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Colorectal cancer (CRC) is the third cause of cancer-related death and the fourth most frequently diagnosed cancer across the
globe. The objective of this study is to obtain novel and effective diagnostic markers to enrich CRC diagnosis methods. Herein,
exosomal miRNA expression data of CRC and normal blood were subjected to XGBoost algorithm, and 5 miRNAs related to
CRC diagnosis were primarily confirmed. Then multilayer perceptron (MLP) classifiers were constructed based on different
subsets. Via integrated feature selection (IFS), we noticed that the MLP classifier constructed by the first four miRNAs (miR-
654-5p, miR-126, miR-10b, and miR-144) had the highest Matthews correlation coefficient (MCC). Subsequently, principal
component analysis (PCA) for dimensionality reduction was performed on samples based on the miR-654-5p, miR-126, miR-
10b, and miR-144 expression data. The signature based on these four feature miRNAs, as the analysis indicated, could
effectively distinguish CRC samples from normal samples. Further, we extracted the exosomes from clinical blood samples and
applied qRT-PCR analysis, which revealed that the expression of these four feature miRNAs was in the trend of that in the test
set. Collectively, these four feature miRNAs might be tumor biomarkers in the serum, and our study offers innovative thinking
on early-stage CRC diagnosis.

1. Introduction

As the third cause of cancer-related death and the fourth
most frequently diagnosed cancer [1], colorectal cancer
(CRC) presents a growing morbidity and death rate, making
it a public health burden [2]. According to population and
disease statistics, nearly 2.2 million new cases would be
developed by 2030 [3]. CRC is a genotypically and pheno-
typically heterogeneous disease characterized by different
molecular characteristics [4]. Accurate early diagnosis
enables CRC patients to receive timely and precise treat-
ment, thereby reducing CRC mortality. Although colonos-
copy screening is the gold standard for CRC screening, its
participation rate in population screening programs is still
poor due to the invasive nature of the test and the need for
adequate bowel preparation [5–8]. In addition, some studies
have implied that carcinoembryonic antigen and calprotec-
tin can be used as diagnostic markers for CRC, but their

specificity and sensitivity are low, and they cannot be effec-
tively applied to the early diagnosis of clinical CRC at pres-
ent [9, 10]. Hence, it is necessary to develop effective
biomarkers for CRC to improve the early diagnosis rate for
CRC and offer effective biomarkers for CRC treatment.

Recently, exosome biomarkers containing multiple RNA
and proteins have become the focus of research in cancer
diagnosis and treatment [11]. Exosomes are tiny goblet ves-
icles with 30-140 nm in diameter that are secreted by cells
including immune cells, neural cells, stem cells, and tumor
cells [12–14]. Increasing research manifested that exosomes
relate to tumorigenesis. Tumor-derived exosomes are
involved in the exchange of genetic information between
tumor cells and basal cells, thereby regulating angiogenesis
and promoting tumor growth and invasion [15]. Currently,
useful biomarkers have been identified from exosomes for
the application in CRC diagnosis. It has been demonstrated
that in blood exosomes, miR-125a-3p and miR-638 are
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helpful for early diagnosis of CRC in clinical practice [16,
17]. These all demonstrated the importance of exosomal
miRNAs in screening early-stage CRC. Therefore, we further
identified potentially effective exosomal miRNAs that may
work for CRC diagnosis, so as their regulatory networks,
which are beneficial for comprehensively understanding
the molecular mechanisms underlying CRC development.

The rapid development of biotechnology in the age of big
data stimulated the application of bioinformatics in medical
research; bioinformatics technology based on high-throughput
sequencing data is an effective and promising analytical tool
for analyzing and identifying biomarkers for cancer diagnosis
[18, 19]. Machine learning is a new artificial intelligence tech-
nique that has been gradually applied to medical research in
recent years. Lian et al. [20] trained medulloblastoma stemness
index based on a machine learning method of one-class logistic
regression to obtain gene expression-based stemness index and
methylation-based stemness index and further identified their
corresponding potential drugs, which provides new ideas for
the survival of medulloblastoma patients or targeting stem cells.
Koppad et al. [21] screened diagnostic candidate genes for CRC
based on six methods of machine learning classification includ-
ing Adaboost, ExtraTrees, logistic regression, Naive Bayes clas-
sifier, random forest, and XGBoost. Thus, there is potential for

wider application of novel bioinformatics methods to identify
novel diagnostic biomarkers based on public databases.

