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Background: Chronic obstructive pulmonary disease (COPD) is a respiratory disease
associated with a systemic inflammatory response. Peripheral muscle dysfunction has
been well characterized in individuals with COPD and results from a complex interaction
between systemic and local factors.

Objective: In this narrative review, we will describe muscle wasting in people with COPD,
the associated structural changes, muscle regenerative capacity and possible mechanisms
for muscle wasting. We will also discuss how structural changes relate to impaired muscle
function and mobility in people with COPD.

Key Observations: Approximately 30–40% of individuals with COPD experience muscle
mass depletion. Furthermore, muscle atrophy is a predictor of physical function and
mortality in this population. Associated structural changes include a decreased proportion
and size of type-I fibers, reduced oxidative capacity and mitochondrial density mainly
in the quadriceps. Observations related to impaired muscle regenerative capacity in
individuals with COPD include a lower proportion of central nuclei in the presence or
absence of muscle atrophy and decreased maximal telomere length, which has been
correlated with reduced muscle cross-sectional area. Potential mechanisms for muscle
wasting in COPD may include excessive production of reactive oxygen species (ROS),
altered amino acid metabolism and lower expression of peroxisome proliferator-activated
receptors-gamma-coactivator 1-alpha mRNA. Despite a moderate relationship between
muscle atrophy and function, impairments in oxidative metabolism only seems weakly
related to muscle function.

Conclusion: This review article demonstrates the cellular modifications in the peripheral
muscle of people with COPD and describes the evidence of its relationship to muscle
function. Future research will focus on rehabilitation strategies to improve muscle wasting
and maximize function.
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INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is the fourth
leading cause of death worldwide and presents a major burden
of disease in middle and high-income countries (World Health
Organization, 2008). COPD is primarily a disease of the respira-
tory system and is diagnosed based on abnormal lung function
evaluated by spirometry (low forced expiratory volume); and
symptoms such as dyspnea, chronic cough and/or sputum pro-
duction (Vestbo et al., 2013). However, impairments in lung
function and breathing only explain one aspect of the disability
experienced by individuals with COPD. There are several sec-
ondary consequences of COPD and skeletal muscle dysfunction
poses a key limitation in these patients. In fact, muscle mass has
been shown to be an independent predictor of mortality from
lung function in people with COPD (Marquis et al., 2002; Schols
et al., 2005). Muscle size and muscle strength are also associ-
ated with important clinical outcomes such as reduced quality of
life (Mostert et al., 2000), greater healthcare resource utilization
(Decramer et al., 1996) and exercise intolerance in this population
(Hamilton et al., 1995; Gosselink et al., 1996).

The concept that skeletal muscle dysfunction could be an
important limitation to exercise capacity in people with COPD
was first described by Killian et al. (1992) in a study where
the symptoms limiting peak exercise capacity were systemati-
cally assessed using ratings of perceived exertion. Approximately
40% of people with COPD had an early termination of exer-
cise due to symptoms of leg fatigue which were greater than
their rating of shortness of breath at the end of a progres-
sive exercise test; and in another 30% of patients, ratings of
leg fatigue and dyspnea were equal. These findings led to fur-
ther investigations of skeletal muscle dysfunction in people with
COPD including examinations of muscle fiber typing (Jobin et al.,
1998; Whittom et al., 1998), mitochondrial enzyme concentra-
tions (Maltais et al., 2000), muscle metabolism (Kutsuzawa et al.,
1995), functional deficits in muscle strength (Gosselink et al.,
2000) and endurance (Serres et al., 1998) and the relationship
between muscle function and peak exercise capacity (Hamilton
et al., 1995; Gosselink et al., 1996). The early literature on skeletal
muscle dysfunction in COPD was summarized in a compre-
hensive review by the American Thoracic Society and European
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Respiratory Society (ATS/ERS, 1999). The body of literature on
skeletal muscle dysfunction has continued to explode and recent
studies suggest that about one third of patients with COPD
exhibit quadriceps muscle weakness (Seymour et al., 2010) and
that muscle weakness and muscle atrophy are observed not only
in moderate to severe disease but also earlier in the course of the
disease (Seymour et al., 2010; Shrikrishna et al., 2012; Kelly et al.,
2013).

