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Abstract

Motivation: The evolutionary processes of mutation and recombination, upon which selection operates, are funda-
mental to understand the observed molecular diversity. Unlike nucleotide sequences, the estimation of the recom-
bination rate in protein sequences has been little explored, neither implemented in evolutionary frameworks, despite
protein sequencing methods are largely used.

Results: In order to accommodate this need, here I present a computational framework, called ProteinEvolverABC, to
jointly estimate recombination and substitution rates from alignments of protein sequences. The framework imple-
ments the approximate Bayesian computation approach, with and without regression adjustments and includes a
variety of substitution models of protein evolution, demographics and longitudinal sampling. It also implements sev-
eral nuisance parameters such as heterogeneous amino acid frequencies and rate of change among sites and, pro-
portion of invariable sites. The framework produces accurate coestimation of recombination and substitution rates
under diverse evolutionary scenarios. As illustrative examples of usage, I applied it to several viral protein families,
including coronaviruses, showing heterogeneous substitution and recombination rates.

Availability and implementation: ProteinEvolverABC is freely available from https://github.com/miguelarenas/protei
nevolverabc, includes a graphical user interface for helping the specification of the input settings, extensive docu-
mentation and ready-to-use examples. Conveniently, the simulations can run in parallel on multicore machines.

Contact: marenas@uvigo.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutation and recombination play a central role in acquiring molecu-
lar diversity during the evolution of organisms. Consequently, the
analysis of molecular evolution through the estimation of recombin-
ation and substitution (fixed mutation) rates constitutes a common
object of study in evolutionary biology. Despite a variety of evolu-
tionary methods are available to estimate the recombination rate in
DNA sequences (Arenas, 2021; Martin et al., 2011), none of them
allow it in protein sequences. However, methods to study molecular
evolution in protein sequences are necessary because most of protein
sequencing methodologies [i.e. based on RMN and X-ray diffrac-
tion, among others (see for a review Edman and Begg, 1967; Smith,
2003), some of them developed before than DNA sequencing (see
for a review Strasser, 2010)] and protein databases [i.e. PFAM, PDB
and CATH, among others (see for a review Kwon et al., 2006)], do
not involve DNA sequences. Analyzing protein evolution allows us
to understand the direct consequences of selection from protein

stability and function (Bastolla et al., 2007; Pál et al., 2006; Taverna
and Goldstein, 2002; Wilke, 2012) and resolve phylogenetic rela-
tionships (e.g. Alvarez-Ponce, 2021; Arenas, 2020; Bastolla and
Arenas, 2019; Gabaldón, 2005; Gupta, 1998; Pazos and Valencia,
2008), among others (Patthy, 2008). In this concern, molecular sig-
natures of recombination were detected in proteins, with strong se-
lection against intra-domain recombination (compared to
recombination in protein domain boundaries) to conserve protein
function and folding stability (Meyer et al., 2006; Voigt et al.,
2002), but still the presence of recombination should be quantified
by the estimation of the recombination rate.

The estimation of the recombination rate is not trivial, especially
in data presenting low genetic variation (note that recombination
cannot be detected in absence of substitution events) or lack of
phylogenetic tree discordance among recombinant fragments [a
number of recombination estimation methods are based on this fea-
ture (e.g. de Oliveira Martins et al., 2008) but not always the recom-
bined fragments display different evolutionary histories (Arenas and
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Posada, 2010)]. Thus, the recombination rate can be underestimated
in certain evolutionary scenarios (Martin et al., 2011; Posada and
Crandall, 2001). A recent example is the problematic detection of re-
combination along the SARS-CoV-2 genome due to the relatively
low levels of genetic diversity displayed by this virus (VanInsberghe
et al., 2021). The estimation of the recombination rate can be
affected by the substitution rate and vice versa [note that the recom-
bination rate can exceed the substitution rate in some organisms
such as HIV (Perez-Losada et al., 2015; Shriner et al., 2004) and af-
fect estimations of diverse evolutionary parameters such as the syn-
onymous and non-synonymous substitution rates (Anisimova et al.,
2003; Arenas and Posada, 2010; Del Amparo et al., 2021; Shriner
et al., 2003)]. Therefore, the coestimation of both parameters is con-
venient due to accounting for their parameters interactions (Lopes
et al., 2014).

