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Abstract: Transient receptor potential (TRP) channels transduce signals of chemical irritation and
temperature change from the ocular surface to the brain. Dry eye disease (DED) is a multifactorial
disorder wherein the eyes react to trivial stimuli with abnormal sensations, such as dryness, blurring,
presence of foreign body, discomfort, irritation, and pain. There is increasing evidence of TRP
channel dysfunction (i.e., TRPV1 and TRPM8) in DED pathophysiology. Here, we review some of
this literature and discuss one strategy on how to manage DED using a TRPM8 agonist.
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1. Emerging Concepts of Neural–Sensory Mechanisms in Dry Eye

Dry eye disease (DED) is a multifactorial disorder of the ocular surface, and especially of the
sensory and motor nerves that regulate the physiology of this surface [1]. It is an economic burden
to society, as it affects 5–30% of the population in a wide range of age groups [2]. Considering the
pathophysiology of DED, the treatment strategy has shifted from just hydrating and lubricating the
ocular surface to modifying the underlying disease process. Traditionally, aqueous tear deficiency is
considered one of the major symptoms of DED, which is caused by a deficit of lacrimal and conjunctival
tear secretion [3]. Recently, increased attention has focused on the neuronal regulation of glandular
tear secretion [3–5]. Studies also show that thermal changes at the ocular surface activate cool neurons
and may affect surface wetness [6–8].

2. TRP Channels Related to Cooling Sensation in DED

Transient receptor potential (TRP) cation channels are associated with the perception of chemical
irritation and temperature change [9]. These channels are classified into six subfamilies: (1) TRPC
(canonical); (2) TRPV (vanilloid); (3) TRPM (melastatin); (4) TRPP (polycystin); (5) TRPML (mucolipin),
and (6) TRPA (ankyrin) [10]. For the ocular surface, TRP channels have been identified in the cornea
(TRPV1-4, TRPA1, TRPC4, and TRPM8), in the conjunctiva (TRPV1, TRPV2, and TRPV4), and in
the eyelid TRPM8 (Figure 1) [10–13]. In addition, TRP receptors are differentially expressed in the
corneal epithelium (TRPV1, TRPV3, TRPV4, TRPM8, and TRPC4), stroma (TRPV1, and TRPM8), and
endothelium (TRPV1, TRPM8, and TRPA1) [11,14]. Within the TRP family, TRPM8 is a cold-sensing
receptor (cold thermoreceptor), with a threshold of ~25 ◦C, and located on nerve endings of the
ophthalmic branch of the trigeminal nerve [8]. TRPM8 receptors appear to be first activated on the
ocular surface after evaporation of the tear film [15]. The receptor is highly sensitive to dynamic
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temperature reduction and is also stimulated by cooling agents, such as menthol and icilin [16].
These cold-sensitive ocular thermoreceptors are the only TRP receptors that exhibit tonic, spontaneous
activity. The discharge of these afferents may regulate basal tear secretion by sensing eye wetness [17].
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Dysfunction of TRPM8-mediated sensing of evaporation-induced temperature and osmolarity
change in the corneal surface has been suggested as a possible pathophysiological mechanism in
DED [15]. TRPM8 knock-out mice showed a reduction in basal tear secretion [8]. Corcoran et al. [18]
showed that perception of cold was modified in patients with DED compared to healthy subjects.
The altered sensitivity was not seen in corneal mechanoreceptors. Recently, Alcalde et al. [19] found
in studies on mice that aging impairs activity of high-threshold cold thermoreceptors, which makes
the ocular surface more sensitive to stimuli and ocular irritation, and to tearing. These findings
substantiate the hyperactivity of the cold thermoreceptor on the cornea as one of the risk factors that
cause abnormal lacrimation and contribute to the high incidence of DED in aged people. It is not clear
if the manifestations of changes seen in temperature sensitivity of DED patients are triggered by the
disease process or just epiphenomenon. The consensus view at this time is that abnormal TRPM8
reactivity on the cornea triggers irritation.