Several factors are thought to contribute to the development
of skeletal muscle dysfunction in people with COPD. Low phys-
ical inactivity or the effects of chronic deconditioning is likely
a major factor contributing to muscle dysfunction in patients
with COPD, who tend to be sedentary (Pitta et al., 2005; Watz
et al., 2009). Although a causal link between inactivity and
muscle dysfunction is difficult to establish in COPD, low physi-
cal activity has been associated with quadriceps muscle wasting
even in people with mild airflow obstruction (Shrikrishna et al.,
2012). Typically, muscle disuse atrophy has a pattern of induc-
ing greater lower limb atrophy and weakness compared to upper
limb (de Boer et al., 2008; Pisot et al., 2008). This pattern
has also been observed in people with COPD where hadgrip
strength tends to be better preserved than lower limb strength
(Gosselink et al., 2000; Heijdra et al., 2003). Furthermore, studies
examining muscle strength during and after an acute exacerba-
tion of COPD, demonstrate that muscle weakness is apparent as
early as the third day of the exacerbation (Spruit et al., 2003)
and further decreased by about 5% after 5 days of hospitaliza-
tion. The result of this study also showed that handgrip force
also declined during the hospitalization initially, but did not
decline further with longer hospitalization as it did for quadri-
ceps force (Spruit et al., 2003).These finding suggests that muscle
disuse is an important factor contributing to weakness in people
with COPD.

Other factors that are associated with skeletal muscle dys-
function include the use of oral corticosteroid medications that
causes “steroid-induced myopathy” in COPD (Decramer et al.,
1996); low circulation testosterone (Van Vliet et al., 2005); hypox-
emia (Koechlin et al., 2005), nutritional depletion (Engelen et al.,
1994), oxidative stress (Couillard et al., 2003) and systemic
inflammation (Spruit et al., 2003). Exposure to tobacco smoke,
the main cause of COPD, is also recognized to contribute to mus-
cle dysfunction even prior to the development of lung disease. In
an observational study of over a 1000 healthy young adults (21–36
years old), an inverse relationship between smoking tobacco and
knee extensor muscle strength was reported (Kok et al., 2012).
Furthermore, this study demonstrated that 100 g of tobacco a
week resulted in a reduction of 3% in muscle strength in men
and 5% in women and this association existed independently of
lifestyle physical fitness and body fat percentage (Kok et al., 2012).
In addition, an inverse relationship between smoking tobacco and
increased fatigability (Wüst et al., 2008) and muscle fiber atrophy
(Montes de Oca et al., 2008) has also been described in non-
COPD smokers. These results clearly demonstrate that smoking
has an adverse effect of muscle function even in healthy subjects
without COPD diagnosis. The combination of these factors likely
leads to the complex set of adaptations that is observed in the
peripheral muscles of people with COPD.

The purpose of this narrative review is to describe structural
changes in skeletal muscle of people with COPD and describe the
main mechanisms hypothesized to contribute to muscle atrophy.
The relationship between skeletal muscle dysfunction to physical
function and mobility will also be discussed.

STRUCTURAL CHANGES IN THE SKELETAL MUSCLE
SKELETAL MUSCLE ATROPHY IN COPD
Approximately 30–40% of people with COPD experience mus-
cle atrophy (Schols et al., 1993; Engelen et al., 1994; Vermeeren
et al., 2006) and a proportion of these patients may present
normal body mass since the amount of fat mass is relatively
maintained (Engelen et al., 1999; Eid et al., 2001; Vermeeren
et al., 2006). Loss of muscle mass has been observed at the whole
body level using D-XA and bioelectrical impedance measures,
at the level of individual muscles using computed tomography
(Bernard et al., 1998), magnetic resonance imaging (Mathur et al.,
2007, 2008) and ultrasound (Seymour et al., 2010), as well as
from muscle biopsy studies (Whittom et al., 1998; Gosker et al.,
2002a,b). In an early study by Marquis et al. (2002), it was found
that mid-thigh cross-sectional area measured using CT was a
stronger predictor of mortality than lung function (FEV1) in a
large cohort of patients with moderate to severe COPD. Similarly
Schols et al. (2005) found that fat-free mass but not fat mass was
an independent predictor of survival.

