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This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). 
This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced 
expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles 
of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of 
these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative 
materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, em-
phasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addi-
tion, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, address-
ing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, 
including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted 
for their adaptability to the patient’s anatomy, reducing complications such as cage subsidence. However, this review highlights the on-
going debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this 
review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings 
and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized ap-
proach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in 
LIF and provides insights into current practices and future possibilities in spinal surgery.
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Introduction

Lumbar interbody fusion (LIF) has emerged as a piv-
otal technique for managing various spinal pathologies, 

from degenerative disk disease to spondylolisthesis and 
spinal instabilities [1]. The clinical relevance of LIF lies 
in its ability to restore spinal alignment, relieve neuro-
logical symptoms, and provide long-term stability, rep-
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resenting a significant advancement in spinal surgery. 
The evolution of this procedure reflects the persistent 
search for optimal patient outcomes by balancing surgi-
cal invasiveness with efficacy [2].

The choice of interbody cages, which have evolved 
based on the advancement of biomaterial science, has 
significantly influenced the efficacy of LIF. Various 
biomaterials are used in interbody cage development, 
from traditional materials such as titanium (Ti) and 
polyetheretherketone (PEEK) to newer materials such 
as tantalum. Three-dimensional (3D) printing technol-
ogies and surface modifications using plasma-spraying 
technology have taken interbody cage development to 
the next level [3]. These developments highlight the 
synergistic relationship between surgical techniques 
and biomaterials science, which is crucial for improv-
ing LIF outcomes. More recently, the introduction of 
biodegradable materials and the development of the 
expandable cage technique have further expanded the 
world of interbody cages.

Despite extensive research and clinical applications 
of various cages in LIF, gaps remain in understanding 
the comprehensive effect of cage design and material 
on patient outcomes. Previous studies have often fo-
cused on isolated aspects of cage performance, such as 
subsidence rates or fusion efficacy, without a holistic 
view of how these factors interact with overall spinal 
biomechanics and long-term outcomes [4]. In addi-
tion, no consensus has been reached regarding the 
optimal cage type for specific clinical scenarios, high-
lighting the need for a more nuanced understanding. 
This review aimed to bridge these gaps by providing 
a comprehensive overview of the evolution of cage 
designs and materials in LIF, critically evaluating their 
clinical implications, and identifying areas for future 
research and innovation.

Evolution of Cage Materials in Lumbar 
Interbody Fusion

Early developments and traditional materials

Titanium
The evolution of LIF cages began with the develop-
ment of simple materials and techniques. Earlier cages, 
primarily composed of stainless steel and Ti, were 
designed to provide mechanical stability and facilitate 
bone grafting procedures [5]. Despite challenges such 
as stress shielding and radiopacity, these materials were 
chosen for their strength and biocompatibility. The use 
of cages in spinal procedures was pioneered in the early 

1980s, marking a significant shift from traditional bone 
grafting methods [6,7].

Then, Ti and its alloys became the primary choice 
for cage fabrication because of their favorable prop-
erties, including biocompatibility and ability to pro-
mote bone ingrowth. Ti6Al4V is typically chosen for 
interbody cage production because of its strength, 
corrosion resistance, low density, biocompatibility, 
cost-effectiveness, and compatibility with magnetic 
resonance imaging [8-10]. To improve fusion rates and 
reduce complications, such as cage migration or sub-
sidence, advancements in the design and application 
of Ti cages in the 1990s and early 2000s led to various 
configurations, such as cylindrical and box-shaped de-
signs [7,11].

Despite its widespread use, Ti presents certain chal-
lenges. For example, the mismatch in the elastic modu-
lus between Ti cages and native bone leads to concerns 
about stress shielding, potentially affecting long-term 
implant stability and integration. Seaman et al. [12] 
highlighted that the high elastic modulus of Ti6Al4V 
can lead to cage subsidence and loss of disk height 
restoration. In addition, the radiopaque nature of Ti 
hinders the precise assessment of fusion progression 
using imaging techniques, prompting the exploration 
of alternative materials [13]. Recent advancements in 
3D printing and surface treatment technologies have 
enabled the creation of 3D-printed Ti interbody de-
vices with elastic moduli comparable with those of the 
native bone [14-16].