Indeed, the estimation of the recombination rate could be more
complex at the protein level than at the nucleotide level because of
the usually lower levels of sequence diversity in proteins compared
to DNA (i.e. note that synonymous substitutions are not observed at
the protein level). However, the accuracy of recombination rate esti-
mates from protein sequences respect to estimates from DNA
sequences was not yet formally evaluated. Next, at the protein level,
probabilistic phylogenetic methods to analyze protein sequences
traditionally mimic the substitution process with substitution models
of evolution composed by a 20� 20 exchangeability matrix of rela-
tive rates of change among amino acids and the 20 amino acid fre-
quencies (Arenas, 2015; Yang, 2006), which differ from the non-
coding DNA substitution models (4� 4 exchangeability matrix and
4 nucleotide frequencies) and coding DNA substitution models
(61�61 exchangeability matrix and 61 codon frequencies, stop
codons are often excluded) (Arenas, 2015; Yang, 2006). These mod-
els can also include variation of the rate of change among sites and a
proportion of invariable sites (Yang et al., 1998). In this concern, it
is known that accounting for the best fitting substitution model of
protein evolution is convenient for evolutionary inferences (e.g.
Arenas and Bastolla, 2020; Bordner and Mittelmann, 2014;
Lemmon and Moriarty, 2004) although there is a recent discussion
concerning its specific application to phylogenetic tree reconstruc-
tions (Spielman, 2020). In any case, accounting for the substitution
model of evolution that best fits the data in the estimation of the re-
combination rate with probabilistic methods was found necessary
(Lopes et al., 2014). However, it is yet unclear if the estimation of
the recombination rate with probabilistic methods could be affected
by analyzing different molecular markers (i.e. molecular evolution is
mimicked by different substitution models of evolution).

In general, there is a need for methods that coestimate multiple
evolutionary parameters (especially for evolutionary analyses of pro-
tein sequences) and their implementation into useful evolutionary
frameworks. Coestimation methods usually require algorithms
based on complex models of evolution and present limitations con-
cerning the derivation of analytical formulae or can lead to compu-
tationally too expensive evaluations of likelihood functions
(Beaumont and Rannala, 2004). In such situations, an alternative is
the approximate Bayesian computation (ABC) approach (Beaumont,
2010; Csillery et al., 2010), which considers computer simulations
under complex evolutionary scenarios followed by a statistical ad-
justment for the estimation of parameters without the need of a like-
lihood function. Hence, taking advantage of ABC, we previously
developed an ABC framework for the joint estimation of recombin-
ation, selection [by the non-synonymous/synonymous rate ratio, dN/
dS (Del Amparo et al., 2021)] and substitution rates in coding
sequences that outperformed other methods (including maximum-
likelihood methods) in the estimation of the recombination rate
(Arenas et al., 2015; Lopes et al., 2014). Here, I adapted that ABC
method to the evolutionary analysis of protein sequences and I
implemented it in a user-friendly computational framework called
ProteinEvolverABC. ProteinEvolverABC provides the coestimation
of substitution and recombination rates from multiple alignments of
protein sequences under ABC based on computer simulations of co-
alescent evolutionary histories (coalescent modified with recombin-
ation, demographics and serial sampling) followed by protein

evolution (under a variety of substitution models of evolution). The
framework includes diverse nuisance parameters (simulated under
user-specified prior distributions but not estimated) that are optional
to provide a more realistic modeling (by accounting for their uncer-
tainty), multiple summary statistics designed to extract the evolu-
tionary information from protein sequences and ABC estimation
under both rejection and multiple linear regression approaches. The
framework was evaluated under different levels of substitution and
recombination rates and showed an acceptable estimation perform-
ance. In addition, the framework was able to accurately estimate the
recombination rates observed in coding sequences. As illustrative
practical examples, I applied it to the analysis of some viral protein
families of general interest.

2 System and methods

2.1 ProteinEvolverABC framework
The framework ProteinEvolverABC follows the standards of ABC
to perform parameters estimation through four main steps: specifica-
tion of input information including prior distributions, simulation of
evolutionary histories and protein sequences evolution (upon those
evolutionary histories), computation of summary statistics and, joint
estimation of recombination and substitution rates with the rejection
and regression statistical approaches. Details about these steps are
provided below.

