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Abstract

Any single nucleotide variant detection study could benefit from a fast and cheap method of

measuring the quality of variant call list. It is advantageous to be able to see how the call list

quality is affected by different variant filtering thresholds and other adjustments to the study

parameters. Here we look into a possibility of estimating the proportion of true positives in a

single nucleotide variant call list for human data. Using whole-exome and whole-genome

gold standard data sets for training, we focus on building a generic model that only relies on

information available from any variant caller. We assess and compare the performance of

different candidate models based on their practical accuracy. We find that the generic model

delivers decent accuracy most of the time. Further, we conclude that its performance could

be improved substantially by leveraging the variant quality metrics that are specific to each

variant calling tool.

Introduction

Identifying single nucleotide variants (SNV) is a major application of next-generation

sequencing. SNV calling is a multistep process that is not over once a variant caller is invoked.

In particular, every variant caller allows the user to specify at least one parameter to adjust

the sensitivity of the call list by imposing a threshold on the variant quality score denoted by

QUAL in Variant Call Format, VCF. In addition, a variant caller usually produces a number of

variant-level statistics (depth, strand bias, average base and mapping quality, to name a few)

that are meant to be used for downstream variant filtering to adjust the call list quality further.

While it is possible to come up with some reasonable filtering thresholds, the ways of

observing how different filtering settings impact the quality of the call list (if at all) are fairly

limited. Such approaches as verifying the result by applying Sanger sequencing or SNV array

are expensive. Obtaining variant calls starting from physical samples can be expensive, too.

Hence, the researcher might decide to reuse the variants from previous studies. In that case,

one has access only to the variant call lists from a database (in VCF format), facing the
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RMNISTHS_30xdownsample.bam Nextera WES

50X data are contained in four �.bwa.
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available at this location: ftp://ftp-trace.ncbi.nlm.
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necessity of estimating and adjusting the call list quality based just on the content of available

files [1].

In particular, a researcher would be very interested in estimating a proportion of true vari-

ants in the call list (positive predictive value, PPV, aka Precision). That quantity can be mea-

sured explicitly but only if the dataset is a gold standard where the true and false variants are

known in advance. The gold standard approach has been successfully used for comparing

variant calling pipelines or parts thereof (most importantly, different variant callers) in [2, 3, 4,

5, 6].

However, in a real project the dataset of interest is not a gold standard. Even if experiment-

ing with a gold standard results in a recommended variant calling pipeline, one cannot be sure

how, in quantitative terms, that pipeline will work for a different dataset. For instance, if a

given pipeline resulted in 85% PPV on a gold standard dataset, how likely is that to be repro-

duced on a new dataset? Apparently, some deviation will occur. If so, is it possible to specify a

prediction interval for a future PPV?

A simple linear model to estimate PPV as a function of transition/transversion ratio, Ti/Tv,

was proposed in [7], but, to the best of our knowledge, it has not been developed much. In

practice, the most popular usage of Ti/Tv is a rule that for a whole genome sequencing (WGS)

or whole exome sequencing (WES) call list to be of high quality, the Ti/Tv should be around

2.0 or 3.0 respectively [8]. Apart from being crude, this rule aims for the call list with close to

zero proportion of false positives (FP), even if that implies a very low sensitivity. In other

words, the rule of thumb is not going to prevent one from failing to identify a sizable propor-

tion of true positives (TP) as such. It works fine if, indeed, the researcher’s goal is to maintain a

very low FP proportion at any cost, but that does not have to be the case. For instance, if one

tries to experiment with producing variants by intersecting call lists from two or more variant

callers, one can choose to tolerate a higher FP proportion for each variant caller because other-

wise the final intersection-based call list would be too small.

One more application of PPV estimation is the variant quality score recalibration [7]. Recal-

ibration aims to improve the quality score by taking variant annotations into account after an

initial variant call list has been obtained. An important input for the recalibration algorithm in

[7] is the set of “bad” (FP) variants. A possible way to specify it is to suggest that (1 –PPV) % of

variants with the lowest QUAL score are “bad”.