Polyetheretherketone
The introduction of PEEK has significantly altered the 
use of cage materials for lumbar fusion surgery. PEEK 
is known for its biomechanical compatibility with bone, 
characterized by an elastic modulus that closely mirrors 
that of cortical bone and radiolucency, which facilitates 
postoperative imaging [17-19]. Clinical comparisons 
between PEEK and Ti cages have yielded inconclusive 
results regarding superiority, with each material ex-
hibiting distinct advantages and disadvantages [12,20]. 
Compared with Ti alloys, PEEK reduces stress shield-
ing and bone resorption, mitigating implant loosening 
risks [21,22]. In a meta-analysis, Seaman et al. [12] 
in 2017 revealed comparable fusion rates between Ti 
and PEEK interbody cages but highlighted a 3.59-fold 
higher subsidence likelihood with Ti. Consequently, 
from the perspective of subsidence and stress shielding, 
PEEK has advantages over Ti.

However, the hydrophobic characteristics and bio-
inertness of PEEK may impede its osteointegration 
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[23]. Furthermore, biofilm formation on PEEK cage 
surfaces impedes binding to the host bone, thereby 
hindering solid fusion [24]. PEEK cages have also 
been associated with local inflammation, leading to 
complications such as bone nonunion and osteolysis 
[20,25,26]. Efforts to address these shortcomings have 
led to surface modification of PEEK cages to enhance 
bioactivity [27-29].

Tantalum
Tantalum is increasingly used in orthopedics because of 
its excellent histocompatibility and corrosion resistance 
and shows promise as an interbody fusion cage bioma-
terial [30-32]. Tantalum and its derivatives are superior 
to Ti and its alloys in terms of mechanical strength, 
corrosion resistance, and biocompatibility [33-37]. Tan-
talum exhibits superior osseointegration and antibacte-
rial properties. Among its derivatives, porous tantalum 
has garnered considerable interest because of its elastic 
modulus and porous architecture, which closely resem-
bles cancellous bone [38]. Currently, tantalum and its 
derivatives are effectively employed in artificial joint re-
placements [39], treatment of femoral head necrosis [40], 
and dental material applications [41], benefiting various 
patients. In spinal surgery, the application of tantalum 
extends to the treatment of infectious bone defects and 
anterior cervical discectomy and fusion (Fig. 1) [42-46].

Results from various clinical studies have demon-
strated that porous tantalum cages (PTCs) are effective 
and safe for spinal surgery, offering several advantages. 
In anterior LIF (ALIF), PTCs significantly improve 
lumbar lordosis (LL), reduce back pain, and enhance 
patients’ quality of life without major complications 
[47]. Thoracolumbar burst fractures provide superior 
sagittal profile restoration compared with iliac crest 
bone grafts, with a lower tendency for correction loss 
over time [48]. Thus, PTCs could be a viable alterna-
tive to autologous bone grafting, potentially avoiding 
donor-site morbidity. Furthermore, in posterior LIF 
(PLIF), PTCs show promising results in early bone 
integration and stability, as indicated by computed 
tomography (CT) findings of trabecular bone remod-
eling and lower incidences of vertebral endplate cyst 
formation compared with Ti-coated PEEK cages [49]. 
Collectively, these studies have suggested that PTCs 
can achieve immediate stabilization, facilitate bone 
fusion, and improve long-term outcomes in spinal sur-
gery.

Advancements in 3D printing and surface modification

3D-printing technology
The introduction of 3D-printing technology in spinal 
cage production marks a pivotal development, allowing 

Fig. 1. (A–D) Examples of tantalum cages. Representative cases illustrate the application of tantalum cages, such as 
in a 68-year-old male patient where a tantalum cage was placed in the L1–2 intervertebral space, resulting in artifact 
generation on postoperative computed tomography and magnetic resonance imaging.
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the creation of patient-specific implants with intricate, 
customizable porous structures [50]. It has opened 
new avenues for designing cages that promote bone in-
growth and vascularization, potentially optimizing the 
fusion process [51,52]. By using materials such as Ti, 
3D-printed structures offer a harmonious blend of me-
chanical resilience and biological functionality, demon-
strating the potential to enhance osseointegration and 
reduce the risk of non-device-related reoperation [53-
55]. For example, 3D printing features an elastic modu-
lus closely matching that of the native bone, whereas a 
conventional Ti alloy cage has an approximately 10-fold 
higher elastic modulus [14-16].

