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A B S T R A C T

Functional Magnetic Resonance Imaging Neurofeedback (fMRI-NF) targeting brain areas/networks shown to be
dysfunctional by previous fMRI research is a promising novel neurotherapy for ADHD. Our pioneering study in
31 adolescents with ADHD showed that fMRI-NF of the right inferior frontal cortex (rIFC) and of the left
parahippocampal gyrus (lPHG) was associated with clinical improvements. Previous studies using electro-en-
cephalography-NF have shown, however, that not all ADHD patients learn to self-regulate, and the predictors of
fMRI-NF self-regulation learning are not presently known. The aim of the current study was therefore to elu-
cidate the potential predictors of fMRI-NF learning by investigating the relationship between fMRI-NF learning
and baseline inhibitory brain function during an fMRI stop task, along with clinical and cognitive measures.
fMRI-NF learning capacity was calculated for each participant by correlating the number of completed fMRI-NF
runs with brain activation in their respective target regions from each run (rIFC or lPHG); higher correlation
values were taken as a marker of better (linear) fMRI-NF learning. Linear correlations were then conducted
between baseline measures and the participants’ capacity for fMRI-NF learning. Better fMRI-NF learning was
related to increased activation in left inferior fronto-striatal regions during the fMRI stop task. Poorer self-
regulation during fMRI-NF training was associated with enhanced activation in posterior temporo-occipital and
cerebellar regions. Cognitive and clinical measures were not associated with general fMRI-NF learning across all
participants. A categorical analysis showed that 48% of adolescents with ADHD successfully learned fMRI-NF
and this was also not associated with any baseline clinical or cognitive measures except that faster processing
speed during inhibition and attention tasks predicted learning. Taken together, the findings suggest that imaging
data are more predictive of fMRI-NF self-regulation skills in ADHD than behavioural data. Stronger baseline
activation in fronto-striatal cognitive control regions predicts better fMRI-NF learning in ADHD.

1. Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is characterised
by age-inappropriate, persistent and impairing symptoms of inattention
and/or hyperactivity/impulsivity (American Psychiatric Association
APA, 2013). ADHD is the most common neurodevelopmental disorder,
with a worldwide prevalence of about 7% in children (Thomas et al.,
2015). More than 70% of children with ADHD persist with symptoms
into adulthood (Sudre et al., 2018). If left untreated, ADHD can result in
higher risk of life impairments such as academic failure, family/peer
relations, substance abuse, underemployment, and criminality
(Biederman et al., 2012).

ADHD patients have deficits in cognitive functions, most promi-
nently in executive functions such as response inhibition, working
memory, sustained attention and cognitive switching (Rubia et al.,
2007a; Willcutt et al., 2005), as well as in timing (Coghill et al., 2018;
Noreika et al., 2013) and reward based functions (Coghill et al., 2018).
Functional magnetic resonance imaging (fMRI) studies have con-
sistently shown that ADHD patients have reduced activation in key
regions of the fronto-striato-parietal networks that mediate these
functions, in particular in the right inferior frontal cortex (rIFC), basal
ganglia and medial frontal cortex during cognitive control (Hart et al.,
2013; Norman et al., 2016), dorsolateral prefrontal cortex (dlPFC)
during working memory (McCarthy et al., 2014), dlPFC, parietal and
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striatal regions during attention (Hart et al., 2013) and orbitofrontal
and ventromedial frontal and striatal regions during reward based
functions (Plichta and Scheres, 2014; Rubia, 2018).

Psychostimulants (e.g. methylphenidate, amphetamine) are the
most effective treatment, reducing ADHD symptoms in 70% of cases
with an effect size of 0.78 up to 12 weeks, and the next most effective
approach is non-stimulant medication (e.g. atomoxetine, guanfacine)
(Cortese et al., 2018). However, stimulants (and non-stimulants) com-
monly have side effects on sleep, appetite, growth and cardiovascular
systems (Graham et al., 2011) and their long-term efficacy has been
questioned (Storebo et al., 2015; Swanson et al., 2018; Zuddas et al.,
2018). Meta-analysis of methylphenidate treatment of between 26 and
52 weeks show a more modest clinical effect size of 0.3 (Cortese et al.,
2018). In adults with ADHD, treatment length is negatively correlated
with efficacy and is associated with higher discontinuation rates, sug-
gesting that medication efficacy does not outweigh side effects (Cunill
et al., 2016). These effects may be due to the brain adapting to sti-
mulant medication, as implied through positron emission tomography
studies (Fusar-Poli et al., 2012; Wang et al., 2013). This could also
explain the low stimulant adherence rates, in particular in adolescence
(Cunill et al., 2016). Overall, there is a clear need for alternative
treatments for ADHD. Non-pharmacological interventions, including
behavioural therapies, exercise (Antshel and Olszewski, 2014; Chronis
et al., 2006), diet (Bloch and Mulqueen, 2014; Nigg et al., 2012;
Pontifex et al., 2013), and cognitive approaches (Bikic et al., 2015;
Dovis et al., 2015), however, have shown only modest efficacy, inferior
to that of stimulants (Catala-Lopez et al., 2017; Sonuga-Barke et al.,
2013).

Brain-based methods such as neurofeedback (NF), in which patients
learn to control their own brain activity via its real-time feedback, may
be better suited than pharmacological treatments as they do not have
known side effects and can potentially offer longer-term neuroplastic
effects (Alegria et al., 2017; Rubia, 2018). Electroencephalography-
Neurofeedback (EEG-NF), targeting electrophysiological abnormalities,
has been tested in ADHD for over 40 years with relatively moderate
efficacy, as shown in recent meta-analyses (Cortese et al., 2016; Van
Doren et al., 2019).

Real-time fMRI neurofeedback (fMRI-NF), despite its lower tem-
poral resolution (seconds compared to milliseconds), has a superior
spatial resolution to EEG-NF (millimetre rather than centimetre) and
can target the key brain function deficits that have been established in
ADHD over the past 25 years of fMRI research (Rubia, 2018). fMRI-NF
enables participants to self-regulate the blood-oxygen level-dependent
(BOLD) response of a targeted brain region, or network, through real-
time feedback of their brain activity and has shown some promise in
psychiatric disorders (Thibault et al., 2016). To date, however, there
are only two published fMRI-NF studies in ADHD. In a small under-
powered randomised controlled trial, seven adults with ADHD under-
went four weekly 1-hour fMRI-NF of dorsal anterior cingulate cortex
(dACC), combined with a mental calculation task while six ADHD pa-
tients completed the same task in the scanner but were presented with
visual cues indicating level of task difficulty instead of fMRI-NF
(Zilverstand et al., 2017). Both groups significantly increased dACC
activation over the NF runs, including the transfer runs, and improved
in an interference inhibition task. Both groups showed trend-level im-
provements in ADHD symptoms but did not differ from each other.
However, only the neurofeedback group showed significantly stronger
performance improvement in a sustained attention and working
memory task than the ADHD group that received no fMRI-NF, in-
dicative of some positive effects of fMRI-NF of dACC on cognition in
adults with ADHD (Zilverstand et al., 2017). A second study, conducted
by our lab, tested fMRI-NF in 31 children with ADHD, using 11 fMRI-NF
runs of 8.5 min spread across four one-hour fMRI scans. The target
group (N = 18) obtained feedback of the rIFC, and the active control
group of the left parahippocampal gyrus (lPHG) (Alegria et al., 2017).
Both groups showed significantly increased linear activation of their

target regions across the fMRI-NF runs, but only the rIFC-NF group
showed a transfer effect (learning without the feedback, as a proxy of
transfer to real life), and this correlated with decreased ADHD symp-
toms. Core ADHD symptoms were improved in both groups after fMRI-
NF, but with double the effect size in the rIFC-group (assessed ap-
proximately one year after the training). Furthermore, only the rIFC-NF
group showed trend-level improvements in a sustained attention task
after NF training. Relative to the control group, they also showed, fol-
lowing treatment, a significantly greater increase in activation in the
rIFC and parietal regions during a motor response inhibition fMRI task.
Moreover, the rIFC activation increase after treatment was associated
with increased functional connectivity between the rIFC and anterior
cingulate cortex (ACC) and caudate, but decreased functional con-
nectivity with regions of the posterior default mode network (DMN),
which is associated with mind-wandering (Rubia et al., 2019). This
suggests that training to upregulate an isolated brain region, such as the
rIFC, was associated with changes in entire fronto-striatal networks of
cognitive control, and with anti-correlation with DMN activation. The
DMN is typically overactive in ADHD patients and has been suggested
to relate to mind-wandering (Bozhilova et al., 2018). A stronger de-
crease in connectivity between rIFC and areas of the DMN may hence
reflect a reduction in abnormally enhanced mind-wandering (Rubia
et al., 2019).