(1) Specification of input information. Despite the ABC approach
has some advantages respect to other analytical approaches in terms of
flexibility when dealing with complex models (Arenas, 2015;
Beaumont, 2010), it also requires some decisions (to be made by the
user) that can affect the estimations. One of them is the specification of
prior distributions for the parameters to be estimated and, optionally,
for nuisance parameters. A list with the main parameters implemented
in the framework is shown in Supplementary Table S1, Supplementary
Material. The prior distribution for any parameter should be wide and
sampled enough to include a sufficient number of simulated data with
parameter values close to the true value (Beaumont, 2010). The user of
ProteinEvolverABC has to specify prior distributions for the recombin-
ation and substitution rates and, optionally, for some nuisance parame-
ters (i.e. amino acid frequencies, heterogeneity in the substitution rate
across sites and proportion of invariable sites) that could help provide
more realistic simulations. Indeed, the user has to specify a substitution
model of protein evolution [that can be previously identified with frame-
works such as ProtTest (Darriba et al., 2011)] and some parameters for
the ABC estimation such as the tolerance (number of simulations used
for the estimation with summary statistics closer to the summary statis-
tics of the study dataset) or the estimation approach (i.e. rejection and
multiple linear regression) (Beaumont et al., 2002). The software docu-
mentation includes detailed recommendations for specifying every input
parameter properly.

(2) The simulation of protein sequences is internally performed
with an adapted version of the simulator ProteinEvolver (Arenas
et al., 2013) to ABC. This simulator produces multiple alignments of
protein sequences by the following two steps: (i) simulation of evolu-
tionary histories with the coalescent modified with recombination
and demographics (Hudson, 1983; Kingman, 1982), where note that
the coalescent allows a rapid computation (Arenas, 2012) that is
convenient for ABC methods that usually require a large number of
simulated data to properly explore the parameters landscape
(Beaumont, 2010) and, (ii) simulation of protein sequence evolution
upon the previously simulated evolutionary histories under a user-
specified substitution model of protein evolution (Supplementary
Table S1) (Arenas, 2012; Yang, 2006), optionally including substitu-
tion rate variation among sites and proportion of invariable sites
(Yang, 1994). ProteinEvolver is based on previous coalescent simu-
lators (Arenas and Posada, 2007; Arenas and Posada, 2010) and has
been widely used and validated (e.g. Arenas and Bastolla, 2020;
Arenas et al., 2013; Arenas et al., 2017; Pascual-Garcia et al., 2019).
The simulations are parameterized sampling from the user-specified
prior distributions (Supplementary Table S1) and, conveniently, can
run in parallel on multicore computers.
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(3) The framework ProteinEvolverABC implements a total of 16
summary statistics to extract the evolutionary information from the
observed and simulated protein data (Supplementary Table S2;
Supplementary Material). The summary statistics comprise the
mean, standard deviation, skewness and kurtosis of diversity, hetero-
zygosity and pairwise sequence identity. They also include the num-
ber of segregating sites and three fast recombination tests [pairwise
homoplasy index (Bruen et al., 2006), neighbor similarity score
(Jakobsen and Easteal, 1996) and maximum chi-squared (Maynard
Smith, 1992)]. Some of these summary statistics (i.e. heterozygosity)
are based on a previous ABC study to estimate substitution and re-
combination rates from codon sequences with acceptable error
(Lopes et al., 2014) and were adapted here to the analysis of protein
sequences.

(4) Finally, ProteinEvolverABC estimates the substitution and re-
combination rates with the abc R library (Csillery et al., 2012). In
particular, the framework estimates (i) the population recombin-
ation rate q ¼ 4Nrl (McVean et al., 2004), where N is the effective
population size, r is the recombination rate per site and l is the se-
quence length; (ii) the population amino acid substitution rate h ¼
4 Nml, where m is the substitution rate per site. Before performing the
estimation, the framework includes some goodness-of-fit analyses
that are useful to evaluate the fitting of the simulation model with
the observed data and the information provided by every summary
statistic. The implemented goodness-of-fit analyses include (i) dis-
tance between the distribution of summary statistic values from
retained simulations and summary statistic value of the observed
data for every summary statistic, (ii) evaluation of summary statistic
values (for every summary statistic) with corresponding parameters
(recombination and substitution rates) values of the simulation and,
(iii) the two first principal components of a principal component
analysis based on all the summary statistics from a sample of all the
simulations, retained simulations and observed data (Csillery et al.,
2012). Further details about the implemented goodness-of-fit analy-
ses can be found in the documentation and illustrative examples dis-
tributed with ProteinEvolverABC. The ABC estimation can be
performed with the rejection and weighted multiple linear regression
approaches, which are well established in the field (Beaumont, 2010;
Beaumont et al., 2002; Blum and François, 2010; Csillery et al.,
2010).

