the (+/+) C24 hybrids with Ler were significantly
shorter at flowering than the corresponding C24 x Ler (+/2) hybrids,
and the (+/+) C24 hybrids with Col were nominally shorter than the
(+/2) C24 hybrids with Col (Figure 4C). In addition, the (+/+) Col and
Ler genotypes were significantly shorter than the (+/2) introgression
lines and resembled their respective (+/+) hybrids (Figure 4C).

Like flowering time heterosis, biomass trait heterosis was affected
by FRI and FLC. Within hybrids and introgression lines, the effects ofn
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Figure 1 GCA estimates for parental genotypes and hybrid SCA estimates. The parental GCA estimates and the hybrid SCA estimates for all 12
traits measured in the diallel. (A) Days to bolting; (B) days to flowering; (C) days to mature seed; (D) rosette diameter; (E) shoot biomass; (F) final
height; (G) total number of siliques; (H) total number of seeds; (I) silique length; (J) number of seeds per silique; (K) height at flowering; (L) lifespan.
Gray bars show the GCA estimates and black bars show the SCA estimates. �P , 0.05, ��P , 0.01.
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FRI and FLC on rosette diameter were similar to their effects on flower-
ing time traits, except C24 (+/2) hybrids were larger than their re-
spective (+/2) inbreds (Figure 4D). For example, the Col +/+ line had
a rosette diameter that was 203% larger than the Col 2/2 line, and
neither functional FRI nor FLC alone had a significant effect in the Col
isogenic background (Figure 4D). In the Col genetic background, the
effects of FRI and FLC on final plant height and stem biomass were
similar to their effects on rosette diameter (Figure 4E, Figure S3). In
contrast, in Ler, both FRI and FLC had positive effects on stem biomass
but no significant effect on final height (Figure 4E, Figure S3).

Finally, we found strong evidence that FRI and FLC negatively in-
teract to reduce seed yields in the C24 and Col hybrids, largely explain-
ing the poor performance of this hybrid in the diallel experiment. All
(C24 x Col) +/2 hybrids had significant HPH for reproductive traits
(total siliques, total seeds, silique length, and seeds per silique), and no
(C24 x Col) +/+ hybrid had HPH for these traits (Figure 4F, Figure S3).
For example, the (C24 x Col) +/+ hybrid had 29% fewer siliques and
17% fewer seeds per silique than the (C24 x Col) +/2 hybrid (Figure 4F,
Figure S3). The poor hybrid seed production was likely the result of
epistasis. The Col +/+ line averaged 55% fewer siliques, 76% fewer seeds,
an 18% decrease in silique length, and a 34% decrease in the average
number of seeds per silique compared to the Col 2/2 line, whereas
Col 2/2, Col 2/+, and Col +/2 did not significantly differ from each
other for these traits (Figure 4F, Figure S3).

A strong FLC in the C24 x Ler hybrid reduced the number of seeds
per silique, but the total number of seed and silique length were not
significantly different from the C24 x Ler hybrid without FLC (Figure
S3). A strong FLC increased the total number of siliques in the (C24 x
Ler) +/+ hybrid compared to the (C24 x Ler) +/2 hybrid (Figure 4F).
Within the Ler introgression lines, an epistatic interaction caused
a significant reduction in reproductive traits because the Ler +/+ line
had lower trait values than expected given the individual effects of FRI
and FLC (Figure 4F, Figure S3).

DISCUSSION

The genetic components of diallel trait variation
To investigate how environment and genotype contribute to heterosis
for 12 A. thaliana life history traits, we grew 20 hybrids from five
parental A. thaliana genotypes in two planting densities by using
a complete diallel design. Genotype and its GCA and SCA partitions
explained a highly significant proportion of the variation for all but
one trait, lifespan. A very high proportion of the variation for flower-
ing time traits and a high but lower proportion of reproductive trait
variation were explained by GCA and SCA. Other genetic studies have
reported that flowering time trait variation has a relatively strong
genetic component and reproductive traits have a relatively weak
genetic component. For example, genetic variances for flowering time
traits were high relative to variances for reproductive traits in Brassica
carinata (Teklewold and Becker 2005). Variation in reproductive traits
likely does have a strong genetic component. However, yield is a highly
environmentally sensitive, multigenic trait (Hittalmani et al. 2003,
Goff 2011), and yield traits thus have relatively high variation among
replicates of the same genotype. Indeed, in our study, the coefficients
of variation for total seeds and total siliques were greater than the
coefficients of variation for flowering time traits (data not shown).

