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Background: Nystagmus identification and interpretation is challenging

for non-experts who lack specific training in neuro-ophthalmology or

neuro-otology. This challenge is magnified when the task is performed

via telemedicine. Deep learning models have not been heavily studied in

video-based eye movement detection.

Methods: We developed, trained, and validated a deep-learning system (aEYE)

to classify video recordings as normal or bearing at least two consecutive beats

of nystagmus. The videos were retrospectively collected from a subset of the

monocular (right eye) video-oculography (VOG) recording used in the Acute

Video-oculography for Vertigo in Emergency Rooms for Rapid Triage (AVERT)

clinical trial (#NCT02483429). Our model was derived from a preliminary

dataset representing about 10% of the total AVERT videos (n= 435). The videos

were trimmed into 10-sec clips sampled at 60Hz with a resolution of 240 ×

320 pixels. We then created 8 variations of the videos by altering the sampling

rates (i.e., 30Hz and 15Hz) and image resolution (i.e., 60 × 80 pixels and 15

× 20 pixels). The dataset was labeled as “nystagmus” or “no nystagmus” by

one expert provider. We then used a filtered image-basedmotion classification

approach to develop aEYE. The model’s performance at detecting nystagmus

was calculated by using the area under the receiver-operating characteristic

curve (AUROC), sensitivity, specificity, and accuracy.

Results: An ensemble between the ResNet-soft voting and the VGG-hard

voting models had the best performing metrics. The AUROC, sensitivity,

specificity, and accuracy were 0.86, 88.4, 74.2, and 82.7%, respectively.

Our validated folds had an average AUROC, sensitivity, specificity, and

accuracy of 0.86, 80.3, 80.9, and 80.4%, respectively. Models created

from the compressed videos decreased in accuracy as image sampling

rate decreased from 60Hz to 15Hz. There was only minimal change in
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the accuracy of nystagmus detection when decreasing image resolution and

keeping sampling rate constant.

Conclusion: Deep learning is useful in detecting nystagmus in 60Hz video

recordings as well as videos with lower image resolutions and sampling rates,

making it a potentially useful tool to aid future automated eye-movement

enabled neurologic diagnosis.

KEYWORDS

nystagmus, vertigo, artificial intelligence, dizziness, machine learning, telemedicine,

deep learning, eye movements

Introduction

Nystagmus is an involuntary, rhythmic ocular instability

that is initiated by an unwanted slow-phase drift in one

direction followed by a corrective phase (fast or slow) in the

opposite direction (1, 2). The waveforms can be divided into

two morphologies: (1) pendular (sinusoid slow slow-phase drift

and slow-phase correction) and (2) jerk (slow-phase drift and

fast-phase correction). The “jerk” waveform can be further

divided based on the velocity profile of the slow-phase into

linear (or constant velocity slow-phase), velocity-decreasing

and velocity-increasing (Figure 1). The pattern of nystagmus

often localizes the underlying neural substrate that is damaged,

and thus provides rapid diagnostic clues about changes in

neurophysiology that occur in various lesions affecting these

circuits. It has been shown that nystagmus and other subtle eye

movement abnormalities are more sensitive and specific than

early neuroimaging in distinguishing potentially devastating

strokes from more benign inner ear problems (3, 4). These

subtle findings are often missed by those on the frontlines in the

emergency room and are often appreciated only by neurologists

specializing in neuro-otology; there are < 50 of these providers

practicing in the United States. Additionally, there are other

“non-nystagmoid” movements such as square-wave jerks, ocular

flutter, opsoclonus and other voluntary ocular oscillations that

might pose a diagnostic challenge for both experts and non-

experts alike.

The shift toward remote health assessment in the setting of

the pandemic negatively impacted the quality of the physician’s

neurological assessment; the major limitation being the patient

video capability. For nystagmus detection, simulated data of

nystagmus waveforms showed that it is difficult to appreciate

these subtle clinical findings on videos with lower frame

rates (5). In the absence of an expert neuro-otologist/neuro-

ophthalmologist, an automated model that could detect subtle

degrees of nystagmus from video recordings, when video

qualities poor, would be a boon to frontline practitioners facing

a diagnostic challenge.