Muscle atrophy has important consequences for mobility, as
muscle strength and power are closely related with muscle size.
Furthermore, the loss of muscle mass and quality have been
shown to have important multi-system consequences in other
chronic disease conditions. For example in diabetes, muscle atro-
phy and fat infiltration is associated with poor glucose tolerance
(Goodpaster et al., 2003) and may also be related to the immuno-
logic status of an individual (Jo et al., 2012). These multi-system
issues require further attention in the COPD population. The
mechanism of muscle atrophy and how it may be accelerated in
people with COPD is a growing area of investigation.

MUSCLE FIBER TYPE
The first study evaluating peripheral muscle fiber types in peo-
ple with COPD was performed by Hughes et al. (1983) using
biopsy analyses from the quadriceps of patients with moderate
COPD. While they did not observe any change in fiber type pro-
portions, they observed a significant atrophy in the type II fibers
that was associated with weight loss. Since then, several stud-
ies have quantified changes in proportion and size in skeletal
muscle fiber types of the lower limb of COPD and they have
mainly focused in the vastus lateralis (VL) muscle. Jakobsson et al.
(1990) showed a reduced percentage of type I fibers in the quadri-
ceps, which was confirmed by the findings of Whittom et al.
(1998). Another study in patients with COPD reported fiber-type
analysis by quantifying myosin heavy-chain (MHC) and myosin
light-chain (MLC) isoforms and observed a significantly greater
proportion of MHC-2B in the VL compared with control subjects
(Satta et al., 1997). They also observed that the pattern of distribu-
tion of MLC isoforms was shifted toward fast isoforms in COPD
patients. A meta-analysis established a pathological proportion of
slow to fast fiber types in people with COPD patients aged 60–70
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years old. The authors evaluated eight studies with 84 patients and
determined that, compared with reference values, a proportion of
type I fibers less than 27% and of type IIX fibers greater than 29%
in the VL could be defined as pathological (Gosker et al., 2007b).
Gosker et al. suggested that COPD patients present a reduction in
the type I fibers that is strongly associated with the severity of the
disease.

Although the precise causes for such changes is not fully
understood, it has been suggested that multiple factors such as
hypoxemia and long-term disuse are related to the higher pro-
portion of type II fibers. Hildebrand et al. (1991) reported that
the high proportion of type II fibers was positively correlated
with hypoxemia suggesting this may be a factor underlying mus-
cle fiber differentiation in COPD (Hildebrand et al., 1991). It also
appears that these changes are more profound in the lower limb
muscles since no changes have been observed in the proportion
of type I fibers of the biceps brachii muscle of people with severe
COPD and matched control subjects (Sato et al., 1997); which
suggests that disuse may play a role in fiber type changes in COPD.

METABOLIC ENZYMES
There is substantial evidence to suggest a decrease in the activity
of key oxidative enzymes in peripheral muscles of COPD patients,
such as citrate synthase and succinate dehydrogenase. Muscle
biopsy from the VL muscle in people with severe COPD have
demonstrated lower oxidative enzyme activity compared with
healthy subjects; however, no significant difference was observed
in the activity of the glycolytic enzyme between COPD and
controls (Jakobsson et al., 1995; Maltais et al., 1996). Other stud-
ies have found increased activity of glycolytic enzymes such as
phosphofructokinase (Whittom et al., 1998). It has been also sug-
gested that hypoxemia contributes to these metabolic alterations
in people with COPD; however, no reversal in the activities of
any enzyme was observed even after long-term oxygen therapy
(Jakobsson et al., 1995). Interestingly, muscle cytochrome oxi-
dase activity is inversely related to arterial oxygen levels (PaO2)
in COPD patients what suggests a compensatory response to
reduced O2 availability to augment ATP production (Wagner,
2006).