One possible reason why few researchers (one exception is [1]) looked into extending

the model in [7] is the belief that the variant calling results depend too much on the

sequencing platform, exome capture kit, aligner, and variant caller [9, 3, 1, 6]. That appears

to be true, but, as far as we know, it only means that, given different pipelines, the generated

variant call sets might not intersect too much. However, using Ti/Tv as an example, what if

the relationship between PPV and Ti/Tv is about the same for the most popular variant call-

ers? In that case, it should be possible to build a model to predict PPV based on Ti/Tv with-

out having to adjust it for a specific variant caller and other factors mentioned above. To the

best of our knowledge, that option has never been investigated using a strict quantitative

approach.

In this paper, we are looking into a possibility of building a model that can estimate PPV

for a human SNV study (indels are not considered). The estimation method is based on a few

variant quality statistics available for any variant caller. Our approach is to use several gold

standard data sets to learn the relationship between PPV and the quality statistics. Whether

our approach is viable is immediately clear because we are able to assess the accuracy of the

candidate models in explicit, practically meaningful terms. As a result, we are able to come up

with a fairly accurate model that could be improved further in the future.
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Materials and methods

Data

Our analysis is based on the “Genome in a Bottle” gold standard sample NA12878 [10]. The

particular datasets come from two sources. First, [6] provide access to two Illumina datasets:

WES 50X (Nextera exome capture kit with 62Mb target region) and WGS 30X. Second, we

used Genome Comparison & Analytic Testing tool that was publicly available online and

allowed the user to download two WES Illumina datasets, 30X and 150X. To the best of our

knowledge, they were generated using TrueSeq exome capture kit with 45 Mb target region.

We made the TrueSeq data publicly available [11] because the corresponding website is no lon-

ger functioning.

The datasets from [6] come in BAM format (aligned with BWA), whereas TrueSeq datasets

are downloaded in FASTQ format and aligned with BWA in Partek Flow. After that, duplicates

are removed using Filter Alignments task and the variant calls are obtained using Samtools

and Freebayes in Partek Flow. For WES data, the calls are restricted to the corresponding Nex-

tera or TrueSeq target regions.

All of the calls are restricted to chromosomes 1–22 and X (NA12878 is derived from a

female). That is done because we intend to use Ti/Tv as a predictor in the model, and mito-

chondrial regions, Y chromosome, and X chromosome in males are associated with abnor-

mally high Ti/Tv ratios [12]. For such regions, a separate model is needed.

Given the methodology outlined in [5, 13, 14], we developed Variant Validation task in Par-

tek Flow. The Variant Validation task functionality and output are similar to that of formerly

available Genome Comparison & Analytic Testing tool. Using any gold standard dataset as

input, the task produces a set of comprehensive performance evaluation metrics for a variant

calling pipeline: sensitivity, specificity, PPV, and many others.

By using different datasets, variant callers, and tweaking the variant filtering options such

as quality (QUAL) and depth (DP) thresholds, we obtain a large number of variant call lists.

Each list is fed to Variant Validation task that measures the observed values of TP, FP, PPV,

and different statistics that might be predictive of PPV. As a result, we obtain a training data

set where each observation is derived from a distinct call list and we use the data set to discover

a relationship between PPV and the predictors.

Composition of predictor pool

Along with Ti/Tv, the heterozygous/homozygous ratio, Het/Hom, is used for quality control

[15, 16] where higher values of Het/Hom are associated with lower quality call sets. According

to [17], in theory Het/Hom ratio should be 2.0 for WGS, and no possible dependence on the

ancestry (race) is mentioned. For WES, no expected value is specified, except for stating that it

should be “significantly lower”. Also, [16] report that Het/Hom thresholds for WES data are

determined by “historical values” without disclosing what actual thresholds are used. Accord-

ing to [12], Het/Hom ratio is very much influenced by ancestry (which is also confirmed by

[18]), but not influenced by the genomic region (exonic vs non-exonic). It therefore appears

that the usage of Het/Hom as a quality control metric is not as well understood as the usage of

Ti/Tv. Correspondingly, part of our agenda is to quantify the contribution of Het/Hom ratio

by including it in the model.