Others have successfully classified nystagmus from

waveforms directly (6–9) and by generating waveforms from

recorded videos (10, 11) using various machine/deep learning

methods. Classification of nystagmus from video motion

features independent of the calibration and calculation of

eye movement velocity has only been rarely attempted (12).

We developed, trained, and validated an artificial intelligence

(AI)-based deep learning model (aEYE) directly from video

recordings and investigated its utility as a potential screening

tool for video nystagmus detection in various simulated video

recording conditions.

Methods

Study design and dataset description

aEYE was developed using infrared monocular video-

oculography recordings retrospectively obtained from the

AVERT (13) research dataset. The AVERT trial is a multicenter,

randomized clinical trial comparing the diagnostic accuracy of

care guided by video oculography (VOG)-based eye movement

recordings (supervised decision support) vs. standard care

in diagnosing patients with acute dizziness and vertigo in

the emergency department (ClinicalTrials.gov #NCT02483429).

Both the AVERT trial and the current study were approved by

the Johns Hopkins University School of Medicine’s Institutional

Review Board (IRB). Our dataset consisted of 435 monocular

infrared VOG recordings of dizzy patients that represented

about 10% of the total AVERT video dataset. All videos used

were obtained from 30 patients. In the AVERT dataset, the

videos were recorded in primary gaze, eccentric gaze, Dix-

Hallpike, supine head roll, bow, lean and post-horizontal

headshaking. Primary and eccentric gaze videos were recorded

with and without visual fixation, while all others were recorded

without visual fixation. In the videos that contained nystagmus

(n = 218), 95% were linear jerk (vestibular nystagmus) and 5%

velocity decreasing jerk (gaze-evoked nystagmus); there were
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FIGURE 1

Pendular and jerk nystagmus waveform morphologies.

FIGURE 2

Variations in video quality of the dataset.

no pendular nystagmus videos in the dataset. Of the 95% of

linear jerk nystagmus videos, 9.1% (n = 20) had nystagmus in

primary gaze; the remainder were from positional testing. All

videos were of the right eye; nystagmus in dizziness is almost

always the same in both eyes. All videos were recorded using

the Natus/Otometrics ICS Impulse infrared VOG googles (14).

Recordings were all grayscale and sampled at 60Hz and had a

resolution of 240 × 320 pixels. We then simulated 8 variations

of videos of varying sampling rates (i.e., 30Hz and 15Hz) and

image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels).

Only the first 10 sec of each video (600 frames) were used. The

quality of the recording (i.e., lighting and visualization of the

eyes) varied as shown in Figure 2. Each video was labeled as

“nystagmus” or “no nystagmus” by one expert Neuro-otologist

(K.E.G.) based on the presence of two consecutive slow and fast

phase alternations (beats). The “nystagmus” to “no nystagmus”

in our dataset was approximately 1:1; the train to test split

was about 3:1. There was equal representation of videos from

both classes from each of the 30 patients in both the training

and test sets to account for potential bias in the model. The

best performing model was then validated using k-fold cross-

validation with k= 3 folds.

Filtered image construction

We adopted and modified a previously described recursive

filtering method (15, 16) used for detecting walking for the

purposes of detecting ocular movements. A filtered image was

created by applying recursive filtering to a 10-sec grayscale video

clip (600 frames). This creates a representation of video motion

based on the idea that a filtered image (Ft ) at time (t) is defined

as the absolute value of the difference between a raw video frame

(It) at time (t) and an intermediate image (Mt) at time (t) that

combines content of raw video frames prior to time point t.

Ft = |It−Mt |

Mt = (1−β)Mt−1+βIt−1

M0 = I1

where t = 1, 2, . . .,n

The appearance of the filtered image can be modified by

changing the parameter (β) that control the weights of the prior

context of the intermediate image (M) and the raw video frame

(I) as shown in Figure 3.

The result is a set of images containing at maximum 599

filtered images that depicts motion at points in time as shown in

Figure 4. In addition to the “original” filtered image (non-sliding

window), we also constructed sliding window filtered images [10

frames (150ms), 20 frames (333ms), 30 frames(500ms), and 60

frames(1s)] to consider the temporal criteria for slow and fast

phase combinations (i.e., beats) of nystagmus.