The biomechanical superiority of these 3D-printed 
cages has led to favorable results in previous clinical 
studies. Adl Amini et al. [56] showed that 3D-printed 
Ti cages exhibited a significantly lower early subsid-
ence rate than PEEK cages in patients with standalone 
lateral LIF (LLIF). Corso et al. [54] analyzed 186 pa-
tients (50.5% male; mean age, 59.2±12.5 years) with 
a minimum follow-up of 6 months. Of these, 96 were 
treated with 3D-printed Ti implants and 90 with PEEK 
across 186 implant levels, of which 51.6% used 3D-
printed Ti implants [54]. They concluded that in terms 
of non-device-related reoperation events, 3D-printed 
Ti cages demonstrated a minimal risk profile compared 
with traditional non-3D-printed cages. Yang et al. [57] 
reviewed 150 patients who underwent 1- to 2-level 
PLIF with a minimum follow-up of 2 years. Compared 
with PEEK cages, 3D-printed Ti cages achieved signifi-
cantly higher fusion rates at both postoperative 1 (3D-
printed Ti, 86.9%; PEEK, 67.7%; p=0.002) and 2 (3D-
printed Ti, 92.9%; PEEK, 82.3%; p=0.037) years [57]. 
No significant difference was found in the subsidence 
rates between the two materials. These results suggest 
that 3D-printed Ti cages are a viable and safe option 
for PLIF because they provide a stable construct.

Surface modifications
The surface properties of interbody cages significantly 
affect osteointegration. Enhanced surface porosity 
promotes osteointegration by increasing the surface 
area and incorporating osteogenic and angiogenic fac-
tors such as bone morphogenetic protein-2 (BMP-2) 
[58]. Previous studies have demonstrated the clinical 
and radiological advantages of these surface-modified 
interbody cages. Guyer et al. [59] found that porous Ti 
exhibited a stronger implant–bone interface than con-
ventional PEEK and allografts, indicating its superior 
potential for osseointegration and faster achievement of 
spinal fusion stability.

For porous PEEK cages, Torstrick et al. [60] exam-
ined the effects of porosity and pore size on cellular 
responses to PEEK using micro-CT analysis. They 
discovered that porous PEEK exhibited increased cell 
proliferation and cell-mediated mineralization com-
pared with smooth PEEK and Ti [60]. Furthermore, to 
address PEEK’s inherent hydrophobicity and bioinert-
ness, surface modifications incorporating materials 
such as hydroxyapatite (HA), calcium silicate (CS), and 
Ti have been explored to augment PEEK’s bioactivity 
[27-29,61]. Sun et al. [61] investigated the integration 
of soft tissues with HA/PEEK composite scaffolds. 
Although the overall bonding strength was influenced 
mainly by pore size rather than by HA content, HA 
helped enhance the firm adhesion of soft tissue to 
PEEK-based composites, a key factor in preventing 
postoperative effusion [61].

For CS/PEEK cages, Chu et al. [21] used in a goat 
cervical interbody fusion model and demonstrated 
that CS/PEEK cages outperformed pure PEEK cages 
in terms of fusion strength at 12 and 26 weeks in an X-
ray analysis. Micro-CT revealed greater new bone in-
growth with CS/PEEK cages, achieving near-complete 
fusion at 26 weeks. Spine kinematics assays confirmed 
that these cages also exhibited superior mechanical 
stability and stiffness. Histological evaluations have 
highlighted rapid osseointegration and bone formation 
around CS/PEEK cages [21].

Zhu et al. [62] reported that PEEK cages with Ti 
and HA coatings, in contrast to uncoated PEEK cages, 
achieved a significantly higher fusion rates 3 months 
after single-level transforaminal LIF (TLIF). Two re-
cent meta-analyses comparing Ti-coated PEEK cages 
with uncoated PEEK cages in lumbar fusion surgeries 
revealed comparable effects on bone fusion and cage 
subsidence across all follow-up periods, indicating no 
significant differences in patient-reported outcomes 
[27,28]. However, Ti-coated PEEK cages offer the 
combined benefits of Ti and PEEK: an elastic modulus 
akin to that of human cortical bone, enhanced osteoid 
cell growth, and increased cell adhesion space.