3. TRP Channels Related to Ocular Pain in DED

According to a TFOS DEWS II report, the revised definition of DED included neurosensory
abnormalities emphasizing the importance of neural regulation of tearing as well as pain
sensing [1,15]. Researchers focus on corneal nociceptors (polymodal nociceptors) as initiators of
DED pathophysiology [15,20]. The coding of sensory neural circuits has been intensively studied [21].
The distributions and morphological specialization related to the function of TRPV1, and TRPM8
ion channels on the cornea have been dissected [22]. For example, Alamri et al. [22] showed that
corneal polymodal nociceptors have TRPV1-positive small ramifying nerve endings, whereas the cold
thermoreceptor has TRPM8-positive large complex endings. TRPV1 has also been detected in human
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corneal epithelial and conjunctival cells [13,23]. Generally, it is known that TRPV1 plays a role in
DED, since it can be activated by hypertonic challenge, which in turn leads to an increased release
of pro-inflammatory cytokines [24,25]. In addition, the functional transduction of the heat, irritation,
and pain signal from the ocular surface has been validated for TRPV1 [21,26]. Polymodal nociceptors
in the eye that preferentially contain neuropeptides are expressed through a TRPV1 channel, and those
without neuropeptides are expressed through a TRPA1 channel [8,20,27,28]. These two channels are
considered major detectors of external irritants, endogenous mediators, and heat on ocular surface [29].
In a murine dry eye model, the TRPV1 channel plays a major role in hypertonic saline-induced
nocifensive behavior, while the TRPM8 channel is less important [30]. TRPM8 immunofluorescence is
dense in the cornea and eyelid skin, but not on the conjunctiva [12,26].

4. Modulation of TRP Channels in DED

The cornea and conjunctiva of DED patients display abnormal hypersensitivity to normally
harmless cold stimuli (cold allodynia) [31]. In this context, the use of TRPM8 antagonists could be a
strategy of treatment. The utility of cooling for relieving dysesthesia and pain in DED is uncertain.
In studies on humans, cooling relieved post-cataract surgery pain and cooled-artificial tears provided
relief by decreasing corneal and conjunctival sensation measured by esthesiometry [32,33]. In addition,
an ice pack applied to the orbit reduced the pain of injury, suggesting that TRPM8 activation is
beneficial for discomfort [33]. For confirmation of the benefits of cooling, it must be accurately stated
how a TRPM8 agonist applied to the ocular surface will affect sensation or discomfort in patients
with DED. In animal models of DED, menthol, a TRPM8 agonist, was shown to accentuate the
cooling sensation [17]. However, TRPM8 agonists, such as menthol and icilin, have limited value
in ocular studies in humans. After a brief episode of cooling, menthol vapors irritated the eye and
menthol solutions caused significant discomfort in patients [34]. Icilin, a more potent TRPM8 agonist
than menthol, is not soluble in any ophthalmic vehicles and is, hence, difficult to deliver to target
receptors [12,35].

Borneol, a bicyclic monoterpenoid compound widely used in traditional Chinese medicine,
has been introduced as a TRPM8 agonist that could be used in DED treatment by increasing corneal
wetness in a temperature- and dose-dependent manner [36]. By studying human conjunctival epithelial
cells, researchers found that thyronamine, an endogenous thyroid hormone metabolite, activated the
TRPM8 channel and prevented the capsaicin-induced activation of the TRPV1 channel [37]. In addition,
the effect of thyronamine has been validated in human corneal epithelial cells, suggesting this molecule
as a novel endogenous modulator of TRPM8 in the ocular surface [38,39]. The antagonism of TRPM8
by N-(3-aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl) benzamide (AMTB) has
also been considered for DED treatment, since evaporative cooling and hyperosmotic stimuli trigger
dry eye pain as well as blinking [40]. However, an undesirable side effect of antagonists may be
the reduction of tear secretion [8]. For example, the ocular application of the TRPM8 antagonist
(N-(4-tertiarybutylphenyl)-4-(3-chloro-pyridin-2-yl)-tetrahydropyrazine-1(2H)-carbox-amide) (BCTC)
decreases the response to corneal dryness by 45–80% [4]. An experimental human study with systemic
dosing of a selective TRPM8 antagonist [(R)-3-[(1-(4-fluorophenyl)ethyl)(quinolin-3-ylcarbonyl)amino]
methylbenzoic acid] found no ocular symptoms when given to 22 volunteers [41]. Other strategies
for modulating DED via TRP channels have been described and await proof of concept in clinical
studies [42–44].