To advance the use of fMRI-NF as a potential individualised treat-
ment for ADHD, it will be crucial to understand how many of those with
ADHD will respond to the treatment, who the responders are, and what
distinguishes them from non-responders. Large heterogeneity of NF
response has been observed with EEG-NF in both healthy (Dekker et al.,
2014; Enriquez-Geppert et al., 2013; Weber et al., 2011) and clinical
populations, including ADHD patients (Doehnert et al., 2008; Drechsler
et al., 2007; Kotchoubey et al., 1999; Kouijzer et al., 2013; Liechti et al.,
2012; Lubar et al., 1995). A review of 20 EEG-NF studies, which in-
cluded healthy participants and children with ADHD or Autism Spec-
trum Disorder (ASD), showed that between 40 and 84% of participants
were successful NF-regulators (Alkoby et al., 2018). Similarly, a review
of EEG-NF studies in ADHD showed between 65 and 82% success rate in
self-regulation (Zuberer et al., 2015). Several studies have attempted to
investigate potential predictors of successful EEG-NF learning. A sys-
tematic review of EEG-NF and brain-machine interface technology-
based (BCI) NF studies in both healthy and clinical populations showed
that the ability to concentrate appeared to have a predictive value in NF
self-regulation learning, while motivational, mood and personality
factors showed relatively moderate importance (Kadosh and Staunton,
2019).

Brain physiology, such as baseline resting state activity, has also
been shown to have a predictor value in the success of NF learning and
in NF-associated symptom improvement in ADHD. For instance, higher
baseline theta activity and higher baseline contingent negative varia-
tion was associated with larger improvements in ADHD symptoms after
theta/beta EEG-NF training (Gevensleben et al., 2009) or slow cortical
potentials (SCP) NF learning, respectively (Wangler et al., 2011). A
study using near-infrared spectroscopy showed that pre-training per-
formance and higher left inferior prefrontal cortex (PFC) activation
during an executive function Stroop task predicted successful SCP EEG-
NF learning in children with ADHD (Okumura et al., 2017). This was
interpreted that older children with ADHD may be better suited for NF,
as these executive processes and the activation of PFC regions have
shown to take longer to mature in children with ADHD compared to
their healthy counterparts (Okumura et al., 2017; Sripada et al., 2014).

Given the relative novelty of fMRI-NF and the small number of
studies to date, there has been little investigation of predictors of suc-
cessful fMRI-NF learning. Similarly to EEG-NF, there is large inter-
subject variability in fMRI-NF learning ability, including in clinical
populations (Chiew et al., 2012; Li et al., 2018; Yoo et al., 2008;
Zilverstand et al., 2017; Zweerings et al., 2018). In ADHD, hardly
anything is known about predictors of successful brain regulation with
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fMRI-NF, with only one study having tested for potential predictors of
NF learning. The fMRI-NF study of dACC in adults with ADHD found
that better accuracy in a 2-back visuospatial working memory task and
better inhibitory control in a sustained attention to response task pre-
dicted larger improvements in self-regulation learning across sessions in
the NF compared to the control group (Zilverstand et al., 2017). Con-
sidering the financial costs and complexities required to conduct fMRI-
NF studies, it would be extremely beneficial to be able to understand
the factors that contribute to better fMRI-NF learning success rates,
which will eventually allow future optimal individualised fMRI-NF
protocols.

The aim of the current study was therefore to investigate the re-
lationship between the ability to self-regulate brain activity through
fMRI-NF and baseline clinical, cognitive, and neurofunctional mea-
sures, based on data from our previously published fMRI-NF study in
adolescents with ADHD (Alegria et al., 2017). Evidence from EEG-NF
studies has demonstrated that brain function measures predict NF
learning both in healthy controls (Nan et al., 2018; Reichert et al.,
2015; Wan et al., 2014; Weber et al., 2011) and in ADHD patients
(Gevensleben et al., 2009; Okumura et al., 2017; Wangler et al., 2011).
We therefore hypothesised that stronger baseline activation of fronto-
striatal cognitive control regions in the fMRI stop task would be cor-
related with better fMRI-NF learning. Moreover, we hypothesised that
cognitive measures of self-control and attention, which were found to
be predictors of self-regulation success with EEG-NF in both healthy
and clinical populations (Kadosh and Staunton, 2019) as well as with
fMRI-NF in adult ADHD patients (Zilverstand et al., 2017), would
predict better fMRI-NF learning. Finally, given the previous NF litera-
ture in ADHD (Zilverstand et al., 2017; Zuberer et al., 2018), we ex-
pected that clinical behavioural measures would show the weakest as-
sociation with fMRI-NF learning.

2. Materials and methods

The fMRI-NF study design has been previously described in Alegria
et al. (2017). Briefly, the randomised controlled trial tested the effects
of fMRI-NF of the rIFC in 18 children with ADHD compared to a control
group of 13 children with ADHD who underwent fMRI-NF of the lPHG
on clinical, cognitive and fMRI measures during a motor response in-
hibition stop task. All participants completed four 1-hour MRI scans
across two weeks and completed an average of 11 fMRI-NF runs of
8.5 min each of their respective training condition. A response inhibi-
tion tracking stop task was performed during the first and last fMRI scan
sessions, immediately pre- and post-fMRI-NF training administration.
Clinical and neurocognitive measures were also recorded, outside the
scanner, pre- and post-fMRI-NF training.

2.1. Participants

Thirty-one right-handed (Oldfield, 1971) 12–17 year-old boys, with
a clinical DSM-5 ADHD diagnosis, combined hyperactive/impulsive and
inattentive (N = 27) or inattentive subtypes (N = 4), as assessed by an
experienced child psychiatrist and confirmed with the Schedule of Af-
fective Disorders and Schizophrenia for School Age Children-Present
and Lifetime version (K-SADS-PL) (Kaufman et al., 1997), were re-
cruited from South London clinics. They met above clinical ADHD
threshold on the Conner’s Parent Rating Scale (CPRS-R), a parent rated
index of ADHD severity (Conners et al., 1998). The Social Commu-
nication Questionnaire (Rutter et al., 2003) was used to screen for ASD.
Six boys met above the clinical cut-off score of 15 for potential ASD (2
in the rIFC-group, 4 in the lPHG control group), but a possible ASD
diagnosis was ruled out by clinical interview. Children’s Global As-
sessment Scale was used to assess general function and symptom se-
verity (Shaffer et al., 1983).

Exclusion criteria were IQ < 80 using the Wechsler Abbreviated
Scale of Intelligence – Second Edition (WASI-II; Wechsler, 2011),

alcohol or substance abuse, neurological or comorbid psychiatric dis-
orders, except for disruptive behaviour disorder, and MRI contra-
indications. Twenty-four patients received stable psychostimulant ad-
ministration throughout the fMRI-NF period (methylphenidate:
NrIFC = 13, NlPHG = 9, dexamphetamine: NrIFC = 2). Baseline testing
started at least seven days after titration. One patient from the control
group was medication-naïve, and 3 patients of the rIFC and the control
groups each ceased taking medication for at least seven days before
baseline testing. The study was approved by the local ethics committee
(12/LO/0708) and conducted in accordance with the Declaration of
Helsinki. Written informed assent/consent was obtained from each
participant/legal guardian. Participants received £20 for each of the
fMRI-NF scan visit, and for the post-fMRI-NF neuropsychological as-
sessment, amounting in total to up to £150. Travel expenses were re-
imbursed. See Table 1 for further demographic details or see Alegria
et al. (2017).