According to Torstrick et al. [63], the microstructure 
of surface-coated PEEK, including its pore morpholo-
gy, can be precisely manipulated by varying the size of 
the sodium chloride crystals, with pores adopting the 
cubic shape of the porogen. Their findings suggested 
that introducing a porous surface layer to polymeric 
implants can enhance clinical outcomes while preserv-
ing a sufficient load-bearing capacity [63]. Concerns 
are raised regarding the durability and impaction 
resistance of the coatings mainly because of substan-
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tial impact forces encountered during cage insertion 
into the intervertebral space. Torstrick et al. [60] also 
showed that while porous PEEK devices sustained 
minimal damage during aggressive cervical impaction, 
Ti-coated PEEK devices experienced a significant loss 
in their initial Ti coverage [60].

Biodegradable and composite materials

Recent advancements have also led to the use of biode-
gradable materials, such as polylactic acid (PLA) and 
polycaprolactone (PCL), in the fabrication of spinal 
cages. These materials are designed to degrade over 
time and are ideally replaced by natural bone, thus 
mitigating long-term complications associated with 
permanent implants [64,65]. Although initial applica-
tions face challenges related to mechanical integrity and 
controlled degradation, recent iterations have shown 
promising results. This is evident when these materials 
are used in conjunction with osteoconductive or osteo-
inductive substances to enhance spinal fusion [66,67]. 
The evolution of biodegradable cages continues to be a 
central theme in spinal surgery research, with a focus 
on optimizing their composition and structure to im-
prove clinical outcomes. Given their ability to reduce 
long-term complications associated with traditional im-
plants, biodegradable materials such as PLA and PCL 
are at the forefront of this innovation [3,64,65,68].

Polylactic acid
FDA-approved polyesters PLA and PCL were used as 
primary polymers. The formation of block copolymers 
such as poly L-lactic acid (PLLA), poly-D, L-lactic acid, 
and poly(lactic-co-glycolic acid) (PLGA) is achieved 
through the covalent bonding of different polymer 
units. Among these, aliphatic polyesters, particularly 
PLAs, are the most promising [69-71]. Previous studies 
have confirmed the biocompatibility of PLA with dural 
and neural tissues. More studies have indicated that 
PLA has no detrimental effects on neuronal cells or pH 
alterations during PLA implant degradation at the im-
plantation site [72-75].

Despite their theoretical advantages, a systematic 
review focused on biodegradable implants, predomi-
nantly polylactides, and their comparison with con-
ventional implants showed that the routine clinical 
application of absorbable cages lacks sufficient support 
primarily because of unfavorable long-term fusion 
rates [76]. The inferior clinical outcomes of biodegrad-
able cages are hypothesized to arise from early degra-
dation and loss of strength, leading to osteolysis and 

accelerated cage subsidence [77,78].

Polycaprolactone
Compared with PLA, which is a bulk-degrading poly-
mer [79], PCL is bioerodible and maintains its initial 
elastic modulus and 95% mass for up to 12 months [80]. 
Owing to its superior rheological and viscoelastic prop-
erties to other aliphatic polyesters such as PLLA, poly-
L-lactide-co-d, and L-lactide acid [81], PCL is a prom-
ising candidate for designing slow-degrading implants 
mainly because of its favorable melt extrusion proper-
ties. PCL is distinguished by its superior physicochemi-
cal properties, such as structural stability [82], flex-
ibility [83], biocompatibility [84], and biodegradability 
[85]. In vivo, PCL demonstrates slow degradation, with 
virtually no molecular-weight changes observed after 6 
months [86]. It exhibits greater resistance to degrada-
tion in biofluids than other polymers, and its low cost 
and accessibility add to its advantages [87,88]. PCL en-
hances cell viability and migration more effectively than 
rapidly degradable PLGA-3D scaffolds, as demonstrat-
ed in in vitro and in vivo studies [89]. Coinciding with 
advancements in additive biomanufacturing, PCL has 
gained prominence and become increasingly preferred 
for fabricating biodegradable cages for spinal fusion.