In addition, [12] suggest that Het/Hom is possibly “orthogonal” to Ti/Tv: Ti/Tv is related to

type of genomic region, GC content, functionality (% of synonymous SNVs), but not ancestry.

Het/Hom is related to ancestry, but not to the type of region, GC content, or functionality.

The possible “orthogonality” of Het/Hom and Ti/Tv is another reason for including the former
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in the model. Also, each variant call set is characterized by median depth (MedDp), proportion

of variants with depth below five (DpLt5), and a binary indicator (WES_Indicator) that is

equal to 1 for WES study and 0 for WGS. As a result, we have four quantitative (Ti/Tv, Het/

Hom, MedDp, DpLt5) and one categorical (WES_Indicator) predictor.

We perform the initial selection of second order terms as follows. First, we include the

squared values of all four quantitative predictors to account for a possibility of a curvilinear

relationship between them and PPV. Second, given the information outlined above, it is appar-

ent that the relationship between PPV and such predictors as Ti/Tv and Het/Hom is probably

different in WES and WGS data sets. For that reason, we include interaction terms TiTv �

WES_Indicator and Het/Hom � WES_Indicator. While there is no prior evidence that a simi-

lar reasoning applies to depth statistics, we include the corresponding interactions, MedDp �

WES_Indicator and DpLt5�WES_Indicator, as well. Sensitivity as a function of depth is differ-

ent for homozygous and heterozygous SNVs [19], which prompted us to add the MedDP �

Het/Hom ratio term. Finally, the interaction of Ti/Tv and depth metrics were added for explo-

ration purposes. Centering to the mean was performed prior to computing all of the second

order terms. In total, the first and second terms span 18 scalar parameters, including the

intercept.

A fairly obvious question is why the variant quality score itself (QUAL) is not used as one of

covariates. VCF standard implies that regardless of the variant calling method used, the mean-

ing of QUAL value is exactly the same (Phred-scaled probability that the call in ALT column is

wrong). However, we are still not perfectly sure that QUAL values generated by Samtools and

Freebayes are directly comparable, hence QUAL is excluded.

Model building procedure

An SNV call list of size N can be seen as a result of N “trials” with binary outcomes where “suc-

cess” corresponds to a true variant (TP) and “failure” corresponds to a false variant (FP). The

observed TP proportion, or PPV, is defined as

PPV ¼
TP
N
¼

TP
TPþ FP

ð1Þ

The counts of TP and FP can be obtained explicitly for a gold standard data set, and we can

train a model where the probability of “success” is a function of predictors. It is therefore

understandable why we first tried fitting a Binomial regression model. However, we found that

Binomial model suffers from a severe overdispersion problem (results not shown), and for that

reason we switched to Beta-binomial regression. Under Beta-binomial distribution, the count

of successes, Y, in N trials has the following mean and variance:

E½Y� ¼ N � m ð2Þ

Var Y½ � ¼ Nm 1 � mð Þ �
ð1þ NsÞ

1þ s

Here μ is the probability of success and σ is the dispersion parameter. When the latter is equal

to 0 (no overdispersion), the distribution of Y is reduced to Binomial. Parameterization (2) is

used in gamlss() procedure in R that we employ for model fitting. The link between (2) and a
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more conventional (α,β) parameterization is:

E Y½ � ¼
Na

aþ b
ð3Þ

Var Y½ � ¼
Nabðaþ bþ NÞ
ðaþ bÞ

2
ðaþ bþ 1Þ

a ¼
m

s
; b ¼

1 � m

s

To incorporate the covariates into (2), the following inverse link functions are used:

m ¼
expðx0bÞ

1þ expðx0bÞ
ð4Þ

s ¼ expðz0gÞ

where x and z are the vectors of covariate values and β and γ are the estimated regression coef-

ficients. The covariates that describe μ and σ may or may not be the same, but in this study z is

always a subset of x. Denoting the lengths of β and γ by p and q, we will refer to the model as

(p, q) below.