2.2. fMRI neurofeedback protocol

The task protocol has been published previously (Alegria et al.,
2017). Participants underwent 14 fMRI-NF runs (8.5 min each) in four
1–1.5 h scan visits across 2 weeks. Each fMRI-NF run consisted of al-
ternating blocks of rest (30 s) and activation (50 s). Each run consisted
of seven rest blocks and six activation blocks; it started with a rest block
during which an image of a dolphin was displayed, while the active NF
blocks showed a video-clip of a rocket. Participants were asked to come
up with their own strategy to move the rocket towards space and in-
structions were minimal (e.g. “you can try to concentrate on the rocket”
or “try any other method that works for you”). This has been shown to
be more effective than explicit instructions (Sulzer et al., 2013) and is
commonly used in ADHD EEG-NF studies (Gevensleben et al., 2014;
Strehl et al., 2006). Once every repetition time (TR; 2 s) participants
received feedback about their brain activity in their target region of
interest (ROI) via the rocket-video clip, with the distance travelled in
space proportional to their BOLD response (Full details of the feedback
signal are given in Alegria et al. (2017)). At the end of each run, a score
(0–10), reflecting the distance travelled through space, appeared on the
screen (e.g. 7 for 70%), and a monetary incentive (£7 for a score of 7)
that corresponded to the best performance in the run was given after
the scan. In between runs, the researchers acknowledged participants’
efforts in staying still and reminded them to continue to do so. The
participants were also congratulated for the score they obtained after
each run. The fMRI-NF performance was acquired for each run, for each
participant as another way to measure brain regulation.

Between scan visits, participants were instructed to practice daily
brain self-regulation using a cue card with a still-image of the video-clip

Table 1
Demographics, medication status, number of fMRI-NF runs completed across
participants.

Descriptive Statistics (N = 31) Mean (SD) or n (%)

(a) Demographics
Age 13.90 (1.58)
WASI-II Full-Scale IQ 103.45 (14.28)
Years in education 9.32 (1.51)
Age of onset of ADHD 6.68 (1.82)
Social Communication Questionnaire 9.24 (5.91)
Oppositional Defiant Disorder 14 (45.16%)
(b) Medication status
Medication naive 1 (3.23%)
On stimulant medication 24 (77.42%)
Off stimulant medication 6 (19.35%)
(c) fMRI-NF runs
Number of runs 11.65 (2.50)
Completed 11 or more runs 21 (67.74%)
Completed all 14 runs 10 (32.26)

Note. WASI, Wechsler Abbreviated Score of Intelligence (second edition).
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rocket. After the final fMRI-NF run of the last scan visit, a 5-minute
fMRI “transfer” run was conducted. This was identical to the NF run in
that the same stimuli were used, but without the actual feedback (i.e.
the rocket did not move). The transfer run consisted of four rest and
three activation blocks. Transfer runs measure retention of learning and
is considered a proximal measure of successful transfer of training
strategies to everyday life (see Alegria et al., 2017; Drechsler et al.,
2007).

2.3. fMRI stop task

An fMRI version of an individually adjusted visual tracking stop task
(Alegria et al., 2017; Rubia et al., 2011,2005) was completed before the
first fMRI-NF run (visit 1) and after the last fMRI-NF run (visit 4). This
task measures the ability to unexpectedly suppress a motor response
already being triggered by a go-stimulus (Verbruggen et al., 2019). A
tracking algorithm changed the time interval between the go-signal and
stop-signal onsets according to each participant’s performance on pre-
vious trials, resulting in 50% of correctly inhibited trials and 50% of
incorrectly inhibited trials. The dependent measure is the stop signal
reaction time derived from the stop signal delay at which the subjects
managed to inhibit 50% of trials, and the mean reaction time to go trials
(stop signal reaction time = mean reaction time to go trials – delay).
The contrast of successful stop–go trials assesses inhibitory activation
and the contrast of failed stop–go trials assesses error monitoring acti-
vation.

2.4. fMRI-NF data acquisition and processing

Details of MRI data acquisition, scanning parameters, and the fMRI-
NF procedure that were used in the previous study are described in
Alegria et al. (2017) and in the supplementary material section 1.1.
Briefly, gradient-echo echo planar MR imaging (EPI) and structural data
were acquired on a 3 T General Electric MR750 scanner with a 12-
channel head coil at the Centre for Neuroimaging Sciences, King’s
College London. For the real-time transfer and analysis of the fMRI
data, a custom fMRI-NF interface system (Bodurka and Bandettini,
2008) and the Analysis of Functional Neuro Images (AFNI) (Cox, 1996)
software were used where fMRI data were pre-processed and corrected
for motion in real-time using AFNI. The AFNI anatomical template was
used to structurally define the target ROIs (rIFC or lPHG) in Talairach
space. The image mask of the pre-selected ROIs was applied to the pre-
processed fMRI images and the mean BOLD signal was extracted from
each ROI in real-time. For each newly acquired brain volume, AFNI
calculated a new set of values for each ROI, and the level of activation
was fed back to the participants by means of the moving rocket. The
threshold required for the rocket to ascend was continuously updated
based on current performance compared to that of the average of the
previous rest block (See supplementary material section 1.1 for full
details). Participants were informed of the NF delay (~6s), caused by
haemodynamic delay and data processing time, before each fMRI-NF
run.

2.5. fMRI stop task data acquisition

Before the first fMRI-NF run, functional scans for the fMRI tracking
stop task were acquired. In each of 38 non-contiguous planes parallel to
the anterior-posterior commissure, 200 T2*-weighted MR images de-
picting BOLD contrasts that covered the whole brain were acquired
with TR/TE = 1.800/3ms, with all other parameters matching the
fMRI-NF runs that are described in Alegria et al. (2017) and in the
supplementary material section 1.1.

2.6. Clinical measures

The primary outcome measure was the ADHD rating scale (ADHD-

RS), that assesses ADHD symptoms according to DSM-IV and monitors
treatment effects (DuPaul et al., 1998). The secondary outcome mea-
sure was the CPRS-R ADHD index. Both measures were completed by
parents.

2.7. Neurocognitive measures

The Maudsley Attention and Response Suppression task battery
(MARS) (Rubia et al., 2007a) was used to measure performance on tasks
of inhibition, sustained attention, time estimation and temporal dis-
counting. Tasks included a Go/No-Go task (main dependent variable:
probability of inhibition), a continuous performance task (CPT; de-
pendent variables: omission and commission errors), a time dis-
crimination task (dependent variable: errors), and an individually ad-
justed delay discounting task (dependent variable: impulsiveness factor
k) (Kekic et al., 2014; Rubia et al., 2009). In addition to the above
measures, we also assessed processing speed and intra-subject response
variability of reaction time by averaging the mean reaction times and
intrasubject response variability, respectively, to go trials in the Go/No-
Go task and to target trials in the CPT task.

2.8. Data analysis

2.8.1. fMRI-NF data
Data from all 31 participants from the previous study by Alegria

et al. (2017) were included in a retrospective fMRI-NF data analysis.
The average number of fMRI-NF runs completed for both groups was
11, with only 30% of participants (NrIFC = 4; NlPHGcontrol = 6) com-
pleting all 14 runs which were mainly due to technical difficulties and
time constraints. Therefore, only the first 11 (or less) fMRI-NF runs
were analysed (see Alegria et al., 2017 for details). fMRI-NF brain ac-
tivation analysis for each participant are identical to the previous study
and are described in the supplementary material section 1.2.

The fMRI-NF performance during the fMRI NF training was also
recorded and averaged across all runs and a between-group ANOVA
was conducted to assess group differences in this performance. The
average fMRI-NF performance was significantly higher in the rIFC-NF
group (mean = 56.68; SD = 8.64) compared to the lPHG-NF group
(mean = 41.63; SD = 9.87) F(1, 29) = 20.373, p < 0.001).