In this study, by analyzing the miRNA expression data of
CRC patients and normal people in the Gene Expression
Omnibus (GEO) database, we preliminarily screened miR-
NAs with potential diagnostic value based on XGBoost and
established a multilayer perceptron (MLP) classifier to deter-
mine the optimal miRNA combination by taking integrated
feature selection (IFS). Thereafter, the clinical value of diag-
nostic markers in CRC was dissected by testing their levels in
the blood exosomes of clinical patients with CRC. To con-
clude, our study provided potential biomarkers which are
supposed to be effective to CRC clinical diagnosis.

2. Materials and Methods

2.1. Data Source and Preprocessing. Exosomal miRNA data
of CRC patients and normal people were downloaded as
GSE39833 (tumor: 88 and normal: 11) from Gene
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Figure 1: IFS curves of the five feature miRNAs based on MLP
classifiers. Abscissa: the number of transcripts; ordinate: the MCC
value.

Table 1: Primers of feature miRNAs for qRT-PCR.

Gene ID Forward sequence (5′-3′) Reverse sequence (5′-3′)
miR-654-5p GGGTGGTGGGCCGCAGAAC CTCAACTGGTGTCGTGGA

miR-126 UCGUACCGUGAGUAAUAAUGCG CAUUAUUACUUUUGGUACGCG

miR-10b TACCCTGTAGAACCGAATTTGTG CAGTGCGTGTCGTGGAGT

miR-144 TACAGTATAGATGAT GTGCAGGGTCCGAGG

U6 ATTGGAACGATACAGAGAAGATT GGAACGCTTCACGAATTTG
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Figure 2: The PCA analysis for CRC and normal samples based on
four feature miRNAs.
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Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/
geo/), annotated by the platform of Agilent-021827 Human
miRNA Microarray G4470C GPL14767. Differential analysis
was performed by R package “limma” [22] on the standard-
izedmiRNA expression data (jlogFCj > 1:5, adjPvalue < 0:05).

2.2. XGBoost Feature Selection. XGBoost is a tree boosting
scalable machine learning system, which generates a single
strong learner by combining multiple weak learners.

XGBoost estimates the value of the loss function through a
second-order Taylor series and further reduces the likeli-
hood of overfitting by applying regularization [23]. The
objective function of XGBoost is a gradient advancing deci-
sion tree approach defined as
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Figure 3: Violin plots of four feature miRNAs in the optimal MLP classifier. The violin plots of differentially expressed (a) miR-654-5p, (b)
miR-126, (c) miR-10b, and (d) miR-144 in CRC and normal samples ∗∗∗p < 0:001.
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Loss means training loss,Ωð f Þ represents the complexity
of trees, and k stands for the amount of trees. The model can
be optimized by minimizing the objective function. Hence,
we adopted the addition training method to calculate the
training loss and rapidly optimized the prediction of the n
th round of addition training by taking the Taylor expansion
method. The optimal complexity of the tree was determined
via the greedy algorithm.

In order to find miRNAs that could distinguish CRC
from normal samples in GSE39833, we utilized XGBoost to
rank the importance of feature miRNAs. Five characteristic
miRNAs associated with CRC diagnosis were filtered for
subsequent analysis. Then, based on SMOTE method, we
applied python package “imblearn” and Bayesian optimiza-
tion to resample the training set to reduce the effect caused
by data disequilibrium.