We generate the training data (the values of Y, N, and x) as follows. For instance, we use

Nextera data set, apply Samtools with sensitivity 0.99999 and filter the output with DP thresh-

old of 5. That results in 60752 SNV calls, of which 37627 have genotype that is different from

the reference. Partek Flow Variant Validation task reports that 37627 calls consist of 35600 TP

and 2027 FP and it also reports the values of Ti/Tv, Het/Hom, MedDp, and other summary

quality statistics for 37627 calls. In terms of model (1–4), N is equal to 37627, Y is equal to

35600, and the values of Ti/Tv, Het/Hom, etc, are put in the vector x. The values of Y, N, and x

constitute a single observation for model (1–4). By varying the data set, variant caller, and fil-

tering thresholds, we obtain about 500 of such observations.

The parameter μ is the expected PPV: if we were to take a large number of variant call sets

that have the same covariate pattern x, and then take an average of PPV across the call sets, we

should expect to get a value close to μ. However, here we are interested in PPV for a particular

call set, an “observed” rather than “expected” PPV. In other words, we would like to obtain a

prediction interval for the future observed value of random variable Y/N. In order to do that,

we assume that Y/N follows a Normal distribution whose mean and variance can be easily

obtained from (2) and then used for constructing a 95% prediction interval. We do not take

into account the uncertainty of estimating the regression coefficients β and γ because we

assume it to be relatively low due to a sufficient sample size. Such approach will perform well

only if the point estimates of β and γ are very close to their true (population) values and the

Normal approximation for the distribution of Y/N is adequate.

A prediction interval is constructed for each point in the training data set by using a leave-

one-out approach. For a given point, the predicted values of μ and σ are obtained from a

model fitted on the data from which the point of interest is excluded. We then compute the

actual coverage as the proportion of observations found inside the respective prediction inter-

vals. The actual coverage is close to the nominal 95% for all the models considered below, sug-

gesting that the Normal approximation works well.

Our approach is to start with a “global” model containing the largest possible number of

terms. After that we apply backward elimination based on the p-value but the stopping rule is
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based on Akaike Information Criterion, AIC, [20], rather than on a rigid p-value cutoff such

as 0.05. Therefore, backward elimination is essentially used as a tool for defining a fairly small

model pool in an adaptive manner.

It would be unwise to apply our model selection procedure if in fact our final model and

inference are defined by a few unduly influential observations. To avoid that, we first look at

weighted residuals from Beta-binomial regression. Even though the weighted residuals do not

follow Normal distribution, they possess the approximate property of having mean 0 and stan-

dard deviation 1 which allows us to catch major irregularities, if any (Fig 1). In addition, the hat

values identify outliers in the covariate space and Cook’s distances point to observations that

exert a large influence on the fitted surface. How to compute those quantities for Binomial

regression is explained in detail in [21]. We use that approach to obtain similar metrics for Beta-

binomial regression, although we have to rely on Binomial hat values since Beta-binomial hat

values are not available in R. The hat values and Cook’s distances we use can provide only partial

information about the identity of problematic points in Beta-binomial model (Figs 2 and 3).

Once suspicious points are detected, we fit the regression surface without them to see what

kind of impact they have on the p-values and fitted values. As a result, we are able to identify

some points that are located too far from the majority of points in the covariate space, but that

are acceptable otherwise. Our remedial measure is to tweak the variant filtering thresholds and

run Variant Validation task a few more times to collect more points to fill in the gaps in the

covariate space. The only truly problematic outlier we have to delete is a point generated by

Freebayes for WES TrueSeq data. At a high level of QUAL cutoff (about 215), the proportion

of homozygous variants in the call set drops precipitously for some reason, and we end up

with an abnormally high Het/Hom ratio (Fig 4).