2.8.2. Group differences in linear correlations between brain activation in
ROIs and number of fMRI-NF runs

A group comparison of the linear correlation between ROI activa-
tion and the number of fMRI-NF runs was conducted as also described
in (Alegria et al., 2017), in which a summary statistical map for each
run for each group was constructed by averaging the statistical maps of
all participants who completed that fMRI-NF run. This resulted in a set
of 11 “average maps” per group. The Pearson product-moment corre-
lation coefficient was then computed between the number of fMRI-NF
runs and signal change within each group at each voxel in standard
space (for more details, see Alegria et al., 2017). Differential effects on
linear correlations between the number of fMRI-NF runs and brain ac-
tivation in the two trained ROIs were then tested. To determine the
significance of this difference, the appropriate null distribution was
generated by randomly permuting subjects and fMRI-NF run numbers
between groups, thus scrambling any group differences. For each per-
mutation, the correlation difference between scrambled groups was
calculated and the resulting values were combined over all voxels to
produce a whole-brain null distribution of differences in correlation.
Testing was then extended to cluster-level and the thresholds were set
at p < 0.05 for voxel-level and p < 0.05 for cluster-level, the latter
set to yield less than one false positive cluster per map. It was found
that the rIFC-NF group had progressively increased activation in two
regions of the rIFC (BA44 and BA45) with increasing number of training
runs, when compared to the control group, while the lPHG-NF control
group showed progressively increased activation in three regions
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(BA36, BA30 and BA36) with increasing number of sessions when
compared to the rIFC-NF group (see Alegria et al., 2017).

2.8.3. Definition of fMRI-NF self-regulation learning across both groups
The most significant cluster of progressively increased activation in

each group compared to the other group from the previous study
(Alegria et al., 2017) was used for the calculation of fMRI-NF self-reg-
ulation learning; rIFC versus lPHG control group (i.e. BA45 in the rIFC-
NF group within ROIrIFC; peak Talairach co-ordinates (x; y; z;); 43; 33;
16; p < 0.005; 47 voxels), and lPHG versus rIFC group (BA36 in the
lPHG-NF group; within ROIlPHG; peak Talairach coordinates (x; y; z;);
–22; −7; −26; p < 0.01; 27 voxels) (Alegria et al., 2017). For the
rIFC-NF group and the control lPHG-NF group, the average BOLD ac-
tivity of BA45 and BA36, respectively, were extracted from each com-
pleted run, Pearson’s correlation coefficients between the number of
completed fMRI-NF runs (range 6 to 11 runs) and the average BOLD
activity according to the participants’ NF condition (either in BA45 or
BA36) were then computed. Greater correlation values corresponded to
better linear fMRI-NF self-regulation learning. The fMRI-NF learning
values across all participants of their respective target region ranged
from −0.96 to 0.84 with a mean of 0.028 and standard deviation of
0.526 (See Figure S1 for scatterplots of individual fMRI-NF learning
across NF runs and Figure S2 for the scatterplot of fMRI-NF learning
correlation r-values of all participants)

2.8.4. Linear correlations between generic, ROI-independent fMRI-NF self-
regulation learning and fMRI activation in the stop task across all
participants

The individual subject analysis of stop task brain activation was
almost identical to the methods used for the fMRI-NF brain activation
analysis described in the supplementary material section 1.2 and in
Alegria et al. (2017). Similarly, the standard GLM approach was used to
calculate the estimates of the response size to the two stop task con-
ditions against an implicit baseline condition, (successful stop minus go
trials; unsuccessful stop minus go trials) at individual subject-level.

To test for a linear correlation between whole-brain activation and
ROI-independent generic fMRI-NF learning across all participants, at
each voxel in standard space, participants were combined in a single
group and the Pearson product-moment correlation coefficient was then
computed between the self-regulation learning of each participant (i.e.
the correlation between the number of runs and the activation in rIFC
or lPHG, depending on the group they were originally assigned to) and
the brain activation for the two stop task conditions, the successful stop
condition (successful stop–go trials) and the stop failure condition
(failed stop–go trials). The correlation coefficients were then re-
calculated after randomly permuting the fMRI-NF learning values but
not the fMRI data. The second step was repeated many times (50 times
per voxel, then combining over all voxels) to create a null distribution
against which the probability of any particular observed correlation
coefficient can be assessed. The analyses were then extended to the 3D
cluster level using the procedure described above. In this analysis, less
than one error cluster per map was observed at a p-value of p < 0.05
at the voxel level and of p < 0.005 at the cluster level.

2.8.5. Linear correlations between ROI-independent fMRI-NF self-
regulation learning and brain activation in the first NF run across all
participants

The same analysis detailed in 2.8.4 was conducted to test whether
there was a linear correlation between fMRI-NF self-regulation learning
and the activation in the first NF run across all subjects.

2.8.6. Linear correlations between generic, ROI-independent fMRI-NF self-
regulation learning and clinical and cognitive measures across all
participants

Pearson’s linear correlations were computed between the pooled
participants’ correlation values in fMRI-NF learning and primary and

secondary baseline measures in behavioural (i.e. ADHD-RS, CPRS) and
neurocognitive measures (i.e. Go/No-Go task, time discrimination task,
temporal discounting task, CPT). The data were assessed for normality
with the Shapiro-Wilk test. Spearman’s Rho correlation tests were used
instead for non-normal data. Some participants failed to complete all
cognitive tasks and questionnaires. Missing data (< 5%) were assumed
to be completely at random, and missing pre-fMRI-NF training data
were replaced by group means (White and Thompson, 2005). Correc-
tion for multiple testing was applied using the Benjamini-Hochberg
false discovery rate (Benjamini and Hochberg, 1995).

2.8.7. Linear correlations between ROI-specific fMRI-NF self-regulation
learning and fMRI activation in the stop task for each group separately

To assess associations between baseline brain activation and ROI-
specific learning, we repeated the identical analysis as described in
2.8.4 for each fMRI-NF subgroup separately, i.e. for the rIFC-NF group
and the lPHG-NF group at the same voxel p-value of p < 0.05 and
p < 0.005 at the cluster level.

2.8.8. Linear correlations between ROI-specific fMRI-NF self-regulation
learning and clinical and cognitive measures for each group separately

Pearson’s correlations were computed between clinical and neuro-
cognitive measures and fMRI-NF learning measures for each NF group
separately, i.e. between the participants’ fMRI-NF learning correlation
values from the active rIFC-NF group and baseline behavioural and
neurocognitive measures, and between fMRI-NF learning from the
control lPHG-NF group and baseline behavioural and neurocognitive
measures.

2.8.9. Categorical analysis of fMRI-NF learners versus non-learners and
associations with clinical and cognitive measures

For the categorical analysis, successful fMRI-NF learners were de-
fined as patients who showed a positive correlation (r ≥ 0.15) between
the number of NF runs (N = 11) and brain activation in their respective
regions that most progressively increased during the NF in their group
relative to the other group (BA 45 for active; BA 36 for controls).

Between group ANOVAs were then conducted to compare fMRI-NF
learners and non-learners in clinical and neurocognitive outcome
measures. In order to assess whether baseline clinical or cognitive
measures predicted fMRI-NF learner status, we additionally conducted
a logistic regression analysis between learners and non-learners.
Independent t-tests were first conducted between learners and non-
learners in primary baseline measures in behavioural (i.e. ADHD-RS,
CPRS) and neurocognitive measures (i.e. Go/No-Go task, time dis-
crimination task, temporal discounting task, CPT). Baseline measures
that differed significantly between groups were then entered into the
binary logistic regression model. This was conducted so that not all
variables were added to the model in the first instance since adding too
many variables would lead to reduced statistical power in addition to
increasing the risk of detecting false positives (Sperandei, 2014).