In large preclinical animal studies, a composite of 
PCL with ceramics, specifically calcium phosphate 
(CaP), has emerged as the optimal biomaterial for os-
seous healing in critical-size tibial defects [90,91]. This 
combination results in composite biomaterials with 
improved mechanical properties, controlled degrada-
tion rates, and enhanced bioactivity, making them well 
suited for bone tissue engineering applications [92,93]. 
Bioactive and bioresorbable scaffolds, made from med-
ical-grade PCL incorporated with 20% β-tricalcium 
phosphate (TCP) and bioresorbable PCL scaffolds 
coated with a biomimetic CaP layer plus recombinant 
human BMP-2 (rhBMP-2), have been effectively used 
to achieve interbody spinal fusion in both lumbar por-
cine and thoracic ovine models [66,94]. According to 
Li et al. [95], autograft-free biodegradable PCL–TCP 
composite scaffolds facilitated bone tissue ingrowth 
and maintained mechanical load-bearing capacity after 
implantation, achieving a spinal fusion efficacy com-
parable to that of Ti cages with autografts in sheep an-
terior cervical discectomy and fusion surgeries. Similar 
to PLA, PCL faces the challenge of inferior mechanical 
properties compared with permanent materials such 
as Ti and PEEK. This performance gap becomes more 
evident as degradation occurs, potentially resulting in 
reduced stability over time.
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Future of biodegradable materials
The final goal is to develop cages that offer the best 
strength and durability with eventual resorption and 
replacement by natural bone. The key focus areas in-
clude addressing issues such as premature degradation 
and ensuring adequate mechanical support during 
the critical bone healing and fusion period. Research 
is geared toward developing materials with optimized 
degradation rates, improved mechanical strength, and 
enhanced bioactivity to support the spine until com-
plete osseointegration is achieved. Mechanically, im-
proving the stiffness of PCL scaffolds can be achieved 
by increasing their mineral content, particularly with 
HA. According to Shor et al. [96], adding 25% HA to a 
composite resulted in a 40% increase in the compres-
sive modulus. Furthermore, the stiffness of the PCL/
HA mixture increased proportionally with the HA con-
tent [97].

Unmodified PCL surfaces exhibited limited cell 
adhesion, attachment, proliferation, and bioactiv-
ity. The use of nano-HA coatings, a type of CaP with 
a composition and crystal structure akin to human 
bone, may enhance cytocompatibility [98]. Yong et 
al. [99] indicated that a CaP-coated PCL-based scaf-
fold with 0.54 μg of rhBMP-2 is as effective as an au-
tograft from the rib head. This generated a conducive 
environment for thoracic interbody spinal fusion in a 
sheep thoracic spine model [99]. Recently, Duarte et 
al. [100] showcased a novel biopolymer of PCL doped 
with polydopamine and polymethacrylic acid, which, 
when foamed directly into a bone defect through a 
specialized high-pressure portable device, achieved 
immediate stabilization of osseous components. This 
technique yielded a 3D structure with morphologi-
cal properties similar to those of the trabecular bone, 
showing significant potential for instrumentation-free 
interbody fusion.

Static vs. expandable cages in LIF

Static cages
Static cages, which are predominantly used in LIF, are 
pivotal in addressing degenerative spinal disorders 
[101,102]. The evolution of interbody fusion cages from 
the earliest threaded BAK designs to the current Ti or 
PEEK cages has led to shapes that more closely resem-
ble intervertebral space. This design shift offers larger 
cancellous bone-filling spaces, increased fusion area, 
enhanced load-bearing capacity, and improved stability. 
These cages, characterized by their fixed shape and size, 
are designed for strength and ease of insertion, which 

are crucial elements in lumbar surgery. Their simple 
and robust design provides reliable support to the spi-
nal segment, ensuring a consistent approach for various 
lumbar pathologies [20,103-105].

Recently, physicians and patients has placed a grow-
ing emphasis on minimally invasive surgical tech-
niques for implanting the largest feasible intervertebral 
implant through the smallest possible incision with 
minimal surgical exposure. Compared with the pos-
terior approach, the anterior approach facilitates the 
use of larger bone cages and grafts, demonstrating en-
hanced deformity correction capabilities and superior 
initial stability [106-108]. Significant advancements in 
surgical methods and instrumentation for ALIF and 
LLIF have been observed in the last 50 years. Criti-
cal factors such as cage dimensions, including width, 
length, height, and contact surface area, are pivotal in 
maximizing surface contact and ensuring ALIF and 
LLIF stability [102]. Radiologically, static cages have 
been instrumental in achieving the desired outcomes 
in spinal surgeries. Studies have indicated their efficacy 
in restoring and maintaining segmental lordosis (SL) 
and disk height, which are critical for preserving the 
natural curvature and biomechanics of the spine [109-
111].