For model (11, 6) the largest prediction interval, PI, for PPV is 44.45% wide. Therefore, we

try to improve the solution by experimenting with the following family of inverse link func-

tions for the variance part of the model:

s ¼ ðz0gÞ
1=

l ð5Þ

Fig 1. Weighted residuals for model (11, 6) from Table 1.

https://doi.org/10.1371/journal.pone.0196058.g001
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Formula (5) employs a Box-Cox type of transformation where the ratio 1/λ goes through

a sequence of positive integer values starting from 2. As λ approaches zero, (5) becomes

equivalent to the log link function for σ in formula (4). We use AIC to determine the best λ
and the results suggest that the log link function is appropriate (Fig 5). The data and R code

used for generating the figures and tables in this paper are available in S1 and S2 Datasets

and S1 File.

Fig 2. Hat values for model (11, 6) from Table 1.

https://doi.org/10.1371/journal.pone.0196058.g002

Fig 3. Cook’s distances for model (11, 6) from Table 1.

https://doi.org/10.1371/journal.pone.0196058.g003
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Model performance evaluation

In order to measure the practical value that can be added by a model, as well as a practical dif-

ference between a few competing models, we look at the length of PI for the estimated PPV. It

is true that the more parameters we include in the model, the better the fit and the shorter the

prediction intervals are. Even though our model selection procedure is data driven, we assume

Fig 4. Relationship between Ti/Tv and Het/Hom. Red, blue and green dots denote Nextera, TrueSeq, and WGS

observations, correspondingly. Here one can see an outlying blue point obtained with TrueSeq and Freebayes.

https://doi.org/10.1371/journal.pone.0196058.g004

Fig 5. Relationship between AIC and lambda for model (11,6). AIC values for model (11, 6) are plotted against the

parameter lambda used in the variance link function in formula (5). The value of lambda equal to zero corresponds to

the log link function in formula (4).

https://doi.org/10.1371/journal.pone.0196058.g005
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that thanks to a large sample size and the usage of AIC a gross overfitting is avoided and the

prediction intervals are more or less representative of what can take place out of sample.

For each point in the training dataset, we obtain a 95% PI for PPV, compute its length (in per-

cent) and then construct a five-number summary of the lengths. The total number of computed

lengths is equal to the number of points in the training dataset, which is about 500. We expect

the models that have much higher practical value to result in much tighter PIs which should be

clearly visible in the five-number summary (Table 1) and the respective box plot (Fig 6).

From the formula (2) we see (assuming for the sake of simplicity that σ is constant) that the

variance of response is the highest at μ = 0.5 and goes to zero as μ approaches 1. All other

things being equal, the length of PI will decrease as PPV approaches 100%, which is advanta-

geous. For instance, for model (11, 6) in Table 1 the median and maximal lengths of PI are

4.20% and 44.45%. If we restrict the summary only to the cases where the point estimate of

PPV is over 95%, the median and maximum lengths become 3.16% and 15.40%.

Results

Het/Hom ratio has low marginal contribution

Figs 4, 7 and 8 provide a visual representation of the training dataset, including outliers(s) that

are deleted in the end. As expected, there is a strong positive relationship between PPV and

Table 1. Comparative performance of four candidate models.

(p, q) AIC 95% PI for PPV, length summary, % PI coverage, %

Min Q1 Med Q3 Max

(15, 1) 7219.47 2.18 4.03 5.11 8.61 20.63 94.62

(11, 1) 7230.74 2.49 4.18 5.37 8.71 21.18 95.02

(19, 1) 6932.41 1.40 3.19 4.37 6.48 15.07 93.03

(11, 6) 6992.03 1.22 2.49 4.20 7.19 44.45 95.42

The values p and q denote the number of parameters in the mean and variance part of the model (formula (4)). The five number summary is for the length of 95%

prediction interval, PI, for PPV. In particular, for model (11, 6) the length ranges from 1.22% to 44.45%, with the median length of 4.20%. The last column reports the

actual coverage of 95% PI.

https://doi.org/10.1371/journal.pone.0196058.t001

Fig 6. Distribution of the length of 95% PI for PPV. Because PPV is a proportion, the PI length is measured in %. A

box plot of length distribution is provided for each model from Table 1.

https://doi.org/10.1371/journal.pone.0196058.g006
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Ti/Tv (Fig 8). Contrary to our expectation of “orthogonality” of Ti/Tv and Het/Hom, there

seems to be a fairly strong negative association between them (Fig 4).