3. Results

3.1. Correlation between ROI-independent fMRI-NF learning and brain
activation during the stop task across all participants

The whole-brain correlation analysis between fMRI-NF regulation
learning and brain activation during the successful stop–go trials of the
stop task (at a voxel-level p < 0.05 and cluster level p < 0.005) re-
vealed progressively enhanced activation with increasing fMRI-NF
learning values in a cluster comprising the left inferior and middle
frontal cortices, left anterior insula, putamen and nucleus accumbens
(see Table 2A & Fig. 1 (cluster in red)). Significant negative correlation
between fMRI-NF self-regulation learning and brain activation was
observed in the left cerebellum and in left inferior temporal-occipital
regions (see Table 2B & Fig. 1A (cluster in blue)). No significant
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correlation was observed during the failed stop trials.

3.2. Linear correlations between fMRI-NF self-regulation learning scores
and brain activation in the first NF run

No significant correlations were found between fMRI-NF learning
scores across all participants and brain activation during the first fMRI-
NF run.

3.3. Clinical and neurocognitive measures associated with generic, ROI-
independent fMRI-NF learning across all participants

No significant correlations were observed between any baseline
primary clinical measures and the fMRI-NF learning values across all
the participants (see Table 3A). For the baseline neurocognitive mea-
sures, there was a negative correlation between fMRI-NF learning and
combined reaction times to target trials in the CPT and go trials in the
Go/No-Go tasks (r = -0.447, p = 0.012). A positive correlation was
also shown between fMRI-NF learning and k median (r = 0.377,

p = 0.037) in the delay discounting task. There was a trend-level ne-
gative correlation between the probability of inhibition in the Go/No-
Go task and fMRI-NF learning (r = -0.352, p = 0.052). However, none
of the findings survived correction for multiple testing using the Ben-
jamini & Hochberg false discovery rate (see Table 3).

3.3.1. Correlation between the number of completed NF runs and clinical
and neurocognitive measures

Mostly due to technical errors (e.g. with the MRI scanner, real-time
fMRI-NF software etc.) and time constraints, not all participants com-
pleted all NF runs (Alegria et al., 2017). Nevertheless, we conducted
Pearson’s correlation analyses to test whether baseline primary and
secondary clinical and cognitive measures were associated with the
number of completed NF runs. No significant correlations were found
between the number of runs and any measures (strongest r
(29) = 0.282; smallest p = 0.125; p = n.s.; see Table S1 in supple-
mentary materials).

Table 2
Significant positive and negative correlation between brain activation during successful stop–go trials in baseline stop task across participants with fMRI-NF per-
formance.

Brain Regions Brodmann's Area (BA) Peak Talairach
Co-ordinates (x;y;z)

Cluster Size (voxels) Cluster p-valuea

A. Successful Stop - Go Trials: positive correlation
L inferior/middle frontal cortex/anterior insula/ putamen/nucleus accumbens BA45/47/46 –32; 22; 3 203 0.001801
B. Successful Stop - Go Trials: negative correlation
L cerebellum/inferior temporal/fusiform/occipital gyri BA20/37/17/18/19 −25; −70; −20 185 0.002178

aStatistical thresholds were set at p < 0.05 for voxel-level and p < 0.005 for cluster level, resulting in less than one false positive cluster per map.

Fig. 1. Axial slices showing linear correlations across all subjects between fMRI-NF regulation learning scores and brain activation during successful stop–go trials
during the baseline stop task at false positive error-corrected voxel-level of p < 0.05, and cluster-level of p < 0.005 (yielding < 1 false positive cluster per map).
The brain cluster in red corresponds to the significant positive correlation between brain activation and fMRI-NF learning scores, and the brain cluster in blue
corresponds to the significant negative correlation between activation and fMRI-NF learning scores. The right side of the image corresponds to the right side of the
brain. Axial slices are shown in mm distance from the anterior-posterior-commissure. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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3.4. Correlation between ROI-specific fMRI-NF learning and brain
activation during the stop task separately for each of the two fMRI-NF
groups

The whole-brain correlation analysis between rIFC-NF regulation
learning in the active group and their brain activation during the suc-
cessful stop–go trials of the fMRI stop task (at a voxel-level p < 0.05
and cluster level p < 0.005) revealed progressively enhanced activa-
tion with increasing fMRI-NF learning values in a cluster comprising the
left and right superior and middle frontal cortices (Table 4A & Fig. 2A).
Significant positive correlation between lPHG-NF learning and stop
task-related brain activation was observed in a cluster of the left orbi-
tofrontal/inferior frontal areas, insula, anterior cingulate, pre-motor
cortex, and reaching subcortically into the putamen, caudate, globus
pallidum and thalamus. The other cluster comprised similar regions of
the right hemisphere including orbitofrontal/inferior frontal areas, in-
sula, anterior cingulate, putamen, caudate, globus pallidum, thalamus,
and areas of the superior temporal lobe (Table 4B & Fig. 2B). There
were no significant negative correlations between stop-task related
brain activation and fMRI-NF learning in either of the two groups.

3.5. Clinical and neurocognitive measures associated with ROI-specific
fMRI-NF learning for each group separately

No significant correlations were found between fMRI-NF learning in
the active rIFC-NF group or the control lPHG-NF group in any baseline
behavioural or neurocognitive measures with the exception of (faster)
mean reaction time to targets during Go/No-Go and CPT (RT combined)
being significantly negatively correlated with (better linear) fMRI-NF
learning in the control lPHG-NF group. This survived correction for
multiple testing (FDR) (r (11) = -0.757; p-adjusted = 0.042).

3.6. Categorical analysis of fMRI-NF learners versus non-learners and
clinical and cognitive measures

For the categorical analysis, successful fMRI-NF learners were de-
fined as patients who showed a positive correlation (r ≥ 0.15) between
the number of NF runs (N = up to 11) and brain activation in their
respective regions that most progressively increased during the NF in
their group relative to the other group (BA45 for active; BA36 for
controls). The correlation analysis revealed 15 successful learners and
16 non-learners out of 31 participants, resulting in a percentage of self-
regulation learning of 48.4% (Figs. S1 & S2, supplementary materials).

We then tested whether learners and non-learners differed in pre-

Table 3
Correlation between baseline primary clinical and neurocognitive measures with fMRI-NF learning scores across all participants.

Baseline clinical measures Mean (SD) Correlation
r value
(df = 29)

P-value (2-tailed) Adjusted P-valuea

ADHD-Rating Scale
Total score 37.16 (10.13) 0.062 0.74
inattention 20.29 (4.47) 0.113 0.546
hyperactivity/impulsivity 16.87 (6.39) 0.019 0.917
Conner’s Parent Rating Scale
ADHD Index score 14.81 (4.29) 0.14 0.452
DSM-V inattention 81.16 (8.53) −0.113 0.545
DSM-V hyperactivity/impulsivity 85.48 (9.13) 0.215 0.245
Baseline neurocognitive measures
Go/No-Go Task
Probability of inhibition (%) 62.48 (19.02) −0.352 0.052 0.242
Continuous Performance Task (CPT)
Omission errors (%) 8.29 (6.94) 0.217 0.241
Commission errors (%) 1.13 (1.43) 0.149 0.423
Delay Discounting
k median 0.015 (0.014) 0.377* 0.037 0.242
Time Discrimination Task
Total correct 77.13 (16.63) −0.05 0.788
Stop Task
Stop signal reaction time (ms) 116.71 (168.74) −0.009 0.962
RT combined (CPT, Go-No-Go) 369.11 (40.83) −0.447* 0.012 0.168
Intra-subject co-efficient of variance combined (CPT, Go-No-Go) 0.25 (0.06) 0.202 0.275

Note. RT combined, combined mean reaction time to targets during Go/No-Go task and Continuous Performance task.
*Significance level < 0.05 for unadjusted p-values.
aBenjamini-Hochberg False Discovery Rate adjusted p-value to correct for multiple testing.

Table 4
Significant positive correlation between brain activation across the whole brain during successful stop–go trials in the baseline stop task and fMRI-NF learning scores
in rIFC in the rIFC-NF group and fMRI-NF learning scores in lPHG in the lPHG-NF group.