In practice, the user has to specify the number of simulations, the
prior distributions for the parameters of interest, the tolerance level
and the estimation approach, as well as other minor options. The
framework is distributed with a documentation that includes
detailed recommendations, and illustrative examples, about the
specifications (see also next section). In general, a total of 50 000
simulations can be a good starting point (see next section), but of
course some datasets (especially those presenting low sequence iden-
tity) may require more simulations.

The framework ProteinEvolverABC runs on the command line
but includes a graphical user interface (GUI) to facilitate the input
parameterization of the whole estimation procedure. Because the
simulation step is usually slow, the framework can run the simula-
tions in parallel on multicore machines, which allows a reduction of
the computation time (see later). ProteinEvolverABC consists of a
pipeline written in Java (GUI), C, Perl and R, and it is freely avail-
able from https://github.com/miguelarenas/proteinevolverabc. The
package includes executable files, source code, detailed documenta-
tion and illustrative examples with input and output files.

2.2 ProteinEvolverABC validation
Despite a previous ABC study already showed accurate coestimation
of recombination and substitution rates (even more accurate than
maximum-likelihood methods) in the analysis of protein-coding data
(Lopes et al., 2014), here I performed an evaluation of
ProteinEvolverABC under different evolutionary scenarios based on
multiple combinations of substitution and recombination rates. I
simulated protein sequences under different levels of q [0, 30, 60
and 90, which are levels of recombination that can be observed in
nature (e.g. Arenas et al., 2016; Carvajal-Rodriguez et al., 2006;
Lopes et al., 2014)] and h [50, 100, 200, 300 and 400, which involve

a wide range of sequence identity (from above 0.9 to below 0.6) fit-
ting with observations in nature (e.g. Cornish-Bowden, 1977;
Pascual-Garcia et al., 2010)], for alignments of 25 sequences with
500 amino acids, assuming a fixed effective population size of 1000
individuals (Carvajal-Rodriguez et al., 2006) and the JTT empirical
substitution model of protein evolution (Jones et al., 1992). For
every combination of parameters [4�5¼ 20 combinations, which
are more combinations than those evaluated in (Lopes et al., 2014)],
I simulated 100 multiple sequence alignments (test datasets). Next,
the framework was used to estimate q and h in the test datasets
under ABC based on a total of 50 000 simulations parameterized
under the following prior distributions: q ¼ Uniform(0,120) and h ¼
Uniform(0,500), which are prior distributions wider than those used
in (Lopes et al., 2014) and encompass values that are commonly
observed in real data (e.g. Carvajal-Rodriguez et al., 2006; Monteiro
et al., 2021; Perez-Losada et al., 2011; Perez-Losada et al., 2009;
Stumpf and McVean, 2003). Following previous works (Arenas
et al., 2015; Lopes et al., 2014), ABC estimates were obtained
assuming an acceptance rate of 0.2% (100 points) in the adjustment
with the rejection and the weighted multiple linear regression
approaches. The validation of ProteinEvolverABC showed that the
parameter estimates are generally accurate (the true values usually
fell within the 95% confidence interval of the estimates; Fig. 1) and
in good agreement with previous ABC methods (Arenas et al., 2015;
Lopes et al., 2014). In particular, the results indicate that both
parameters can be accurately estimated using 50 000 computer sim-
ulations under any implemented ABC estimation approach (rejection
and multiple linear regression). As expected, the estimation of the re-
combination rate was more difficult at low levels of substitution and
recombination rates (in agreement with Posada and Crandall, 2001)
(see Fig. 1A with h ¼ 50 and q ¼30) showing a small overestimation.
Increasing the number of simulations to 100 000 overall improved
the accuracy of the estimations (also reduced the overestimation of
the recombination rate at low levels of substitution and recombin-
ation rates) (Supplementary Fig. S1; Supplementary Material) but
still, in general, 50 000 simulations were enough to obtain accept-
able estimates concerning accuracy.