MUSCLE CAPILLARITY
The oxidative metabolism in skeletal muscle is dependent on
mitochondrial volume, density and activity and on muscle blood
supply, therefore alterations in the muscle capillary network or
mitochondria can lead to decreased exercise tolerance in COPD.
A study by Simard et al. (1996) reported that the number of cap-
illaries per surface area in the VL of patients with COPD was
53% lower than in age-matched normal subjects. Similarly, Jobin
et al. (1998) observed a lower number of capillaries per square
millimeter and lower ratio of capillaries per fiber ratio in COPD
patients compared with controls. However, when normalized for
fiber cross-sectional area, the number of capillary contacts per
fiber were similar between patients with COPD and control sub-
jects. A possible explanation for the reduced number of capillaries
could be hypoxemia; however, patients from Jobin’s study did not
present with marked hypoxemia either at rest or during exer-
cise. Only recently, Eliason et al. (2010) provided evidence of

a disturbed muscle-to-capillary interface in COPD patients and
a positive correlation between the degree of muscle capillariza-
tion, airflow obstruction and exercise capacity. The authors also
showed that muscle capillarization decreased with the severity
of the disease. Hypoxemia may be a possible explanation for
the reduced vascularization. This hypothesis is strengthened by
findings that COPD patients present an overexpression of the
von Hippel-Lindau tumor suppression protein (Jatta et al., 2009)
that lead to an adverse effect on tissue capillarization and impair
the transduction of hypoxic-angiogenetic transcription factors
such as vascular endothelial growth factor (Kondo and Kaelin,
2001).

MITOCHONDRIA DYSFUNCTION
Although cardiac output and ventilatory limitation have been
observed during exercise in COPD patients (Cuttica et al., 2011),
there is a noteworthy observation that the oxidative capacity
of peripheral skeletal muscle is significant and remains reduced
even following lung transplantation (Lands et al., 1999). Several
studies have suggested that mitochondrial dysfunction exists
in people with COPD. At least three changes in mitochondria
have been suggested: an impairment in density and biogene-
sis, increased oxidative stress and apoptosis (Meyer et al., 2013).
Gosker et al. (2007a) reported a reduction in the mitochondrial
area along with reduced proportion of type I fibers suggest-
ing that the reduction in the number of mitochondria might
be related to changes slow type fibers. The role of oxidative
stress in mitochondrial dysfunction was observed by Puente-
Maestu et al. (2012) and recently reviewed by Kirkham and
Barnes (2013). The highest sources of reactive oxygen species
(ROS) are the alveolar macrophages and activated neutrophils
from the circulation that release superoxide radicals and hydro-
gen peroxide. ROS are chemically reactive molecules containing
oxygen, and include oxygen ions and peroxides. These are natu-
ral byproducts of normal oxygen metabolism and have important
roles in cell signaling and homeostasis. In addition, mitochon-
drial respiration can also generate ROS due to the constant
exposure to sources of inflammatory responses to bacterial and
viral infections within the lungs. For instance, airway epithe-
lial cells exposed to lipid soluble components from the tobacco
induce the production of mitochondria-derived ROS (van der
Toorn et al., 2009). Mitochondrial dysfunction has also been
described in the airway epithelium of chronic cigarette smok-
ers. Hoffmann and coworkers evaluated changes in mitochon-
drial morphology and expression of markers for mitochondrial
capacity in the human bronchial epithelial cell line from ex-
smokers with COPD (GOLD stage IV) and compared with
age-matched smoking and never-smoking controls. Their results
demonstrated that long-term cigarette smoking induces robust
and persistent changes in mitochondrial structure and func-
tion in human bronchial epithelial cells, including increased
fragmentation, branching, density of the matrix and reduced
numbers of cristae. Interestingly, they also showed that most of
these changes persisted upon smoking cessation. The authors
speculated that an attenuated antioxidant response with ele-
vated ROS in COPD may lead to an increased oxidant burden,
possibly contributing to the observed mitochondrial defects in

www.frontiersin.org March 2014 | Volume 5 | Article 104 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Mathur et al. Structural alterations of skeletal muscle in COPD

bronchial epithelial cells from COPD patients (Hoffmann et al.,
2013). Hara and colleagues compared mitochondrial morphol-
ogy in lung tissues from smokers without COPD and from
COPD patients (Hara et al., 2013). Analyzing the electron micro-
scopic of lung tissues, they demonstrated that mitochondria in
bronchial epithelial cells tended to be fragmented in COPD but
not in smokers without COPD, suggesting the fission process
dominancy of mitochondrial dynamics in COPD pathogene-
sis. Tobacco smoke can also affect mitochondrial function in
skeletal muscle. There is evidence that carbon monoxide has
a direct inhibitory effect in vitro on cytochrome c oxidase (an
enzyme related to the ATP synthesis in the mitochondria) activity
in the human VL (Alonso et al., 2003); as well as its clas-
sical effect of oxygen depletion (Young and Caughey, 1990).
Tobacco smoke may also act on muscle mitochondria through
an increased expression of tumor necrosis factor-α (Tang et al.,
2010).