Far more than other ecotypes, C24 produced hybrids that
exhibited heterotic traits. Most traits in hybrids between C24 and
Cvi as well as between C24 and Ws exceeded parental levels (Figure
3). Hybrids between C24 and Col flowered late and had large bio-
masses, but the hybrids’ reproductive traits did not exceed parental
levels (Figure 3). Hybrids between C24 and Ler did not flower late,
had moderate heterosis for biomass, and exceeded parental levels for
reproductive traits (Figure 2 and Figure 3). The fact that heterosis for
flowering time and yield co-occur in some hybrids but not others
could explain reported differences in flowering time and yield corre-
lations. For example, Aarssen and Clauss (1992) reported that late
flowering plants with substantial vegetative growth generate large
yields under favorable growth conditions. In contrast, Pigliucci and
Schlichting (1995) reported that bolting time and plant size were
negatively correlated to seed and fruit production.

Figure 2 The percent HPH for each hybrid for a number of traits. The
color represents the significance level of the HPH estimate. The value in the
cell is the percent HPH. (A) The percentage of HPH for days to flower. (B)
The percentage of HPH for rosette diameter. (C) The percentage of HPH
for total number of siliques. (D) The percentage of HPH for silique length.
(E) The percentage of HPH for height at flowering. The maternal genotype
is on the vertical axis and the paternal genotype is on the horizontal axis.
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Reciprocal effects accounted for a small component of the genetic
variance compared to GCA and SCA effects and were significant for
three flowering time and two yield traits. For these traits, both maternal

and nonmaternal effects were significant or marginally significant.
Maternal and nonmaternal effects may have an impact on reciprocal
hybrids that rival the effect of the nuclear genotype (Corey et al. 1976;

Figure 3 HPH summary of diallel traits. The percent
heterosis was calculated for each genotype and for each
trait for all hybrids within the diallel experiment. The
letter in the cell indicates which traits have HPH at P ,
0.05 (A, days to bolting; B, days to flowering; C, days to
mature seed; D, rosette diameter; E, shoot biomass; F,
final height; G, total number of siliques; H, total number
of seeds; I, silique length; J, number of seeds per si-
lique; K, height at flowering; L, lifespan). The color gra-
dient from light to dark represents a low to high number
of traits with HPH for the genotype. The maternal ge-
notype is on the vertical axis and the paternal genotype
is on the horizontal axis.

Figure 4 The effects of FRI and FLC on isogenic line and C24 hybrid traits. The mean trait values of fourteen Col, Ler, C24 x Col and C24 x Ler lines with
various FRI and FLC allele combinations are plotted. (A) Mean number of days to flowering. (B) Mean height at flowering. (C) Mean rosette diameter. (D)
Mean final height. (E) Mean total number of siliques. (F) Mean lifespan. Functional or strong alleles are indicated by “+”, whereas nonfunctional or weak
alleles are indicated by “2”. The FRI allele is listed before the “/” and the FLC allele is listed after. The shade of the bars indicates the genotypic
background: solid gray bars are Col inbred lines; black bars are Ler inbred lines; white bars are C24 lines; striped gray and white bars are hybrids between
Col and C24; and striped black and white bars are hybrids between Ler and C24. Bars with different letters are significantly different at P , 0.05.
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Alonso-Blanco et al. 1999). For example, Corey et al. (1976) found that
maternal effects accounted for more variance for five early growth
traits in a diallel analysis than did the GCA and SCA effects. Maternal
effects usually have a larger effect on seed traits and traits early in
a plant’s life than traits that express late in life (Kromer and Gross
1987). Although a number of reciprocal hybrids had substantially dif-
ferent yield and flowering time trait values, the traits we measured may
explain why reciprocal effects played a relatively small role.

High density caused significant reductions in total number of
siliques (Table 2), and density x genotype interactions were not sig-
nificant. Previous studies in Arabidopsis have shown that high plant-
ing densities reduce plant size, accelerate flowering time, reduce leaf
size, and decrease fecundity because of competition and/or red-far red
signals (Aarssen and Clauss 1992; Franklin and Whitelam 2005; Keus-
kamp and Pierik 2010). A. thaliana hybrids are also more tolerant
than inbreds to some stresses such as temperature (Griffing and Lan-
gridge 1963). The absence of widespread density effects and possibly
the absence of density x genotype interactions are likely the result of
the mild density stress.