Since additional comparisons of accuracy of estimated recombin-
ation and substitution rates between ProteinEvolverABC and other
evolutionary frameworks cannot be performed yet due to the lack of
frameworks implementing these estimations in protein sequences,
next I evaluated the accuracy of ProteinEvolverABC in the estima-
tion of the recombination and substitution rates present in coding
data. The aim is to evaluate the bias of estimating these parameters
from protein sequences respect to the codon level. I applied the
CoalEvol framework (Arenas and Posada, 2014) to simulate coding
sequences under different levels of q (0 and 60) and h (50, 200 and

Fig. 1. Accuracy of ProteinEvolverABC in the estimation of recombination and sub-

stitution rates under different evolutionary scenarios and based on ABC with 50 000

simulations. For each studied combination of q and h (evolutionary scenario based

on 100 simulations) the figure shows the estimates of q (above) and h (below). The

black bars indicate the true value. Clear and dark grey bars correspond to the mode

of the estimated posterior distributions (using the rejection and multiple linear re-

gression approaches, respectively, both based on 50 000 simulations) and error bars

indicate the 95% confidence interval
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400) for alignments of 25 sequences with 500 codons (1500 nucleo-
tides), assuming a fixed effective population size of 1000 individuals
(Carvajal-Rodriguez et al., 2006) and the GY94 substitution model
of codon evolution with dN/dS ¼ 1 (Goldman and Yang, 1994). For
every combination of parameters (2� 3¼6 combinations), I simu-
lated 100 multiple sequence alignments. Next, the multiple align-
ments of codon sequences were translated to protein sequences
considering the universal genetic code. Finally, ProteinEvolverABC
(using the previously described parameterization of prior distribu-
tions, total number of simulations and acceptance rate) was applied
to estimate the recombination and substitution rates. The accuracy
of ProteinEvolverABC in estimating recombination and substitution
rates observed in coding data differed between these parameters.
The recombination rate was accurately estimated (Fig. 2), suggesting
that the framework can capture signatures of recombination
observed at the nucleotide level. However, the substitution rate was
underestimated, especially when it is large (Fig. 2). This means that
the substitution rate occurring at the nucleotide level cannot be esti-
mated at the protein level. This is not surprising because note that
synonymous codon substitutions are not transferred to protein
sequences. In any case, users of ProteinEvolverABC should take this
issue into account.

2.3 Illustrative application to viral protein families
As illustrative practical examples of the application of
ProteinEvolverABC (and also to provide an idea about running
times) I analyzed 8 real datasets of viral protein families (Table 1).
These protein families include coronaviruses [motivated by the cur-
rent pandemic and since they have shown genetic signatures of re-
combination (e.g. Graham and Baric, 2010; Zhu et al., 2020)] and
aspartyl proteases [due to its interest as a molecular target of anti-
retroviral therapies (e.g. Ghosh et al., 2016; van Leeuwen et al.,
2003) and where recombination could favor the emergence of resist-
ance to therapies (e.g. Fraser, 2005; Shi et al., 2010)]. Indeed, note

that the coalescent can be used to mimic virus evolution (Bouckaert
et al., 2019; Pybus and Rambaut, 2009). All the protein families
were downloaded from the PFAM database (Finn et al., 2014) and
realigned with MAFFT (Katoh and Standley, 2013). I ran a total of
50 000 simulations under the prior distributions used for the analysis
of the simulated data (see above). The analyses of these datasets
took several hours and, as expected, they ran faster when using more
cores (Supplementary Fig. S2; Supplementary Material). In particu-
lar, increasing the number of processors always reduced computer
times, especially in big datasets where simulations (which are paral-
lelized) require more time. However, the decrease of computer time
as a function of the number of processors was not linear
(Supplementary Fig. S2) because other ABC phases could not be par-
allelized. Also as expected, bigger datasets, with more and longer
sequences, required longer computer times (Supplementary Figs S2
and S3AB; Supplementary Material). By contrast, the computer time
was similar for different substitution models of protein evolution
(Supplementary Fig. S3C), which was also expected since all the em-
pirical substitution models of protein evolution present exchange-
ability matrices with same dimension (20�20) (Arenas, 2015;
Yang, 2006). The goodness-of-fit analyses produced acceptable
results with summary statistics of real data within the distribution of
summary statistics of simulated data (including retained simulated
data; Supplementary Figs S4–S11, Supplementary Material). The
results (Table 1) showed that both recombination and substitution
rates are heterogeneous among coronavirus protein families and that
the aspartyl protease protein family presents a high recombination
rate in agreement with previous observations (e.g. Speranskaya
et al., 2012; Sun et al., 2019).