2.3. Construction of the MLP Classifier. To construct a diag-
nostic classifier that was more precise, we constructed MLP
classifiers of different subsets based on these five characteris-
tic miRNAs by python package “sklearn” [24] after XGBoost
feature selection. For the MLP classifier, hidden layers were
set as 2, and all possible combinations were scanned in the
first layer (the number of nodes from 1 to 5) and in the second
layer (the number of nodes from 1 to 5) by sklearn.neural_net-
work. Other parameters included (1) solver = “adam”, (2)
alpha = 0:001, (3) random state = 1, and (4) max iter = 1000.

2.4. Screen of Optimal Feature Genes. The MCC of the above
classifiers was obtained using IFS. MCC is the correlation
coefficient of binary classification between the observation
and prediction, with its value between -1 and +1. +1 stands
for a perfect prediction, while -1 for a total inconsistency
between observation and prediction. The MCC value is a
single score that is the most informative for the prediction
quality of binary classifiers built in a confusion matrix envi-
ronment [25]. The IFS curves were plotted, with abscissa for
MLP classifiers based on different subsets and ordinate for
MCC of subsets. The classifier with the highest MCC was
selected as the optimal classifier for CRC diagnosis.

2.5. Principal Component Analysis (PCA). PCA is a dimen-
sionality reduction algorithm that is most widely adopted.
Its main idea is to map the n-dimensional data in space onto
the k-dimension, a novel orthogonal feature that is the princi-
pal component [26]. We performed PCA by the R package
“FactoMineR” [27] based on the characteristic miRNA expres-
sion data in the optimal MLP classifier to explore the sample
discriminatory capability of this classifier (https://www
.rdocumentation.org/packages/FactoMineR/versions/2.4).

2.6. Clinical Collection of Blood Sample. Between 10-2018
and 10-2021, 100 patients with CRC and 120 healthy partic-
ipants were recruited from Shanxi Bethune Hospital, Shanxi
Academy of Medical Sciences, Tongji Shanxi Hospital,
Third Hospital of Shanxi Medical University in Taiyuan
city, Shanxi province, with their clinical information and
serum samples collected (Supplementary Table 1). None
of the CRC patients received any treatment, while their
cancer stages were judged on the basis of the American

Joint Committee on Cancer (AJCC) Cancer Staging Manual
(7th Edition) [28]. Peripheral blood (5ml) from all partici-
pants was collected in 5ml clotting tubes (Greiner Bio-One,
Austria). Serum was separated by centrifugation and stored
at -80°C for subsequent miRNA extraction.

This research is approved by the Ethics Committee of
Shanxi Bethune Hospital, Shanxi Academy of Medical Sci-
ences, Tongji Shanxi Hospital, Third Hospital of Shanxi
Medical University. Besides, all participants were well-
informed about the necessary information of this study
and signed the written informed consent.

2.7. Exosome Separation. The exosome separation followed
the steps described by Han et al. [29]. And the exosomes
acquired were resuspended in phosphate-buffered saline
(PBS). The suspension was placed on a chloroform-coated
copper grid with 0.125% Formvar and negatively stained
with uranyl acetate. Morphological identification of the exo-
somes was by a transmission electron microscopy (TEM).

2.8. RNA Extraction and qRT-PCR. Total RNA from the
obtained exosomes was extracted following the miRNeasy
Micro Kit (QIAGEN, Germany), and RNA quantity and
quality were tested via Agilent Bioanalyzer 2100 (Agilent,
USA). cDNA was synthesized by reverse transcription from
total RNA using SuperScript III Reverse Transcriptase kit
(Invitrogen, USA), and qPCR was performed using SYBR
Premix Ex Taq II (Takara, Japan). qRT-PCR was performed
using ABI7500 (7500, ABI, USA), and the relative expression
of all miRNAs was calculated using the 2-ΔΔCT method. U6
was the internal reference. Table 1 shows primer sequences
for feature miRNAs.

2.9. Statistical Analysis. Based on analysis performed by
GraphPad 8.0, box plots were drawn. Differences in the rel-
ative expression of miRNAs between tumor and normal
samples were analyzed using the t-test, and p < 0:05 indi-
cated a difference that was statistically significant.