Video quality variations

We simulated 8 variations of videos from the original

recordings (i.e., sampling rate = 60Hz and resolution = 240

× 320 pixels) of varying sampling rates (i.e., 30Hz and 15Hz)

and image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels)

as shown in Figure 5A. The compressed images were then

converted into filtered images (Figure 5B) using the method

illustrated in Figure 4.

Deep learning model (aEYE) architecture

The proposed motion classification algorithm is a filtered

image-based (16) approach (Figure 6). The filtered image-based

motion classification algorithm uses a set of filtered images as

video motion data. Each filtered image is labeled according

to the label from the video it was generated and used to

train a classifier in a supervised fashion. We trained classifiers

from the ImageNet dataset (ResNet) using transfer learning

approaches to detect nystagmus from filtered images. The videos

in each test set were equally balanced between “nystagmus”

and “no nystagmus”. aEYE was trained and tested to yield a
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FIGURE 3

Filtered image appearance across di�erent beta values.

FIGURE 4

Filtered image construction for (A) the non-sliding window and (B) the sliding window variations.

binary class prediction of “nystagmus” or “no nystagmus” for

each filtered image in the test set. Hard (majority) voting was

performed to summate the filtered images from each video

that were classified as nystagmus. In hard voting, only videos

that have an average probability of nystagmus amongst all

filtered images (n = 599) are classified as nystagmus (17).

We also experimented with a form of soft voting where every

individual filtered image provides a probability value that a

specific video belongs to a particular target class (nystagmus or

no nystagmus).
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FIGURE 5

Examples of the di�erent video frame rate and resolution variations for (A) raw frames and (B) corresponding filtered images.

FIGURE 6

Model architecture and the framework of the ensemble model. P, probability; n, number of filtered images;
∑

, the sum of; n, number of

filtered images.

Voting based on the temporal criteria of
nystagmus

Nystagmus as defined in our dataset is at least two

contiguous cycles (beats) of alternating fast and slow phase

combinations along any plane. The duration of a slow

phase can vary from ∼150 msec (∼10 frames) to ∼350

msec (∼20 frames)—closely representing the duration of

a beat. The aim of this experiment is to determine if

aEYE’s performance can be improved by changing the

voting method to identify consecutive filtered images bearing

a probability of nystagmus. We experimented with the

following four temporal voting criteria: (1) ≥50 consecutive

frames (∼750ms), ≥100 consecutive frames (∼1,500ms); ≥150

consecutive frames (∼2,250ms), and ≥350 consecutive frames

(∼5,250 ms).
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Data split modifications

Based on the filtered image misclassifications (false positives

and false negatives) videos where the eyes were eccentrically

positioned (i.e., not looking straight ahead) ranked the highest.

We evaluated how an equal split of eccentrically positioned

videos in both the training and test sets impacted the

model’s performance.

ImageNet classifier comparison

Classifiers for the ImageNet dataset, such as ResNet,

DenseNet, VGG and Inception which perform better on

medical data, were trained to detect nystagmus from filtered

images (16). Nystagmus detection was compared across all four

ImageNet classifiers.

Ensemble model

Ensemble techniques involve model averaging that is aimed

at reducing generalization errors. We applied an ensemble

technique like bootstrap aggregating (or bagging) (19) where

different models are trained separately (on the same dataset),

and the output is determined by averaging different voting

methods. Hard and soft voting methods were used to create

an ensemble model (Figure 5) that averages both voting

methods to decide on the final class designation (nystagmus or

no nystagmus).

Comparison with existing video
classification method

We adopted a simple long short-term memory (LSTM) and

convolutional neural network (CNN) model (18) without any

frame sampling that has been shown to produce state-of-the-art

performance for other action recognition problems.

Statistical analysis

The performance was based on the model’s detection

of videos with or without nystagmus. The performance of

the models was calculated using the area under the receiver

operating characteristic curve (AUROC) at the operating point

with accuracy sensitivity and specificity. It is important to

note the differences between accuracy (the ratio between the

number of correctly predicted samples to the total number

of samples) and AUROC (the ratio of the false positive and

true positive rates at different probability thresholds of the

model’s prediction) (19). We also compared the best AUROC

for each model experiment to the best overall AUROC using two

sample (unpaired) t-test. A p-value < 0.05 indicates evidence of

statistical difference between two experiments.