5. Novel Application of a TRPM8 Agonist in DED

The dialkylphosphorylalkane (Dapa) cooling agents, first described in 1978 [36], are attractive for
ocular applications because some of these analogs are soluble in water at 0.5 to 5 mg/mL and provide
refreshing sensations of cooling. A new Dapa TRPM8 agonist that relieves signs and symptoms of
DED was described [12]. The chemical is 1-diisopropylphosphorylnonane (CAS Registry Number
1503744–37–8-7), which is called cryosim-3 (C3) (Figure 2A). C3 is an ideal candidate since it has high
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selectivity for TRPM8, no overt irritation, and has an optimal duration of drug action on the ocular
surface. Topical administration of C3 to the closed eyelids by wiping quickly induced coolness on
the periocular surface, and the cooling sensation lasted for more than 40 min by a single application
(Figure 2B). C3 improves the symptoms of DED and basal tear secretion significantly without any
adverse effects, such as ocular irritation or pain (Figure 2C,D). Corneal sensitivity measured by
Cochet–Bonnet esthesiometry was not affected by application of 2 mg/mL solution of a related
analog, 1-di-sec-butylphosphorylpentane, onto the closed eyelid by aerosol spray [unpublished data].
In addition, 5 µM of this analog did not inhibit hNav1.7 (sodium channels) in vitro, indicating the
absence of lidocaine-like anesthetic activity. The method of drug delivery, that of wiping ~20 µL of
solution per eye to the ocular margins where TRPM8 is expressed, avoids stimulation of the corneal
polymodal neurons [20,45]. Minimizing bolus contact with the corneal nociceptors that cause sting,
irritation, and pain is a critical factor that leads to the success of the wiping method of TRPM8
agonist delivery.
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Figure 2. Chemical structure and function of C3. (A) Structure of 1-diisopropylphosphorylnonane,
cryosim-3 (C3). (B,C) Visual analogue scale (VAS), (B) dry eye symptom score, and basal tear secretion
(C) after single application of vehicle or C3. (D) Ocular surface disease index (OSDI) score, and basal
tear secretion after application of vehicle of C3 four times a day for 2 weeks. * P < 0.05, ** P < 0.01,
compared to baseline value or vehicle (Adapted from Yang et al. [12]).

6. Conclusions

The treatment of DED becomes more challenging as people are frequently exposed to high
evaporative environments. Working in front of the computer decreases the blinking rate, thereby
increasing tear evaporation, which may cause dry eye-related symptoms, such as computer vision
syndrome. TRP channels can be activated by trivial stresses that we encounter in daily life. So far, the
translation of research findings for DED treatment has not been clearly defined in the field of TRP
channels. It would be interesting to know whether TRP expressing sensory nerves and their function
is preserved in patients with DED or DED-related conditions, and whether TRP modulation has the
potential to treat DED in such patients. The manipulation of these TRP channels on the ocular surface
may provide novel options for treating DED, especially to those refractory to conventional strategies
of surface lubrication and anti-inflammatory agents. We expect to further elucidate the C3 therapeutic
strategy in DED patients, including patients with Sjogren’s syndrome and neuropathic pain.
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