Table 2: Clinical information summary of 220 subjects.

External validation cohort
Variables CRC (n = 100) Normal (n = 120)
Gender

Male 49 (49%) 51 (42.5%)

Female 51 (51%) 69 (57.5%)

Age

<60 43 (43%) 47 (39.2%)

≥60 57 (57%) 73 (60.8%)

Tumor location

Colon 44 (44%)

Rectum 56 (56%)

Stage

1 24 (24%)

2 17 (17%)

3 30 (30%)

4 29 (29%)
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3. Results

3.1. Constructing the Diagnostic Model of CRC. 56 differen-
tially expressed miRNAs (DEmiRNAs) were obtained by
normalization and differentially analyzing miRNAs data
derived from CRC and normal exosomes. Subsequent
XGBoost feature selection indicated the top five miRNAs
with the best ability to distinguish sample types. To deter-
mine the optimal diagnostic classifier for CRC, we con-
structed different MLP classifiers and plotted IFS curves to
visually select miRNA combinations. Through the IFS curve,
it was found that the classification effect of the MLP classifier
composed of the first four miRNAs (miR-654-5p, miR-126,
miR-10b, and miR-144) was good, and the 10-fold cross-
validation results showed that its MCC value was high
(Figure 1), and the sensitivity of this model was 0.977, the
specificity was 1.000, the accuracy was 0.980, and the MCC
was 0.909.

3.2. Validation of the Performance of the Diagnostic Model.
The expression data of four miRNAs in MLP classifiers in
CRC and normal samples were subjected to PCA dimen-
sionality reduction. Shown in Figure 2 were that PCA could
significantly distinguish CRC and normal samples. Dim1
contributed 41.6% and Dim2 contributed 32.2%. From the
violin plots, we could see that levels of blood exosomal
miR-654-5p, miR-126, and miR-10b from CRC patients

were markedly higher, but miR-144 was markedly lower
than normal participants (Figures 3(a)–3(d)). The above
results exhibited that the MLP formed by the former four
miRNAs showed the value to assist CRC diagnosis.

3.3. qRT-PCR of miRNAs from Clinical Samples and Receiver
Operator Characteristic (ROC) Analysis. To validate the per-
formance of this model in clinical CRC diagnosis, we
recruited 100 CRC and 120 healthy participants (Table 2),
collected their blood samples, and extracted exosomes for
qRT-PCR. Exosomes were first extracted from the blood of
CRC patients as well as healthy participants, and the isolated
exosomes were subsequently validated for size and mor-
phology. Under a TEM, we could observe that the extracted
exosomes were oval membrane-bound vesicles, which were
about 50 nm-150 nm in diameter (Figure 4(a)). Thereafter,
the qRT-PCR revealed that levels of blood exosomal miR-
654-5p, miR-126, and miR-10b from CRC patients were
markedly higher (Figures 4(b)–4(d)), but miR-144 was
markedly lower than normal participants (Figure 4(e)).
Data from qRT-PCR were collected for validation of the
performance of the diagnostic model in CRC diagnosis.
As results suggested, the ROC of the 4-miRNA diagnostic
model was 0.913 (Figure 4(f)), and the recall of the model
was 0.91, specificity was 0.34, accuracy was 0.6, and f1
was 0.67. Collectively, qRT-PCR on clinical samples vali-
dated that this 4-miRNA model could distinguish CRC
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Figure 4: qRT-PCR and ROC curve analysis of miRNAs in clinical samples. (a) TEM observation of exosomes. Scale bar: 200 μm. Box plots
of differentially expressed (b) miR-654-5p, (c) miR-126, (d) miR-10b, and (e) miR-144 in CRC and normal samples. (f) ROC curves of 4-
miRNA in clinical diagnosis ∗p < 0:05.
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and normal samples precisely, enabling these miRNAs to be
biomarkers for CRC diagnosis.