MECHANISMS OF MUSCLE ATROPHY IN COPD
There are several interactive mechanisms that may contribute
to the underlying development of muscle wasting in people
with COPD. For a thorough review of the pathways lead-
ing to muscle atrophy, the reader to referred to the review
by Langen et al. (2013). We present a brief overview of the
major mechanisms that have been studied to date in the section
below.

REGULATION OF MYONUCLEAR TURNOVER
Muscle apoptosis was hypothesized to be one factor underlying
the development of muscle atrophy in COPD, however there are
limited data in this area. Agusti et al. (2002) found that TUNEL
positive nuclei were higher in people with COPD who had a
low BMI; and there was an inverse relationship between TUNEL
and BMI. However, specific measures of muscle size were not
included in this study. Barreiro et al. (2011) found a relation-
ship between muscle mass and apoptotic nuclei in people with
severe COPD but no difference in caspase-3 between the COPD
patients and healthy controls. Lastly, Gosker et al. (2003) found
no evidence of active caspase-3 in muscle fibers of people with
COPD and TUNEL-positive fibers were similar between people
with COPD and healthy controls. However, the authors did report
changes in the muscle fibers indicative of impaired muscle regen-
erative capacity such as the presence of fibrosis and adipocyte
replacement in the muscle tissue.

There are some data to suggest that muscle regenerative capac-
ity may be impaired in people with COPD. Theriault et al. (2012)
described significantly shorter telomere lengths in people with
COPD with low mid-thigh cross-sectional area. Also, people with
COPD who had relatively preserved muscle mass had a signifi-
cantly higher proportion of central nuclei, indicating past muscle
regeneration. Although these results were based on a limited sam-
ple of 16 patients with COPD, they provide some evidence for
exhausted muscle regenerative capacity in people with COPD
who present with low muscle mass. Other markers of mus-
cle regeneration such as Myf5, MyoD and myogenin have been
shown to be similar between COPD patients and controls (Plant
et al., 2010); whereas other studies have found a difference in

these factors between COPD patients and controls; and between
cachetic and non-cachetic patients with COPD (Vogiatzis et al.,
2010; Fermoselle et al., 2012). Myostatin, an inhibitor of muscle
growth, has been shown to be higher in COPD patients compared
with controls (Man et al., 2010; Plant et al., 2010; Ju and Chen,
2012).

REGULATION OF PROTEIN BALANCE
Muscle mass is regulated through a balance of protein synthe-
sis and degradation. In COPD, it is not clear whether protein
synthesis is downregulated, protein degradation is upregulated
or whether muscle mass depletion is a result of both processes.
One of the proteolytic systems which has been studied in COPD
is the ubiquitin-protease system. There is evidence for increased
activation of this system in people with COPD, which may con-
tribute to muscle wasting (Fermoselle et al., 2012; Lemire et al.,
2012). People with COPD who exhibit muscle atrophy also have
increased levels of atrogin-1 and MuRF-1 (muscle ring finger 1),
both of which regulators of muscle atrophy (Plant et al., 2010;
Lemire et al., 2012) as well as regulators FOXO-1 and FOXO-3
(Doucet et al., 2007; Debigare et al., 2010). The autophagy-
lysosome pathway has also been hypothesized to be a factor
in protein degrading leading to muscle wasting in people with
COPD (Hussain and Sandri, 2013). A recent study found evi-
dence for autophagy in the VL and tibialis anterior muscles of
people with COPD (Guo et al., 2013). The number of autophago-
somes was also inversely correlated with FEV1; and the degree
of lipidation of the LCB3 protein was associated with low thigh
muscle cross-sectional area. Further studies are needed to under-
stand the contributions of the ubiquitin-proteasome pathway and
autophagy-lysosome pathway in muscle wasting in COPD.