Internal validation of our best performing model was done

using stratified k-fold cross-validation (19) that partitions our

data into k = 3 folds as demonstrated in Figure 7A. Each fold

contains an evenly distributed sample of both class. In the

validation experiments, we also ensured that there was equal

representation of videos in both classes from an individual

patient. To maintain these constraints, it was not feasible to

balance video heterogeneity. The performance was measured

in aggregate across each test set. Each subset was stratified,

ensuring an even class split in each set.

Results

Filtered image optimization

The filtered image calculation described above includes a

free parameter (β) that controls their temporal dynamics. We

tested the performance of the best performing ResNet model

(non-sliding window and soft voting) with 7 different β values

(0.001, 0.005, 0.01, 0.05, 0.1, 0.25, and 0.5—see Figure 2 and

Table 1). Filtered images obtained with β of 0.25 resulted in

the highest accuracy (79.3%) at detecting nystagmus; however,

specificity was low (69.3%)—implying a high false positive rate.

Sliding windows comparison

Filtered images with a beta value of 0.25 were used to

carry out the sliding window experiments. The filtered images

were created based on the following sliding windows: 10 frames

(150ms), 20 frames (333ms), 30 frames (500ms), and 60

frames (1 s). None showed any improvement in the model’s

overall performance.

Voting

Our neural network classifies individual filtered images as

containing or not containing nystagmus. However, to evaluate

the results against our labeled data, we classified the entire video.

We then compared different voting strategies where each image

votes toward the result of the video classification. Hard (majority

voting) and soft voting techniques were compared using the

value of β previously determined to be best (β = 0.25). While

the soft voting model had a slightly higher AUROC (0.85), there

was better overall sensitivity (72.4%) and specificity (83.8%) with

majority voting (Table 1).
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FIGURE 7

The k-fold cross validation architecture with the data partitioned into training and tests sets for k = 3–folds (A), AUROC curves for each fold (B)

as well as training/validation loss (C) and training/validation accuracy (D) for the model.

Sliding window-temporal voting criteria

The result of combining the sliding window models with

different temporal voting criteria is shown in Table 1. As we

increased the number of consecutive frames, the overall AUROC

and sensitivity decreased while the specificity increased.

Data split modification

In our dataset (n = 435 videos), 44.3% (n = 193) of the

videos had eccentric gaze positioning of the eye during the

recording. As shown in Table 1, there were no improvement

in any of the measured performance parameters in the model

accounting for equal eccentric gaze splits.

ImageNet classifier comparison

We compared our best performing ResNet trained

model (β = 0.25, non-sliding window and soft voting) to

models trained on different ImageNet dataset (DenseNet,

VGG and Inception) with the same β , sliding window

and voting parameters. As shown in Table 1, the VGG

model had a slightly higher AUROC (0.85); however overall

sensitivity and specificity were better with the ResNet and

Inception models.

Ensemble model

Bootstrap aggregating techniques (17) were applied to

the best performing models from the ImageNet classifier

comparison experiments with different hard and soft voting

combinations. The ResNet-soft vote+VGG-hard vote ensemble

model had the most ideal performance metrics (Sensitivity =

88.4%; Specificity = 74.1%) of all the models as shown in

Table 1. When the same model was tested with reversed videos,

it performed poorly (AUROC= 0.50).

Stratified k-fold cross validation

The ResNet-soft vote + VGG-hard vote ensemble model

(best performing model) was cross validated using stratified

k-fold cross validation. As shown in Figure 7B and Table 1,
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TABLE 1 Performance metrics for model experiments.