Brain Regions Brodmann's Area (BA) Peak Talairach
Co-ordinates (x;y;z)

Cluster Size
(voxels)

Cluster p-valuea

A. rIFC-NF Group
L&R superior/middle frontal cortex BA8/9 −7; 37; 46 152 0.001515
B. lPHG-NF Group
L orbitofrontal/inferior frontal cortices, insula, anterior cingulate, putamen, caudate,

globus pallidum, thalamus, premotor cortex
BA47/44/45/6/ −36; 19; −10 313 0.000359

R insula, orbitofrontal/inferior frontal cortices, anterior cingulate, superior temporal,
putamen, caudate, globus pallidum, thalamus,

BA47/44/32/25/22 22; 26; −10 243 0.000737

aStatistical thresholds were set at p < 0.05 for voxel-level and p < 0.005 for cluster level, resulting in less than one false positive cluster per map.
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and post-fMRI-NF training changes in clinical and neurocognitive
measures. Within-group comparisons showed that ADHD symptoms in
both the fMRI-NF learner group and the non-learner group decreased
significantly from pre- to post-fMRI-NF, for all primary and secondary
outcomes measures, except for only a trend-wise reduction in ADHD-RS
hyperactivity/impulsivity subscale in the non-learners (Table S2 in
supplementary materials).

Comparisons between successful fMRI-NF learners and non-learners
revealed a significant effect of time showing decreased symptoms in
primary (ADHD-RS total score, F(1,29) = 15.76, p < 0.001, d = 0.63;
ADHD-RS Inattention subscale, F(1,29) = 15.67, p < 0.001, d = 0.70;
ADHD-RS Hyperactivity/Impulsivity subscale, F(1,29) = 10.37,
p = 0.003, d = 0.47) and secondary outcome measures (CPRS-R ADHD
Index, F(1,29) = 17.00, p < 0.001, d = 0.72; CPRS-R DSM-5 in-
attention, F(1,29) = 14.67, p = 0.001, d = 0.955; CPRS-R DSM-5
hyperactivity/impulsivity, F(1,29) = 9.94, p = 0.004, d = 0.352) in
both groups, but there were no group or group by time interaction ef-
fects (F(1,29) < 2.08, p > 0.16).

For the neurocognitive measures, fMRI-NF learners showed reduced
CPT commission errors (percentage) post- versus pre-fMRI-NF with a
medium effect size (F(1,29) = 4.83, p < 0.045, d = 0.49) only. No
other neurocognitive performance effects were observed within groups
(Table S3 in supplementary materials). Between group comparisons
showed no significant effect of time in any measures (F (1,
29) < 3.73), p > 0.06). There was a significant effect of group in the
combined mean reaction time to targets in the Go/No-Go and CPT (F
(1,29) = 7.73, p = 0.009, d = 0.12), with learners being faster than
non-learners. No group by time interaction effects were significant (F
(1,29) = 2.23, p > 0.15).

In the cognitive baseline measures, only mean reaction time to
targets in the Go/No-Go and CPT combined (RT combined; t
(df = 29) = 2.839, p = 0.008), and k-median (t(df = 29) = -2.28),
p = 0.03) in the delay discounting task differed significantly between
groups. Mean reaction time in the Go/No-Go and CPT combined was
faster in learners, and non-learners had steeper discounting than non-
learners. The above mentioned measures that differed significantly
between groups (RT combined and k-median in delay discounting) were
inputted into the logistic regression analysis. The analysis revealed that
only RT combined was a significant predictor of successful NF regula-
tion learning in which faster RT was associated with better fMRI-NF
learning (Odds ratio: 0.967, 95% CI: 0.937 – 0.997, p = 0.033).

4. Discussion

The aim of this study was to explore the relationship between fMRI-
NF self-regulation learning in adolescents with ADHD and baseline
scores in neurofunctional, clinical, and neurocognitive measures in
order to establish fMRI-NF learning predictors. Similar to previous EEG-
NF and fMRI-NF studies in both healthy and clinical population, there
was relatively large heterogeneity in the NF regulation capability across
participants, with self-regulation learning values ranging from −0.96
to 0.84; where higher positive correlation values indicating better
linear fMRI-NF learning (Alkoby et al., 2018; Okumura et al., 2017;
Zuberer et al., 2015). The categorical analysis of learners and non-
learners showed that the percentage of successful fMRI-NF learners was
48.4% (N = 15 out of 31), similar to what has been found in EEG-NF
studies in healthy participants and in ADHD patients (Alkoby et al.,
2018; Okumura et al., 2017; Zuberer et al., 2015). The correlation
analyses revealed that, in the baseline fMRI stop task, better fMRI-NF
learning was associated with enhanced activation during successful stop
trials in a large cluster comprising the left inferior and middle frontal
cortices, anterior insula, putamen and nucleus accumbens, while poorer
fMRI-NF learning was associated with enhanced temporo-occipital-
cerebellar activation. However, no significant correlation was observed
with activation during the failed stop task, suggesting that only net-
works during successful inhibitory self-control and not error monitoring
activation patterns are associated with fMRI-NF learning. At the cog-
nitive level, only in the categorical analysis, processing speed during
sustained attention and inhibition was predictive of successful NF
learning while it did not survive correction for multiple testing in the
correlation analysis between cognitive measures and fMRI-NF learning.
No associations were found between fMRI-NF learning and clinical
measures in either the correlational or categorical analyses.

Taken together, these findings indicate that functional neuroima-
ging data are stronger predictors of fMRI-NF learning than cognitive or
clinical measures. They show that better self-regulation learning during
fMRI-NF in adolescents with ADHD is associated with increased re-
cruitment of left fronto-insular-striatal cognitive control regions during
an inhibitory self-regulation task. In contrast, poorer fMRI-NF regula-
tion learning was associated with increased posterior temporo-occi-
pital-cerebellar activation during the fMRI stop task. This activation
pattern of increased left fronto-striatal and reduced posterior temporo-
parietal regional recruitment during a task of self-control in better
fMRI-NF self-regulators may be reflective of a more mature activation

Fig. 2. Axial slices showing whole brain
linear correlation between brain activation
in the baseline stop task (successful stop -
go trials) and self-regulation learning
scores of A) rIFC activation in the rIFC-NF
group and of B) lPHG activation in the
lPHG-NF group; both at false positive
error-corrected voxel-level p < 0.05, and
cluster-level p < 0.005 (yielding < 1
false positive cluster per map). The brain
clusters in red correspond to the significant
positive correlation between stop-task re-
lated brain activation across the whole
brain and fMRI-NF learning. There were no
significant negative correlations between
stop task-related brain activation and
fMRI-NF learning in either of the two
groups. The right side of the image corre-
sponds to the right side of the brain. Axial
slices are shown in mm distance from the
anterior-posterior-commissure. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
web version of this article.)
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pattern. Fronto-striatal cognitive control networks and posterior tem-
poro-occipital regions have been shown to be increasingly and de-
creasingly recruited, respectively, with increasing age between child-
hood and adulthood (Rubia, 2013), in particular during motor response
inhibition tasks (Christakou et al., 2009; Rubia et al.,
2013,2007b,2006). Moreover, inferior fronto-striatal regions are typi-
cally under-activated in children with ADHD relative to age-matched
healthy children (Hart et al., 2013; Lukito et al., 2020; Norman et al.,
2016; Rubia et al., 2005). In addition, there is evidence for a functional
maturation delay in ADHD patients in the development of cognitive
control and attention networks (Sripada et al., 2014). Thus, our findings
could potentially suggest that children with ADHD with more mature
activation patterns in cognitive control regions may be better at self-
regulation learning than children who show a more immature activa-
tion pattern in posterior brain regions.

The association of enhanced activation of the left inferior fronto-
striatal cognitive control regions during successful inhibition associated
with better fMRI-NF learning suggest that fronto-striatal cognitive
control regions play an important role in mediating fMRI-NF learning.
This finding in adolescents with ADHD is similar to the results from an
fMRI-NF study in healthy adults, in which better NF-induced regulation
of primary motor cortices during a kinesthetics motor imagery task was
associated with enhanced activation of bilateral middle frontal cortex,
insula, basal ganglia, thalamus, and premotor cortex during fMRI-NF
training (Chiew et al., 2012). Our findings also extend findings from an
EEG-NF study in children with ADHD in which stronger baseline acti-
vation of left inferior PFC measured with near-infrared spectroscopy
during a matching Stroop task predicted SCP EEG-NF regulation suc-
cess, suggesting that NF training success may depend on the maturity of
left PFC activation mediating executive processes in ADHD patients
(Okumura et al., 2017).