In terms of protein synthesis, the IGF-1-Akt pathway has been
studied in people with COPD, however the results are conflicting.
Circulating levels of IGF-1 have been shown to be similar between
people with COPD and controls across disease severities (Piehl-
Aulin et al., 2009) and in cachetic vs. non-cachetic patients with
COPD (Debigare et al., 2003). However, during periods of acute
exacerbation, IGF-1 levels have been shown to be decreased (Crul
et al., 2007). The discrepancy in findings may be due to heteroge-
neous patient samples and stability of the disease; periods of acute
exacerbation for example, are known to result in muscle atrophy.

CLINICAL RELEVANCE OF MUSCLE ATROPHY IN COPD
Reduced exercise capacity, poor quality of life, difficulty with
activities of daily living and recurrent acute exacerbation are
not simply the consequence of pulmonary impairment, but also
impacted by peripheral muscle dysfunction.

Although a causal relationship has not been established, sig-
nificant association have been observed between measures of
muscle function, lung function and exercise performance. Lower
quadriceps strength is correlated with lower FEV1 (Bernard et al.,
1998). In addition, lower extremity muscle strength is signifi-
cantly correlated with the 6-min walking distance, incremental
shuttle walk performance, maximal oxygen update and symptoms
on incremental exercise test but not endurance shuttle walking
test performance (Hamilton et al., 1995; Gosselink et al., 1996;
Saey et al., 2003; Steiner et al., 2005). More specifically, reduced
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fat free mass is correlated with decreased walking distance and
maximal oxygen uptake (Schols et al., 1991; Baarends et al., 1997).

Reduced limb muscle strength also contributes to increased
dyspnea, poor quality of life and health status (Shoup et al.,
1997; Mostert et al., 2000); whereas improvement in muscle
strength result in better in quality of life (Simpson et al., 1992).
Furthermore, quadriceps wasting is independently associated
with lower levels of physical activity in early COPD disease
(Shrikrishna et al., 2012). In addition, there is a tendency for
patients with muscle wasting to have higher depression scores
than those without wasting (Chavannes et al., 2005; Al-shair et al.,
2009) although the direction of the relationship is not known. On
one hand, depression could result in altered appetite and decrease
physical activity contributing to muscle wasting. On the other,
muscle wasting could impact the ability to perform activities of
daily living as well as community integration and therefore lead
to depression and isolation.

Although lower extremity strength has received most of the
attention, upper extremity strength is also compromised in indi-
viduals with COPD. The force-generating capacity of upper limb
muscles are reduced in patients with COPD compared to healthy
control (Gosselink et al., 2000). Specifically, arm elevation affects
lung volume and respiratory muscles resulting in reduction in
force-generating capacity (Janaudis-Ferreira et al., 2009). The
reduction in upper extremity muscle strength in COPD con-
tributes to difficulties in performing arm activities.

Finally, there is increasing evidence of impaired postural con-
trol in patients with COPD (Butcher et al., 2004; Beauchamp
et al., 2009; Roig et al., 2009). Although the underlying
mechanisms for reduced postural control among individuals
with COPD remain unclear, many hypotheses have been pro-
posed, including decreased levels of physical activity, periph-
eral muscle weakness and altered trunk muscle mechanics
among others (Butcher et al., 2004; Beauchamp et al., 2009;
Roig et al., 2009). Thus, skeletal muscle dysfunction may play
an important role in the balance impairment in individuals
with COPD.

Impaired exercise capacity and peripheral muscle dysfunction
contribute to increased mortality and reduced health status, even
when accounting for age and lung function status (Marquis et al.,
2002; Schols et al., 2005). Specifically, mid-thigh muscle cross
sectional area, an index of muscle mass has a strong impact on
mortality in individuals with FEV1 of less than 50% (Schols et al.,
2005). Although lower body mass index is a predictor of mortality
in individuals with COPD, loss of muscle has more implications
for survival than loss in other compartments (Schols et al., 2005).
Decramer et al. (1997) also found that lower quadriceps mus-
cle force was more strongly associated with higher utilization
of health care resources compared to pulmonary function and
exercise capacity.

CONCLUSION
Despite COPD being primarily a respiratory disease, these indi-
viduals present with important secondary dysfunction in their
peripheral muscles characterized by muscle atrophy alterations
in muscle fiber type, fiber composition as well as reduction
in oxidative enzymatic activity, capillarity and mitochondrial

dysfunction. These muscle changes have important clinical conse-
quences such as impaired exercise tolerance, low physical activity
and quality of life in people with COPD.
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