Using the method described in Model building procedure section, we start with a global

(18, 1) model and after three steps arrive at (15, 1) model reported in Table 1. In order to see

whether ignoring Het/Hom makes a sizable practical difference, we repeat the procedure with-

out using the Het/Hom related covariates which gives us the next model, (11, 1). In terms of

Fig 7. Relationship between PPV and Het/Hom.

https://doi.org/10.1371/journal.pone.0196058.g007

Fig 8. Relationship between PPV and Ti/Tv.

https://doi.org/10.1371/journal.pone.0196058.g008
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statistical significance, we obtain strong evidence in favor of retaining Het/Hom: if we com-

pare the two models based on their AIC values (7219.47 with Het/Hom and 7230.74 without),

the model that contains Het/Hom has Akaike weight of over 99%.

However, comparing the lengths of prediction intervals for these two models, we see that

retaining Het/Hom does not improve the performance by a practically significant amount. In

a sense, that is good news: [12] suggest that Het/Hom is associated with ancestry (race) and

therefore it is possible that the relationship between PPV and Het/Hom is not the same across

different levels of race. In that case, if we want to retain the main effect of Het/Hom in the

model, the interaction of Het/Hom and race must also be included. The latter is impossible to

do because our training data set is derived from a single individual and there is only one level

of race. We continue our investigation without taking Het/Hom into account.

The preparation kit and variant caller have a sizeable effect

In order to take a peek at whether PPV estimation is influenced by the preparation kit and var-

iant caller we include the corresponding terms in the model. In the previous step, the study

type factor has two levels (WGS or WES), but now it has three (WGS, WES-Nextera, WES-

TrueSeq), and a new factor with two levels (Freebayes, Samtools) is added. The corresponding

model is denoted by (19, 1) in Table 1. Comparing models (11, 1) and (19, 1) we see that the

inclusion of new terms results in a visible improvement that is far greater than the contribution

of Het/Hom terms. However, in relative terms the improvement is moderate. It is most pro-

nounced in the upper quartile of PI lengths: the Q3 and maximal PI lengths are reduced from

(8.71%; 21.18%) to (6.48%; 15.07%), respectively. While it is advantageous to take into account

the preparation kit and variant caller effects, the model remains fairly useful even if we leave

them out.

Fine-tuning the variance part of the model results in visible improvement

Our original goal is to see whether a useful PPV prediction is attainable based just on the

inputs available in a typical VCF file. Therefore, we go back to the model (11, 1) and try to see

whether it is possible to make it more useful by assuming that the variance parameter, σ, is

dependent on the covariates (formula (4)). As a result, we arrive at model (11, 6) reported in

the last line of Table 1, with the regression coefficients and p-values reported in Table 2.

According to formula (2), if σ includes only the intercept term, then the variance of PPV

(and, consequently, the PI length) is dependent on the covariates only through the value of μ.

If in reality σ is dependent on the covariates as well, then in model (11, 1) the prediction inter-

vals will be too narrow (wide) for the points where σ is above (below) its average value. If we

allow σ to depend on the covariates, we are able to obtain a better fit in that sense, which in

many cases results in shorter prediction intervals. We see that happening in our last model

(11, 6): compared to (11, 1) the five-number summary of PI lengths is improved except for the

maximal PI length that increases from 21.18% to 44.45%.