Our findings that increased fronto-striatal cognitive control activa-
tion is related to better fMRI-NF learning in ADHD patients also extend
recent meta-analytic findings of 12 fMRI-NF studies in healthy controls
that included 9 different NF target ROIs. The meta-analysis revealed a
common network which was consistently increased during fMRI-NF
training, independent of the region that was trained to be regulated.
This network comprised the inferior and dlPFC, ACC, anterior insula,
basal ganglia, temporo-parietal and visual association regions; and
were thus proposed as regions that mediate generic brain self-regula-
tion processes (Emmert et al., 2016). These regions form part of the
cognitive control network (Sripada et al., 2014), and overlap with the
areas which we found to be increased in activity with better fMRI-NF
learning in adolescents with ADHD during the fMRI stop task. The re-
gions highlighted by our study also overlap with the proposed fMRI-NF
regulation networks described in a review by Sitaram et al. (2017); the
authors proposed three networks: the control network comprising the
dlPFC, posterior parietal cortex and, thalamus; the reward processing
network comprising the ACC, anterior insular cortex and ventral
striatum; and the learning network which comprises the dorsal
striatum.

Although the right inferior frontal cortex together with the anterior
insula and striatal regions have more typically been associated with
inhibitory motor control (Aron et al., 2014; Guo et al., 2018; Rubia
et al., 2003), the left inferior frontal cortex and striatal regions have
also been implicated in motor inhibition in fMRI and lesion studies, in
particular in children (Criaud and Boulinguez, 2013; Hampshire et al.,
2010; Rae et al., 2014; Rubia et al., 2013,2007b; Sebastian et al., 2016;
Swick et al., 2008). Some functional connectivity studies have even
argued for a stronger role for the left than the right IFC in mediating
inhibition, together with the pre-supplementary motor area (SMA)
(Duann et al., 2009; Zhang et al., 2012). The left IFC has also been
argued to mediate attentional target detection processing and to kick-
start the inhibitory process via its attention processing role, which then
initiates the inhibitory process via its connection to the pre-SMA (Chao
et al., 2009). The left IFC, anterior insula and striatum have also been

implicated in wider cognitive control functions, including interference
inhibition and switching, and not only motor response inhibition
(Christakou et al., 2009; Cole et al., 2014; Hugdahl et al., 2015;
Niendam et al., 2012). It is hence plausible that regions that mediate
generic cognitive control, rather than those that mediate motor in-
hibitory control specifically, are implicated in brain self-regulation.

The bilateral IFC are also part of the ventral attention system
(Corbetta et al., 2008; Shulman et al., 2009). Several fMRI studies using
stop task manipulations have shown that the bilateral ventral IFC at-
tention system together with the pre-SMA and inferior parietal lobes are
activated during attention processing or attentional preparatory pro-
cesses to the behaviourally relevant rare stop trials (Chao et al., 2009;
Duann et al., 2009; Hampshire et al., 2010; Hu and Li, 2012; Zhang and
Li, 2012). It is hence also possible that top-down attentional processes
are associated with better brain self-regulation capacity.

Interestingly, the left inferior and middle frontal areas, together
with the putamen and nucleus accumbens, have also been implicated in
cognitive control learning and planning processes (Brovelli et al., 2011;
Grahn et al., 2008; Kaller et al., 2010; Liljeholm and O'Doherty, 2012).
A review of both comparative and human NF-related studies proposed
that the basal ganglia play a key role in the success of NF training
(Birbaumer et al., 2013) as there is strong evidence of cortico-basal-
ganglia loop involvement in self-regulation and skill learning (e.g.
Halder et al. (2011); Hinterberger et al. (2005); Koralek, Jin, Long,
Costa, and Carmena (2012)). Our findings thus imply that the more
skilled ADHD fMRI-NF learners may have a better ability to engage
their cognitive control network during a cognitive control task to begin
with. This is associated with superior fMRI-NF learning skills, pre-
sumably because the same regions that mediate inhibitory control are
also involved in fMRI-NF self-regulation.

Interestingly, the test for associations between fMRI-NF learning
and stop task activation in each of the two fMRI-NF groups separately,
showed that ventrolateral PFC, insula and striato-thalamic activation
was associated with fMRI-NF learning in the lPHG group while a more
dorsal prefrontal activation cluster was associated with NF learning in
the rIFC-NF group. As mentioned above, both IFC and dlPFC are asso-
ciated with fMRI-NF learning in the meta-analysis of Emmert et al
(2016) and both regions were associated with generic fMRI-NF learning
in our analysis across all participants. It seems that successful learning
of rIFC-NF activation benefitted more from dlPFC baseline activation,
while successful learning of lPHG activation benefitted more from
ventrolateral PFC baseline activation. The left dlPFC is a key region of
learning (Brovelli et al., 2011; Grahn et al., 2008; Kaller et al., 2010;
Liljeholm and O'Doherty, 2012) and exerts top-down control over other
prefrontal regions such as IFC and orbitofrontal cortex within a caudo-
rostral prefrontal hierarchy (Dosenbach et al., 2008; Milham et al.,
2003; Silton et al., 2010). A strong baseline dlPFC activation may hence
be crucial for self-regulation of inferior frontal regions. The orbito-
frontal cortex and insular regions are closely connected to the para-
hippocampal gyrus and thus, may be important for self-regulation of
this region (Suzuki, 2009). It has furthermore been shown that posterior
and smaller regions are more difficult to self-regulate compared to more
anterior, higher-level association areas. One study showed that within 4
runs in an fMRI-NF session, the anterior insula could be successfully
upregulated but not middle parahippocampal regions; however, this
study used affective probes and strategies targeting anterior insula and
not parahippocampal activation (Lawrence et al., 2014). Other studies
demonstrated that posterior regions such as lower visual areas com-
pared to the higher visual and inferior parietal areas are more difficult
to self-regulate (Harmelech et al., 2015), and a small pilot study found
that the posterior as opposed to the rostral anterior cingulate cortex
(Guan et al., 2015), could not be successfully self-regulated. In our own
study, only the rIFG-NF group had a transfer effect and showed a sig-
nificant difference between the last and first run in rIFC activation,
while the control group did not show such effects and only showed a
linear activation increase in lPHG (which was relatively weaker than
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the activation increase in rIFC) (Alegria et al., 2017). This was also
reflected in the scores in the fMRI-NF performance during the training
which were significantly higher in the rIFC compared to the lPHG
group. Therefore, if the lPHG-NF training is more challenging than the
rIFC-NF training, demanding superior self-regulation skills, then this
could potentially explain the larger bilateral ventrolateral PFC-striato-
thalamic activation clusters associated with better fMRI-NF learning in
the lPHG group. In conclusion, it is hence possible that stronger base-
line ventral inferior fronto-striatal cognitive control activation is
needed to self-regulate a smaller region that is more difficult to self-
regulate than frontal regions, while baseline dlPFC activation is more
instrumental for frontal self-regulation capacity.

Conversely, enhanced activation of the inferior temporal and occi-
pital regions, and of the cerebellum, during the stop task, in association
with poorer fMRI-NF learning, could reflect a more immature activation
pattern. During development from childhood to adulthood, regions of
inhibitory and cognitive control, in particular the inferior PFC, dlPFC
and the basal ganglia, are progressively more recruited with increasing
age, while earlier-developing visual-spatial (posterior occipital) and
cerebellar regions are recruited more in younger subjects (Christakou
et al., 2009; Rubia, 2013; Rubia et al., 2013,2007a,2006). An inverse
interaction between age and ADHD has been shown in large resting
state fMRI data in cognitive control and attention networks, suggesting
that ADHD patients have a maturational delay of brain function, with
the typically age-related progressive development of cognitive control
and attention networks being immature (Sripada et al., 2014). It is
hence possible that the poorer fMRI-NF learners were more immature in
their brain function development, and thus showed less fronto-striatal
cognitive control activation together with abnormally increased pos-
terior temporo-occipital and cerebellum activation, which prevented
them from learning to self-control their brain activation via fMRI-NF
more easily.

