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EDITORIAL

In recent years, several immunothera-
peutic approaches against cancer have 
emerged, including the adoptive transfer 
of T cells that have been reprogrammed 
to react against one or more tumor-asso-
ciated antigens (TAAs). In most cases, 
reprogramming is achieved as T cells are 
engineered to express the antigen-binding 
domain of a TAA-specific monoclonal anti-
body fused to intracellular domains that 
are normally involved in T-cell receptor 
(TCR) signaling and/or co-stimulation.1-3 
In small cohorts of patients affected by 
hematological malignancies including both 
low-grade and aggressive B-cell neoplasms, 
significant, long-lasting clinical responses 
were observed upon the administration of 
these chimeric antigen receptor (CAR)-
expressing T cells.4,5

To circumvent the use of autologous 
T cells, which requires labor-intensive 
steps of isolation and expansion in vitro, 
Klingermann’s group developed an alloge-
neic natural killer (NK) cell line (NK-92 
cells) that express CARs comprising sin-
gle-chain variable fragments from murine 
CD19- or CD20-specific antibodies.6 
NK cells are advantageous as compared 
with T cells as they recognize malignant 
cells in a HLA-unrestricted manner and 
can lyse them in the absence of pre-sensiti-
zation.7 NK cells exert cytotoxic functions 
by multiple mechanisms, including (1) the 
direct release of granzyme and perforin 
upon the physical interaction with target 
cells, (2) the so-called “antibody-depen-
dent cell-mediated cytotoxicity” (ADCC), 
a process whereby NK cells kill their targets 
once these are opsonized by antibodies, fol-
lowing the binding of constant fragments 

(Fcs) to Fc fragment of IgG, low affinity 
III, receptors (FcγRIIIs), (3) the secretion 
of TH1 cytokines, and (4) via the gran-
zyme/perforin pathway upon activation 
by dendritic cells.8 However, the infusion 
of unmodified NK cells, both as a stand-
alone intervention and in combination 
with immunostimulatory cytokines, failed 
to induce any significant diseases regres-
sion in patients affected by multiple solid 
tumors.9

In a recent issue of OncoImmunology, 
Boissel et al. demonstrated that NK-92 
cells engineered to express CD20-specific 
CARs exhibit improved cytotoxicity 
against primary chronic lymphocytic leu-
kemia (CLL) cells in vitro as compared 
with parental NK-92 cells pulsed with 
various anti-CD20 monoclonal antibod-
ies. Of note, Boissel et al. did not use the 
same anti-CD20 monoclonal antibod-
ies to compare the cytotoxicity of CAR-
expressing NK-92 cells to that of NK-92 
cells primed for ADCC, which may have 
introduced a bias. Indeed, the binding 
affinity of monoclonal antibodies for their 
targets is known to affect cytotoxicity.10 
However, these results confirm and extend 
previous reports demonstrating the superi-
ority of CAR-expressing NK cells over NK 
cells pulsed with TAA-specific antibod-
ies at lysing cancer cells.11 Taken together, 
these observations suggest that administra-
tion of monoclonal antibodies should be 
less effective than that of (NK or T) cells 
engineered to express a CAR based on the 
same molecule. Although no comparison of 
the clinical activity of these two immuno-
therapeutic strategies has been performed, 
T cells modified o express CD19-specific 

CARs have been shown to be clinically 
effective in patients that are resistant to 
a chimeric bispecific antibody targeting 
CD3 and CD19 (blinatumomab).4 Unlike 
antibodies, CAR-modified cells have the 
potential to replicate in vivo, and the long-
term persistence of these cells might under-
lie sustained disease control, eliminating 
the need for repeated infusions.12

The adoptive transfer of NK-92 cells 
expressing CD19-targeting CARs effec-
tively eradicated human SUP-B15, but not 
TMD-5, leukemia cells growing in immu-
nodeficient mice.6 Various hypotheses can 
be put forward to explain this differential 
activity, including variations in the lev-
els of expression of TAAs (in this case, 
CD19) on the surface of leukemia cells, 
the differential sensitivity of SUP-B15 and 
TMD-5 cells to apoptosis as triggered by 
CAR-modified NK-92 cells, and the exis-
tence of specific mechanisms developed by 
TMD-5 cells to escape the antineoplastic 
activity of NK cells. To test the hypothesis 
that TMD-5 cells escape the cytotoxicity 
of CAR-modified NK-92 cells because the 
CAR-bearing NK-92 cells fail to infiltrate 
the neoplastic bone marrow, Boissel et al. 
injected CAR-expressing NK cells directly 
into bone marrow, observing a significant 
antitumor effect locally but not at distant 
sites. Moreover, intravenously injected 
CAR-expressing NK-92 cells were found in 
the peripheral blood and spleen but not in 
the bone marrow, confirming the hypoth-
esis that TMD-5 cells are insensitive to 
this therapeutic approach due to a homing 
issue. To explain such a homing bias at the 
molecular level, it would have been of inter-
est to analyze the integrin and chemokine 