Discussion

As of today, the variant call set quality is routinely assessed by comparing the call set Ti/Tv

ratio with a certain hard threshold. In this paper, we investigate whether it is possible to extend

that simple rule and build a more advanced model that could provide a reasonably accurate

quality estimate. We focus on estimating the proportion of true variants in a call set obtained

from a human SNV study. Our main goal is to see whether a model that is based only on the

common statistics found in a typical VCF file can be accurate enough.
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We employ three gold standard datasets that span both WGS and WES studies. Since for

those data sets the variants are known in advance and the counts of true and false SNV calls

can be measured directly, we use that information to train the model. We measure the model

performance in practical terms by looking at the prediction intervals for the estimated quan-

tity, proportion of true variants.

Our first conclusion is that, if Ti/Tv and other commonly available predictors are already in

the model then including Het/Hom ratio does not result in any notable improvement. That is

partially due to a fairly strong negative association between Ti/Tv and Het/Hom that we can

observe explicitly in Fig 4.

Next, we see that even though taking into account the preparation kit type and the type of

variant caller is advantageous, it does not result in a dramatic performance improvement.

Even if we do not take those factors into account, we are still able to have decent accuracy

most of the time, especially if we fine-tune the variance part of the model. If we compare the

performance of models (11, 6) and (19, 1) we see that the first four statistics for (11, 6) are on

the par or even slightly better than those of model (19, 1).

That being said, it is fairly clear that building a variant-caller specific model can signifi-

cantly improve the accuracy. The reason for that is twofold. First, our own results suggest that

including variant caller type as a categorical factor is advantageous. Most importantly, each

variant caller has its own set of quality statistics that can be used as predictors. It is hard to do

so if the data are pooled across different variant callers because different callers report different

quality statistics.

The variant quality score, QUAL, is the most obvious example. It is a good question how

much accuracy we were to gain if we used QUAL as a covariate. Further, if we were to focus on

Samtools, we could use such metrics as MQ, VDB, SGB, MQ0F, and the four p-values that

reflect the strand, baseQ, mapQ, and tail distance biases. We could investigate which of those

numerous quality statistics are the most useful. We could also see which metrics are useless or

redundant and therefore do not have to be generated at all. Under the most optimistic

Table 2. Regression coefficients for model (11, 6) from Table 1.

Mean part, μ Estimate Std error t-value p-value

Intercept 5.02E+000 2.64E-001 19.002 2.00E-016

WES_Indicator -1.42E+000 2.93E-001 -4.847 1.68E-006

Ti/Tv 5.15E+000 1.76E-001 29.297 2.00E-016

MedDp -1.96E-002 4.38E-003 -4.479 9.36E-006

DpLt5 -1.79E+000 8.78E-001 -2.042 0.0417

Ti/Tv � Ti/Tv -1.75E-001 8.55E-002 -2.042 0.0417

MedDp � MedDp -1.40E-004 1.32E-005 -10.58 2.00E-016

WES_Indicator � Ti/Tv -4.47E+000 2.01E-001 -22.21 2.00E-016

WES_Indicator � MedDp 4.72E-002 5.90E-003 7.992 9.56E-015

WES_Indicator � DpLt5 1.76E+000 8.78E-001 2.009 0.0451

TiTv � MedDp -1.91E-002 2.85E-003 -6.695 5.91E-011

Variance part, σ
Intercept -6.81047 0.3941 -17.28 2.00E-016

WES_Indicator 3.00998 0.38291 7.861 2.40E-014

Ti/Tv -10.04787 1.33015 -7.554 2.05E-013

DpLt5 -0.33822 0.08178 -4.136 4.16E-005

Ti/Tv � Ti/Tv -6.32795 0.76588 -8.262 1.31E-015

WES_Indicator � Ti/Tv 9.01236 1.95761 4.604 5.28E-006

https://doi.org/10.1371/journal.pone.0196058.t002
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scenario, it might turn out that using just QUAL results in a level of accuracy that is so high

that none of other predictors are required and the same regression coefficients work well for

both WES and WGS.

Researchers who develop variant calling applications could employ the methodology out-

lined in this paper for a similar purpose. That would also allow them to supply their software

with an accurate PPV estimation tool that would be of great advantage to the end user.
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