3 Discussion

There is a general need for evolutionary frameworks implementing
the estimation of the recombination rate in protein data. Motivated
by this aspect, here I introduce an ABC framework for the coestima-
tion of substitution and recombination rates from a multiple align-
ment of protein sequences. The user can specify diverse prior
distributions for a variety of evolutionary parameters (including nuis-
ance parameters, Supplementary Table S1) and perform ABC estima-
tion under both rejection and multiple linear regression approaches
considering protein data simulated under an empirical substitution
model of protein evolution (among a variety of implemented substitu-
tion models; Table S1) upon coalescent evolutionary histories with
and without recombination. An advantage of using computer simula-
tions in an analytical approach is to consider the influence of parame-
ters interactions in their estimation, which is often omitted in other
analytical methods such as maximum likelihood (Li and Stephens,
2003). However, ABC estimation methods usually require computa-
tional efforts due to the large number of simulations necessary to
cover the parameters landscape described by the prior distributions
(although if the user has prior information can reduce the range of the
prior distribution and/or choose an informative prior distribution
sampling frequently near to the true parameter value, thus reducing
the required number of simulations), but the accuracy of the estimates
may justify the effort. Similarly to the preceding ABC methods of
ProteinEvolverABC (Arenas et al., 2015; Lopes et al., 2014), I found
that ProteinEvolverABC provides accurate estimates under different
evolutionary conditions. In addition, it can estimate the recombin-
ation rate that is observed at the nucleotide level, although (as
expected) it underestimates the substitution rate observed at the nu-
cleotide level. However, but comparably to other estimation methods,
the user has to consider that the accuracy of the estimates provided by
ProteinEvolverABC could be affected by processes ignored in the
framework such as a small population size (note that the coalescent
requires a much larger population size compared to the sample size),
among others. Moreover, analyzing protein fragments (i.e. domains)
is not recommended, especially if the fragment is conserved, because
of the lack of evolutionary information that could produce statistical-
ly unsupported estimates. In general, the user of an evolutionary
framework (including ProteinEvolverABC) should be cautious inter-
preting the results, take into account the estimated credible interval

Fig. 2. Accuracy of ProteinEvolverABC in the estimation of recombination and sub-

stitution rates present in coding data. For each studied combination of q and h (evo-

lutionary scenario based on 100 simulations) the figure shows the estimates of q
(above) and h (below). The black bars indicate the true value (recombination and

substitution rates present in coding data). Clear and dark grey bars correspond to

the mode of the estimated posterior distributions (using the rejection and multiple

linear regression approaches, respectively, both based on 50 000 simulations) and

error bars indicate the 95% confidence interval
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and consider that other biological processes can affect the estimates.
Indeed, care should be taken when specifying ABC settings such as
number of simulations, prior distributions or tolerance. In this con-
cern, ProteinEvolverABC is distributed as a package with a GUI that
helps to specify the entire analysis, a detailed documentation that
includes theory, usage and recommendations about the input parame-
ters and, several illustrative practical examples. Concerning the prior
distributions, in absence of previous biological information the user
may specify uniform distributions. However, if there is any prior in-
formation (i.e. a suspected low substitution rate) the user can define
more precise prior distributions that could improve the accuracy of
the estimation (Beaumont, 2010). In any case, the prior distributions
should include biologically reasonable parameter values and prior
expectations of the parameter values in the study data. In general, I
recommend applying by default the settings presented in the valid-
ation section (50 000 simulations and acceptance rate of 0.2%).
However, for complex real data (i.e. data presenting very high or low
genetic diversity), increasing the number of simulations and accept-
ance rate [i.e. up to 10 times (following Lopes et al., 2014)] can be
useful to obtain more accurate estimates. Indeed, repeating an analysis
increasing the number of simulations, exploring different acceptance
rates or even a different set of the implemented summary statistics
(evaluated with the goodness-of-fit analyses), can help in finding a
proper input parameterization to obtain reliable estimates. As illustra-
tive examples, the framework was applied to several viral protein
families, especially from coronavirus. Coronavirus protein families
showed contrasting recombination and substitution rates. It is re-
markable the low recombination rate estimated for the protein fami-
lies NS12.7 (studies involving recombination in this protein were not
found) and viroporins [in agreement with the minor recombination
events detected in (Lulla and Firth, 2020) and that can be expected
due to conservation for maintaining viral pathogenicity (Nieva et al.,
2012) and thus being ideal target for antiviral treatments (Nieva
et al., 2012)] and, the large recombination rate estimated for the rep-
licase NSP7 [where recombinant forms of SARS-CoV NSP7 and
NSP8 could greatly improve the association of these proteins (te
Velthuis et al., 2012)]. Concerning the aspartyl protease protein fam-
ily, it presented a high recombination rate that agrees with previous
studies (e.g. Speranskaya et al., 2012; Sun et al., 2019).

Data Availability

ProteinEvolverABC is freely available at https://github.com/migue-

larenas/proteinevolverabc.
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