The effect of FLC and FRI on heterosis
Within hybrids between C24 and Col, we found that FLC and FRI
fully accounted for flowering time trait heterosis and largely accounted
for rosette diameter and shoot biomass heterosis. These findings are
remarkable because they suggest that all genetic differences between
C24 and Col outside of these two genes do not contribute to heterosis
for these traits. Allelic variation in other genes may be rare because
naturally occurring alleles in genes other than FRI and FLC may have
pleiotropic detrimental effects, as suggested by both Koornneef et al.
(1994) and Johanson et al. (2000). Alternatively, genes that do differ
between Col and C24 could have subtle effects in long day, unvernal-
ized growth conditions. For example, in two studies several small-
effect QTL affecting flowering time were detected only after FLC
was down-regulated through vernalization (Alonso-Blanco et al.
1998; Werner et al. 2005; Strange et al. 2011).

FLC also contributed to the low yield of the C24 and Col hybrid and
likely to its short height at flowering. The effect FLC on traits other than
flowering time traits may be caused by FLC’s direct role in the devel-
opment of these traits, because of its effect on flowering time that in
turn affects these traits, or both. The negative effect of FLC on height at
flowering appears to be structurally related to flowering time. Koornneef
et al. (1994) described a dominant late flowering mutant florens (F)—
one of the latest flowering Arabidopsis genotypes—as having a poorly
elongated main stem, and Pigliucci and Schlichting (1995) also found
that late flowering plants consistently have a low height at flowering.
We postulate that the role of FLC on reproductive development is
attributable in part to its participation in this process. Loss-of-function
mutations in FCA, which negatively regulates FLC, affect silique pro-
duction in addition to the vegetative to floral transition (Tienderen et al.
1996; Macknight et al. 1997). FLC is expressed in multiple tissues during
Arabidopsis development, including the root, aerial tissue, rosette leaves,
and floral buds (Sheldon et al. 2000). In addition, FLC has a large
number of promoter binding sites in genes that are involved in a number
of developmental pathways, including reproductive development (Deng
et al. 2011). A mutant flowering time gene in tomato, SINGLE
FLOWER TRUSS (SFT), an ortholog of A. thaliana FLOWERING
LOCUS T (FT) (Krieger et al. 2010), causes heterosis of inflorescence
number and flowers per inflorescence.

FLC had a smaller effect on traits in C24 and Ler hybrids than in
C24 and Col hybrids. There were no heterotic traits for which both

Ler (+/+) mimicked (C24 x Ler) +/+ and Ler (+/2) mimicked (C24 x
Ler) +/2. FLC likely had a relatively weak role in C24 x Ler heterosis
because of the strong phenotypic effect of erecta, which was comple-
mented in the hybrid. Indeed, hybrids of a tester line with angustifolia
(an) and erecta (er) mutants resulted in heterosis for numerous traits,
including length of the main stem, total number of siliques, and both
fresh and dry weight (Rédei 1962).

For most traits, we found that FRI and FLC interact epistatically to
positively or negatively influence phenotypic values. Manipulating
such epistatic interactions may be a general mechanism to improve
traits in breeding populations. The yield increase in tomatoes caused
by heterozygosity at SFT is due to suppression of growth termination
imposed by the SELF PRUNING (SP) gene (Krieger et al. 2010). The
high performance of elite European rapeseed (Brassica napus L.) and
Brussels sprouts (Brassica oleracea var. gemmifera) is caused in part by
beneficial epistatic interactions (Werner et al. 1989; Engqvist and
Becker 1991), and Lamkey et al. (1995) proposed that elite maize
genotypes have favorable epistatic interactions between linked genes.
By extension, selection of lines with favorable GCA, or additive, trait
estimates for further development may not be a productive method to
enhance hybrid traits. In this study, C24 had significant, positive GCA
estimates, but GCA alone poorly predicted hybrid traits because of
epistasis between FRI and FLC. As the genetic basis for hybrid trait
variation is studied in greater depth, we predict epistasis will have
a major role in its explanation.
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