AUROC Sensitivity Specificity Accuracy

Filtered image optimization

β = 0.001 0.75 68.1% 77.4% 72.5%

β = 0.005 0.79 81.1% 62.9% 72.5%

β = 0.01 0.83 84.0% 69.3% 77.1%

β = 0.05 0.78 60.8% 80.6% 70.2%

β = 0.1 0.81 71.0% 80.6% 75.5%

β = 0.25 0.85 88.4% 69.3% 79.3%

β = 0.5 0.79 75.3% 74.1% 74.8%

Sliding window comparison

150 msec 0.80 78.3% 75.8% 77.1%

333 msec 0.80 75.4% 77.4% 76.3%

500 msec 0.82 71.0% 83.9% 77.1%

1,000 msec 0.81 72.5% 82.3% 77.1%

2,000 msec 0.75 61.0% 75.8% 67.9%

Voting (β = 0.25)

Hard voting 0.84 72.4% 83.8% 77.8%

Soft voting 0.85 88.4% 69.3% 79.3%

Sliding window-temporal voting criteria

1,000 msec−50 frames 0.77 60.9% 88.7% 74.1%

500 msec−50 frames 0.78 75.4% 74.2% 74.8%

333 msec−50 frames 0.74 71.0% 71.0% 71.0%

150 msec−50 frames 0.74 71.0% 71.0% 71.0%

1,000 msec−100 frames 0.70 47.8% 90.3% 67.9%

500 msec−100 frames 0.71 52.2% 88.7% 69.5%

333 msec−100 frames 0.69 49.3% 87.1% 67.2%

150 msec−100 frames 0.71 59.4% 82.3% 70.2%

1,000 msec−150 frames 0.67 36.2% 96.8% 64.9%

500 msec−150 frames 0.68 46.4% 88.7% 66.4%

333 msec−150 frames 0.67 44.9% 87.1% 64.9%

150 msec−150 frames 0.69 49.3% 87.1% 67.2%

1,000 msec−350 frames 0.59 20.3% 96.8% 56.5%

500 msec−350 frames 0.62 27.5% 95.2% 59.5%

333 msec−350 frames 0.58 17.4% 98.4% 55.7%

150 msec−350 frames 0.61 27.5% 93.5% 58.8%

Data split modification

Balanced eccentric gaze videos 0.83 83.1% 72.1% 77.8%

ImageNet classifier comparison

ResNet 0.84 72.4% 83.8% 77.8%

DenseNet 0.81 75.3% 79.0% 77.1%

VGG 0.85 59.4% 96.7% 77.1%

Inception 0.82 84.0% 72.5% 78.6%

Ensemble

ResNet-soft vote 0.85 88.4% 69.3% 79.3%

VGG-hard vote 0.85 59.4% 96.7% 77.1%

ResNet-soft vote+ VGG-hard vote ensemble* 0.86 88.4% 74.2% 81.7%

ResNet-soft vote + VGG-hard vote ensemble model in reverse

Reverse model 0.50 0.00% 100% 47.7%

(Continued)
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TABLE 1 Continued

AUROC Sensitivity Specificity Accuracy

Stratified k-fold cross validation (k = 3–folds)

Fold 1 0.91 72.1% 97.0% 84.7%

Fold 2 0.82 83.6% 73.0% 78.3%

Fold 3 0.85 85.3% 72.9% 78.4%

Average 0.86 80.3% 80.9% 80.4%

Comparison with existing video classification method

LSTM+ CNN 0.46 100% 2.00% 48.4%

Frame rate/resolution combinations

60Hz (240× 320) 0.86 88.4% 74.2% 81.7%

60Hz (60× 80) 0.84 78.3% 83.9% 80.9%

60Hz (15× 20) 0.83 68.1% 85.5% 76.3%

30Hz (240× 320) 0.83 76.8% 77.4% 77.1%

30Hz (60× 80) 0.85 71.0% 87.1% 78.6%

30Hz (15× 20) 0.83 89.9% 66.1% 78.6%

15Hz (240× 320) 0.81 65.2% 83.9% 74.1%

15Hz (60× 80) 0.82 78.3% 74.2% 76.3%

15Hz (15× 20) 0.72 55.1% 82.3% 67.9%

AUROC, area under the receiver operating characteristic curve; CNN, convolutional neural network; LTSM, long-term short-term memory. (*)indicating the best performing model.

fold 1 returned the highest accuracy (84.7%), and there was a

mean accuracy of (80.4%) across all 3–folds. Learning curves

(Figures 7C,D) showed that our training loss follows a consistent

trend and begins to converge early in training—indicating

no overfitting.

Comparison with existing video
classification method

As expected, the LSTM + CNN model performed

poorly (AUROC = 0.46) compared to (AUROC = 0.86)

in the best performing filtered image model as shown in

Table 1.