Recent developments in endoscopy-assisted spine 
fusion surgeries have demonstrated clinical and radio-
logical outcomes comparable to those of conventional 
open surgery [112-115], emphasizing the need for 
specialized cage designs suitable for minimal incision 
techniques. Recently, Kim et al. [116] demonstrated 
the feasibility of using a larger cage originally designed 
for LLIF in biportal endoscopic TLIF to achieve a fa-
vorable fusion rate (Fig. 2). With the increasing adop-
tion of minimally invasive techniques, technological 
advancements have led to the development of inter-
body devices designed to expand after placement.

Expandable cages
Compared with static devices, expandable cages have a 
minimal profile and can be expanded in situ to reduce 
iatrogenic endplate damage during cage insertion [117]. 
The cages were designed to adjust their size and shape 
to conform to the unique anatomical needs of the pa-
tient’s intervertebral space. Their ability to expand after 
insertion allows for a customized fit and enhanced spi-
nal stabilization, significantly evolving from traditional 
static cage designs.

Expandable cages can be used for TLIF, ALIF, and 
LLIF [118]. Although expandable cages are initially 
implemented in TLIF [119], this procedure can be 
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limited to cases with extensive scarring and high-grade 
spondylolisthesis [4]. Meanwhile, ALIF and LLIF al-
low the insertion of wide and large interbody cages, 
resulting in a greater endplate contact surface than 
TLIF cages [111]. However, the implantation of such 
large cages often requires strong impaction when static 
cages are used. By contrast, expandable LLIF cages 

obviate the need for the forceful impaction associated 
with static spacers, thereby potentially reducing the 
risk of cage subsidence [118].

Radiologically, the use of expandable cages in lum-
bar fusion has yielded promising results. Expandable 
cages have been reported to yield superior disk height 
increments and SL restorations in patients who had 
undergone lumbar fusion compared with static cages 
[120-124]. A study indicated that these cages effective-
ly maintain or improve SL and disk height, which are 
critical factors in achieving optimal spinal alignment 
and biomechanics after surgery. Recent meta-analyses 
indicate that the design of expandable cages plays a 
key role in reducing the incidence of cage subsidence 
in lateral interbody fusion, a frequent complication 
in lateral lumbar surgeries, helping to maintain the 
structural integrity of the fused spinal segment (Fig. 3) 
[125].

Comparative studies and current evidence
Whether expandable cages are associated with im-
proved clinical outcomes in patients with lumbar fu-
sion compared with static cages remains unclear [125-
128]. Three recent meta-analyses assessing the clinical 
outcomes of expandable cages in TLIF revealed no 
significant differences in Visual Analog Scale scores for 
back and leg pain, Oswestry Disability Index (ODI), 
and fusion rates between static and expandable cages 

Fig. 2. The lumbar interbody cages vary in design and size. (A) A titanium 
cage suitable for transforaminal lumbar interbody fusion (LIF) and posterior 
LIF. (B) A larger polyetheretherketone cage designed for oblique LIF, lateral 
LIF, or anterior LIF. Views (C, D) present lateral and axial perspectives of 
two distinct cages. The larger cage measures 15 mm in width and 40 mm in 
length, making it suitable for endoscopic transforaminal lumbar interbody 
fusion, while the smaller cage’s dimensions are 10 mm by 32 mm. From Kim 
JE, et al. World Neurosurg 2023;178:e666-72 [116], with permission from the 
authors.

A

C D

B

Fig. 3. (A) A 71-year-old female patient underwent L4–5 oblique lumbar interbody fusion (OLIF) with a static polyetheretherketone cage 
and exhibited cage subsidence in the 3-month postoperative follow-up X-ray. (B) A 75-year-old female patient received L4–5 OLIF with an 
expandable cage and has sustained proper alignment without any signs of cage subsidence for 3 months.

A B
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[126-128]. Another meta-analysis evaluated the clinical 
outcomes of expandable cages in both TLIF and PLIF 
and found no significant differences in ODI, fusion 
rates, LL, blood loss, and operation time when com-
paring static with expandable cages [125]. However, 
the aforementioned meta-analysis documented the 
role of expandable cages in reducing operative time 
and intraoperative blood loss, thereby contributing to 
faster patient recovery and reduced hospital stays [126]. 
These findings reveal the potential of expandable cages 
to enhance patient comfort and accelerate postsurgical 
rehabilitation and recovery.