*Correspondence to: Eric Tartour; Email: eric.tartour@egp.aphp.fr
Submitted: 11/01/2013; Accepted: 11/01/2013
Citation: An allogeneic NK cell line engineered to express chimeric antigen receptors: A novel strategy of cellular immunotherapy against cancer. 
OncoImmunology 2013; 2:e27156; http://dx.doi.org/10.4161/onci.27156

An allogeneic NK cell line engineered to express 
chimeric antigen receptors

A novel strategy of cellular immunotherapy against cancer
Cécile Badoual1,2, Pierre-Louis Bastier1, Hélène Roussel1,2, Marion Mandavit1, and Eric Tartour,3

1INSERM U970, Universite Paris Descartes, Sorbonne Paris-Cité; Paris, France; 2Hôpital Européen Georges Pompidou; AP-HP; Service d’Anatomie Pathologique; Paris, France; 
3Hôpital Européen Georges Pompidou; AP-HP; Service d’Immunologie Biologique; Paris, France



e27156-2	 OncoImmunology	 Volume 2 Issue 11

receptor profile of CAR-expressing NK-92 
cells. The relocalization of antigen-expe-
rienced CD4+ T cells to bone marrow is 
dependent on integrin α2β1, a collagen 
receptor.13 However, since CAR-bearing 
NK-92 cells were able to cure SUP-B15 
acute lymphoid leukemia cells (which also 
infiltrated the bone marrow), not only the 
phenotype of NK-92 cells but also features 
of the tumor microenvironment created by 
TMD-5 cells might explain their resistance 
to this immunotherapeutic approach.

Various strategies have been devel-
oped to correct defects in the homing of 
effector T or NK cells within neoplastic 
lesions.14 For example, imatinib, a tar-
geted anticancer agent, stimulates NK 
cells to localize next to foci of malignant 
cells.15 Both the trafficking to neoplastic 
sites and in vivo antitumor activity of T 
cells modified to recognize a peptide 
derived from Wilms’ tumor 1 (WT-1, a 
TAA frequently expressed by pulmonary 
cancers) in a HLA-A24-restricted fash-
ion were improved when these cells were 

engineered to express chemokine (C-C 
motif) receptor 2 (CCR2), which recog-
nizes a chemokine that is highly expressed 
in the lung (i.e., chemokine (C-C motif) 
ligand 2, CCL2).16

The CARs used by Boissel et al. to engi-
neer allogeneic NK cells did not comprise 
the signaling domain of co-stimulatory 
molecules. As domains of this type have 
been shown to promote the persistence of 
adoptively transfer effector cells in vivo, 
they may represent a means to improve the 
antineoplastic activity of CAR-expressing 
NK cells.4,5,12,17 Allogeneic NK cells may 
actually represent a weakness as com-
pared with their autologous counterparts, 
because they may be rapidly rejected. 
However, Boissel et al. provided evidence 
for the expansion of allogeneic NK-92 cells 
in vivo.6 In addition, allogeneic NK cells 
have previously been shown to be efficient 
for the therapy of acute myeloid leukemia.18 
The proof-of-concept for this allogeneic, 
CAR-based immunotherapeutic approach 
has been recently provide in patients 

affected by B-cell malignancies, as donor-
derived allogeneic T cells engineered to 
express CD19-specific CARs were shown 
to induce disease regression in individuals 
that were insensitive to conventional donor 
lymphocyte infusion (DLIs) upon alloge-
neic hematopoietic stem cell transplanta-
tion, and were not associated with no signs 
of graft-vs.-host disease.19 The good safety 
profile of CAR-expressing allogeneic NK 
cells in patients further supports the clini-
cal development of this immunotherapeu-
tic approach.20
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