4. Discussion

As key regulators in a variety of biological and physiological
processes, miRNA dysregulation may be tightly linked to
changes in the pathological environment of disease
[30–32]. Colonoscopy is the gold standard for the patholog-
ical diagnosis of CRC, but it causes a large physical as well as
psychological burden to patients due to its high invasiveness
[5–8]. Owing to patients’ avoidance of colonoscopy, CRC
cannot be diagnosed promptly at the early stage and is only
diagnosed at advanced stages when tumor metastasizes to
other tissue [33]. The advantage of miRNA detection relative
to invasive colonoscopy is that samples are more accessible
in clinical practice both in body fluids and blood. At the
same time, this noninvasive examination greatly alleviates
the physical burden on patients [32, 34, 35]. Given its non-
invasive and easily accessible properties, miRNAs are prom-
ising biomarkers in CRC diagnosis.

We here utilized XGBoost to determine the key features
by ranking feature importance and recursive elimination.
We determined the top 5 miRNAs that could accurately
distinguish CRC cancer patients from healthy individuals
and subsequently found via IFS method that the MLP clas-
sifier composed of the top four miRNAs was the best for
CRC diagnosis. MLP is a dynamic classifier based on neu-
ral network, which could directly determine the separating
hyperplanes between the two types of events, with high
accuracy of classification and strong ability of parallel dis-
tribution processing. At present, there are also some stud-
ies on constructing CRC diagnostic classifiers based on
machine learning algorithms. Koppad et al. [21] screened
CRC diagnosis-related genes by the random forest algo-
rithm, which has the advantage of avoiding data overfitting
and reducing the computational load of the model. We
aimed to filter biomarkers that could diagnose cancer.
While MLP is to classify two types of events, therefore, it
was our tool for identifying miRNAs that could assist
CRC diagnosis.

The top four miRNAs selected by IFS (miR-654-5p,
miR-126, miR-10b, and miR-144) could accurately diagnose
CRC. These four miRNAs have all been reported in CRC.
Reported by Li et al. [36], the decreased level of miR-654-
5p is markedly correlated with the clinical stage of colon
cancer by analyzing miR-654-5p level in tissue from CRC
patients and normal participants, indicating that its level
might be closely related to the CRC progression. As stated
by Ebrahimi et al. [37], low miR-126 level in CRC is linked
to CRC histological subtype, perineural tumor invasion,
microsatellite instability pathological analysis, and lymph
node distal metastasis. One study indicated that upregulated
miR-10b is discovered in CRC patients with liver metastases,
positively linked to advanced TNM stage, and able to predict
advanced clinicopathological features and liver metastasis in
CRC [38]. Research by Choi et al. [39] indicated that stool
from CRC patients is a novel screening biomarker, and the
miR-144 level in the stool has good sensitivity and specificity

for CRC detection. Finally, we collected blood samples from
CRC patients and normal participants for qRT-PCR, and the
expression trends of miRNAs were consistent with those
reported in the literature, which also validated the accuracy
of our study. Further, PCA revealed that the MLP diagnostic
classifier composed of miR-654-5p, miR-126, miR-10b, and
miR-144 could well distinguish samples from CRC patients
and normal individuals. Hence, these four miRNAs could
be unique biomarkers for noninvasive examination of CRC.

However, limitations still exist. Our study utilized the
limited numbers of public datasets and did not take into
account factors like age, gender, ethnicity, and tumor TNM
stages, which may affect miRNA expression. Hence, the con-
struction of a more precise diagnosis model can be achieved
by carrying a more detailed analysis on these factors, provid-
ing science-based evidence for the clinical noninvasive diag-
nosis of CRC. Overall, we performed XGBoost and
constructed an MLP classifier to identify four miRNAs with
the highest diagnostic value. PCA and ROC curves suggested
favorable performance of the 4-miRNA classifier to distin-
guish CRC patients from normal individuals. This study
sheds light on science-based theory for the noninvasive diag-
nosis of CRC.
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