Regarding radiological outcomes, expandable cages 
can achieve superior disk height increments and SL 
restoration in patients who had undergone lumbar 
fusion compared with static cages [120-124,126,127]. 
However, a meta-analysis on the radiological outcomes 
of TLIF revealed no statistically significant differences 
in spinal sagittal alignment (SL and LL) or pelvic pa-
rameters [127]. Concurrently, expandable cages have 
been linked to a reduced incidence of subsidence [121-
123,129,130]. This reduction may be attributed to their 
capacity to attain a tailored fit within the intervertebral 
space. However, two recent meta-analyses focusing 
on expandable TLIF cages did not demonstrate any 
significant difference in cage subsidence between static 
and expandable cages [126,127]. Frisch et al. [117] and 
Li et al. [131,132] reported that expandable LLIF cages 
resulted in an expandable group with a significantly 
lower subsidence rate. They also reported increased 
postoperative disk space measurements compared 
with preoperative levels, noting a statistically more 
significant change in static than in expandable cages 
[117,131,132]. This difference may be due to the over-
distraction required for static cage insertion. Conse-
quently, an expandable LLIF cage that avoids forceful 
insertion may help prevent subsidence. More studies 
are needed to determine whether expandable cages ex-
hibit variability in their subsidence prevention efficacy 
based on the surgical technique employed and under-
stand the underlying reasons for such differences.

The association between expandable cages and im-
proved clinical outcomes compared with fixed cages 
in patients who had undergone lumbar fusion remains 
uncertain. Expandable cages have several advantages 
in certain aspects. Therefore, choosing between static 
and expandable cages should be based on patient-
specific factors and surgical objectives. Surgeons must 
weigh these findings against individual patient needs, 
surgical goals, and specific pathology being addressed 
to choose the most appropriate interbody device.

Future directions in cage technology for LIF
As technology continues to evolve, future studies 
should explore the integration of bioactive substances 
into 3D-printed cages. Embedding growth factors or 
osteoinductive materials within the scaffold structure 
may further promote bone growth and fusion [133,134]. 
In addition, ongoing advancements in materials science 
may introduce new biocompatible materials that en-
hance the functionality of 3D-printed cages. The com-
bination of a customizable design and improved mate-
rial properties and integration of bioactive agents are 
poised to significantly advance the efficacy and safety of 
LIF procedures, paving the way for more personalized 
and effective spinal treatments.

Research has increasingly focused on multifunc-
tional coatings that combine osteoinductive properties 
with antibacterial capabilities. The development of 
dual-function coatings could revolutionize LIF proce-
dures by enhancing bone growth and reducing risks 
[135]. Future studies must explore the incorporation 
of novel materials and bioactive agents into these coat-
ings, potentially leading to even greater improvements 
in clinical outcomes. As this field evolves, the focus 
will likely shift toward customizing coatings based on 
specific patient needs and surgical context, further 
personalizing LIF treatments and improving patient-
specific outcomes.

Continuous innovations in material science and 
technology are likely to shape the future of LIF. A 
study focused on developing materials that directly 
deliver targeted therapeutic agents, such as growth 
factors or antibiotics, to the fusion site [20]. In addi-
tion, the exploration of personalized implants tailored 
to each patient’s specific anatomical and pathological 
conditions represents a significant advancement in 
patient-specific care. These emerging materials and 
technologies can significantly improve the efficacy, 
safety, and patient outcomes of spinal fusion surgeries, 
thus marking a new era for treating spinal disorders.

Conclusions

The dynamic evolution of cage technology in LIF repre-
sents a significant advancement in the management of 
spinal disorders, offering spine surgeons diverse tools 
tailored to optimize patient outcomes. The transition 
from the use of traditional materials to the utilization 
of innovative synthetic, biodegradable, and composite 
materials reflects a deeper understanding of biome-
chanics and materials science. Advancements in 3D 
printing and customizable solutions have ushered in an 
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era of patient-specific implants, ensuring a closer match 
between anatomical and pathological conditions. Inves-
tigations on surface modifications, bioactive coatings, 
and emerging materials such as smart biomaterials 
signifies a paradigm shift toward implants that support 
structural integrity and actively participate in the bio-
logical healing process. Moreover, the development of 
static and expandable cages, each with distinct clinical 
and radiological outcomes, highlights the importance 
of personalized treatment strategies for spinal surgery. 
These technological advancements integrated with 
clinical expertise can significantly enhance the efficacy, 
safety, and overall success of spinal fusion procedures, 
marking a pivotal step forward in orthopedic surgery.
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