Frame rate/resolution combinations

As shown in Table 1, the best performing model

(AUROC = 0.86) was obtained from the videos with the

original image specifications (i.e., sampling rate = 60Hz

and resolution = 240 × 320 pixels). Overall, there was

a decrease in accuracy as image sampling rate decreased

from 60Hz to 15Hz; however, there was only minimal

change in the accuracy of nystagmus detection when

image resolution was decreased while sampling rate was

kept constant.

AUROC comparison

As shown in Table 1, the overall best performing model

(ResNet-soft vote + VGG-hard vote ensemble) had an AUROC

of 0.86. Of the n = 131 predictions from the test samples, the

mean model prediction probability was 0.251 with a standard

deviation (SD) of 0.159. As shown in Table 2, no statistical

difference (p = 0.837) exists between the AUROC of the overall

best performing model and the 500 msec-50 frames model from

the sliding window-temporal voting criteria experiments. There

were statistically significant differences (p ≤ 0.05) between the

AUROC of the ResNet-soft vote + VGG-hard vote ensemble

model and the best AUROC for all the remaining experiments.

Discussion

We developed aEYE (a new deep learning method for

nystagmus detection) from videos using non-traditional eye

tracking techniques. Traditional nystagmus detection involves

tracking the change in eye position over time using the pupil

or other ocular features (e.g., the iris) (1, 20), which serves as

surrogates for eye movements. With these methods, you can

appreciate the quick and slow phases that define nystagmus—

allowing for detection from characteristic nystagmus waveform

morphologies. For the most robust nystagmus waveform

detection, high frame rate video recordings are necessary for

extraction of the precise ocular position data. The use of mobile

devices (especially during the pandemic) has shifted the focus
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TABLE 2 Comparing best overall AUROC (ResNet-soft vote + VGG-hard vote ensemble) with best AUROC from each model experiment shown in

Table 1 using two sample (unpaired) t-test.

Experiment Best AUROC Mean MP SD p-value

AUROC Comparisons

Filtered image optimization 0.85 0.529 0.369 <0.001

Sliding window comparison 0.82 0.518 0.379 <0.001

Voting (β = 0.25) 0.85 0.599 0.340 <0.001

Sliding window-temporal voting criteria 0.78 0.244 0.356 0.837

Data split modification 0.83 0.558 0.369 <0.001

ImageNet classifier comparison 0.85 0.439 0.328 <0.001

ResNet-soft vote+ VGG-hard vote ensemble in reverse 0.50 0.000 0.000 <0.001

Comparison with existing video classification method 0.46 0.492 0.008 <0.001

Frame rate/resolution combinations (15Hz) 0.82 0.604 0.292 <0.001

Frame rate/resolution combinations (30Hz) 0.85 0.517 0.331 <0.001

AUROC, area under the receiver operating characteristic curve. MP, Model Predictions; SD, Standard Deviation.

of eye tracking toward mobile solutions. While current mobile

VOG technology exists (21), we are still not clear on their

accuracy in detecting nystagmus since most mobile devices

have relatively lower video qualities compared to standard eye

trackers. Furthermore, simulated data of nystagmus waveform

at different video sampling rates demonstrated degradation in

the nystagmus waveform morphology after ∼ 30Hz (5); other

recording conditions such as recording distance may also play

a role.

The result from our experiments suggests that the filtered

image approach (15, 16) is well–suited for nystagmus detection

from a relatively smaller dataset of low-quality videos.

Reassuringly, the reproducibility of the model’s performance

in the stratified k-fold cross validation experiments suggests

potential generalizability on external video datasets of similar

size and quality. It is important to note that the video

heterogeneity in our dataset (not accounted for in the validation

experiments) implies that the model would likely perform better

with less noise given fold 1’s results (Table 1). In evaluating the

performance of our model, the significance of the AUROC vs.

the accuracy should be noted. For the AVERT patient population

(all dizzy patients), the 1:1 split between nystagmus to “no

nystagmus” is equivalent to what one would expect in that

population, therefore the accuracy (81.7%) is a reliable measure

of aEYE’s performance; however, the AUROC (0.864) suggests a

high probability of the model reproducing similar accuracies in

“AVERT-like” patient population.

In the world of deep learning and image recognition, large

datasets are often needed to ensure more accurate and reliable

results (22, 23). In our study, we used a smaller video dataset

(n = 435); however, since our input data was individual filtered

images rather than the entire video clip, aEYE was trained on

179,700 (300 videos × 599 filtered images) data points. We

believe this increased our model’s performance tremendously,

and probably explained why the non-sliding window model

outperformed the sliding window models that created filtered

images based on the temporal definition of a slow phase and

contained fewer overall frames (see Table 1).

There are existing video classification methods (24) that uses

forms of frame sampling for model input. Therefore, only a

subset of the video frames is selected. Two consecutive beats

of nystagmus can have a very short duration (as short as ∼500

msec or ∼30 frames) and is likely to be found in tiny chunks

of the videos in our dataset (given the relative frequency of

noise imparted by eye closure, blinks and other technical issues

affecting video recording quality). As a result, implementing

these methods risks eliminating the portions of our video

that correspond to the class label (i.e., 2 consecutive beats of

nystagmus). To counteract this, we used a simple LSTM and

CNN model without any frame sampling (18). As suspected,

the LSTM model performed poorly (AUROC = 0.46) as shown

in Table 1. We believe the results seen may be due to one or

both of the following factors. Since 600 frames per video was

inputted, the complexity of the LSTM + CNN network was

limited to handle the computational load. Additionally, video

classification methods perform predictions at a video level while

our proposed method performs predictions at an image level.

With video classification, our dataset for training was ∼ 300

videos whereas with our method, our dataset for training was

∼ 180,000 filtered images.

The way the model makes its prediction remains a

mystery. We attempted to decipher this problem by studying

the characteristics of the misclassified videos. Our evaluation

revealed that 8/11 (72.7%) and 7/10 (70%) of the false

positive and false negative cases respectively were videos with

eccentric eye positioning (i.e., not looking straight ahead).

Additionally, while analyzing learning curves (Figures 7C,D),

unusual behavior was observed in our validation loss curve in

folds 2 and 3. We speculate that this is driven by the fact that

our validation sets only represent a small proportion of training

data. Therefore, understanding misclassified videos may provide

insight to improve model learning and optimization in training.
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FIGURE 8

Comparing the filtered-image probability distribution of the same false negative video with nystagmus in eccentric eye position toward the end

of video.

We then hypothesized that we may be able to improve the

model’s performance if we had an equal split of eccentrically

positioned videos in both the training and test sets. As shown

in Table 1 there was no improvement in any of the performance

parameters measured in the new balanced split model. One

possible explanation for these findings was that most of the

eccentrically positioned videos only had nystagmus at the end of

the video. Since each filtered image carries motion information

from earlier frames, the last filtered image will contain the

motion information of the entire video. In our dataset, the 10

sec recordings may contain a plethora of non-nystagmus eye

motion features (e.g., blinks, eye closure, square-wave jerks,

etc,). Therefore, as we move from filtered image 1 to 599 in

a nystagmus video with other motion features, it is possible

that the average number of images with nystagmus probability

will be much lower in the second half of the video. To test the

second hypothesis, we created a reversed version of the non-

sliding window model to decrease both the false positive and

false negative rates. As shown in Table 1, the overall model

performance was significantly worse. A closer look at the filtered

image probability distributions of a false negative video example

(containing nystagmus in eccentric eye position toward the end

of video) in both the original and reverse model revealed an over

lower number of filtered images with nystagmus probabilities in

the reverse model (Figure 8).

The lack of a clear clinically relevant explanation for

aEYE’s prediction brings into question the likelihood that

there might be other “markers” of nystagmus recognizable

by the machine, that may not yet be apparent to clinicians.

Future studies to investigate our deep learning model’s decision

making using novel and existing explainable AI methods will

be needed to better understand predictions and decipher the

“Blackbox” (25, 26).

Conclusion

aEYE could be used for remote detection of nystagmus

with potential future application in the detection of other

eye movement types (square-wave jerks, ocular flutter,

opsoclonus, etc). Further research into understanding the

model’s predictions using explainable AI (27) may be useful

for improving the model’s performance. Robust, international

multicenter external cross validation will be needed to prove

generalizability in different populations with various video

recording capabilities.
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