An alternative explanation for the enhanced activation of inferior
temporal and cerebellar regions in association with poorer self-regula-
tion learning during the fMRI stop task, could be that it reflects in-
creased DMN activation, which these regions have been associated with
(Buckner et al., 2011; Krienen and Buckner, 2009; Kucyi et al., 2015).
The DMN refers to a “task-negative” network comprising the posterior
cingulate cortex (PCC), precuneus, ventromedial frontal regions and
inferior temporal and parietal areas. These regions are mostly activated
during rest, are thought to reflect internally oriented and task-irrelevant
thought processes (e.g. mind wandering), and are supressed during
goal-oriented tasks (i.e. they anti-correlate with “task positive net-
works”) (Raichle et al., 2001). Behavioural studies have shown that
ADHD patients have significantly more mind-wandering than healthy
controls (Bozhilova et al., 2018; Mowlem et al., 2016; Van den
Driessche et al., 2017). fMRI studies have shown that ADHD patients
compared to healthy controls have less deactivation of anterior and/or
posterior DMN regions during cognitive tasks, especially during atten-
tion or executive function tasks with progressively increasing task dif-
ficulties, which is associated with poorer attention task performance
and enhanced distractibility (Christakou et al., 2013; Metin et al., 2014;
Rubia, 2018).

Interestingly, in our current study, only the contrast of successful
inhibition was associated with NF self-regulation learning and not the
contrast of performance monitoring. This suggests that inhibitory-re-
lated brain activation is more relevant to self-regulation skills than
error monitoring networks.

At the cognitive performance level, the association between better
fMRI-NF learning capacity and faster mean reaction times during a
sustained attention and an inhibition tasks across all participant did not
survive correction for multiple testing. However, the categorical ana-
lysis did show that learners were significantly faster than non-learners
overall and the predictor analysis showed that processing speed during
inhibition and sustained attention predicted fMRI-NF learning.
Furthermore, when investigating the relationship between baseline

measures and fMRI-NF learning in the two NF groups separately, the
control group showed significant correlation between better learning
and faster mean reaction time to targets. The association between NF
learning and processing speed during attention and inhibition tasks is in
line with prior findings from EEG and fMRI-NF studies in both healthy
and clinical populations, including ADHD patients (Daum et al., 1993;
Hammer et al., 2012; Zilverstand et al., 2017), that better baseline
sustained attention abilities are important for NF learning. ADHD pa-
tients have consistently been shown to have slower mean reaction time
in cognitive task performance in comparison to healthy controls
(Coghill et al., 2018; Kofler et al., 2013; Levy et al., 2018; Losier et al.,
1996) presumably reflecting slower processing speed and information
processing. In fact, more recent findings indicate that slower reaction
time and increased reaction time variability could also be a reflection of
attentional lapses and poorer vigilance (Gmehlin et al., 2016; Hervey
et al., 2006; Leth-Steensen et al., 2000), potentially reflecting enhanced
mind-wandering (Castellanos et al., 2005; Epstein et al., 2011; Lee
et al., 2015; Leth-Steensen et al., 2000).

It is interesting to note that the left dlPFC is a key mediating region
of processing speed (Jacobs et al., 2013; Motes et al., 2011; Motes et al.,
2018), given that both left PFC activation and processing speed were
found to be predictors of better fMRI-NF learning in our study. Thus,
our finding of faster mean reaction times in both the CPT and the Go/
No-Go task associated with better fMRI-NF learning may imply that
better self-regulation ability may be related to faster processing speed
and information processing skills. Such an association seems plausible
since fMRI-NF is an operant conditioning learning procedure, and it has
been shown that information processing speed can play an important
role in higher executive functioning such as reasoning and learning
(Chiaravalloti et al., 2003; Kail et al., 2016; Takeuchi and Kawashima,
2012). Although the correlation analysis showed associations between
fMRI activation during the stop task and self-regulation learning, we
found no association between the stop task performance and regulation
learning skills. We have shown previously in ADHD that fMRI is more
sensitive than performance data to detect differences relative to healthy
controls (Rubia et al., 1999,2005; Smith et al., 2006).

We also found no association between the activation during the first
NF run and fMRI-NF learning. The first NF run, however, is likely to be
confounded by scanner anxiety and insecurities with respect to the
novel aspects of fMRI-NF self-regulation learning and may hence not be
representative. Moreover, there was no association between clinical
measures and NF self-regulation learning. This echoes previous findings
from EEG-NF (Kadosh and Staunton, 2019; Zuberer et al., 2018) and
fMRI-NF (Zilverstand et al., 2017) studies that also found little or no
association. This suggests that clinical measures may not be as sensitive
as neuroimaging and neurocognitive measures in detecting the con-
tributing factors influencing fMRI-NF regulation learning. Together
with our findings, this therefore suggests that, in future studies, it may
be more informative to examine neuroimaging and neurocognitive
measures rather than clinical measures as potential predictors of suc-
cess in fMRI-NF learning.

Lastly, the number of completed NF runs was not associated with
baseline clinical or cognitive measures, suggesting that ADHD clinical
or cognitive severity was not a reason or confounder of the completion
of NF runs. This was more likely caused by the technical issues that
occurred including NF software problems and scanner hardware pro-
blems.

5. Limitations

As already mentioned above, a limitation is the small sample size
which did not allow us to test for learners and non-learners in each
group separately. Another limitation is the definition used to measure
fMRI-NF regulation learning and the categorical classification of tfMRI-
NF learners and non-learners (i.e. defining learners as those with a
positive correlation of r > 0.15 between activity of their respective
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significantly increased target region with the number of completed NF
runs) which could be considered arbitrary. However, previous EEG-NF
studies have employed similar definitions to ours (e.g. Kouijzer et al.,
2013; Lubar et al., 1995). Moreover, there is a large heterogeneity in
the type of definitions used across NF studies. NF reviews have high-
lighted the heterogeneity of the type of definitions used for successful
regulation such as “cross-session learning” which refer to brain changes
across all (Enriquez-Geppert et al., 2014; Janssen et al., 2017; Lubar
et al., 1995) or at certain time-point NF sessions e.g. 1st, 5th, 6th, 13th
NF sessions; Gevensleben et al. (2014)) or the transfer session
(Doehnert et al., 2008). Alternatively, successful regulation can also be
defined by “within-session learning” which considers brain activity
changes within a single NF session (Zuberer et al., 2015). We could not
examine “within-session learning” as some of our participants did not
undergo more than two NF runs in some sessions due to various issues
(e.g. compliance or technical issues with the scanner and/or real-time
NF software). Still, there is currently no clear consensus on the best
definition of successful brain self-regulation (Alkoby et al., 2018),
which may be due to the fact that there is also a variation in NF study
designs, such as number of NF runs, sessions and length of the blocks.
Thus, this makes it difficult to compare and confirm our findings with
previous NF studies investigating regulation success. Future NF studies
are needed to confirm the optimal way to quantify successful self-reg-
ulation for more sound comparisons and discussions across NF studies.

6. Conclusions

In summary, the current study shows that better fMRI-NF self-reg-
ulation learning in adolescents with ADHD was associated with in-
creased activation during inhibitory control in a left inferior fronto-
insular-striatal cognitive control network and with decreased activation
in posterior temporo-occipital-cerebellar regions, presumably reflecting
a more mature activation pattern of cognitive control. Our study thus
suggests that adolescents with ADHD with a more mature pattern of
fronto-striatal cognitive control activation to start with may be better
suited for fMRI-NF. Our findings also show that neurofunctional mea-
sures appear to provide better predictor value of fMRI-NF learning in
ADHD patients than either clinical or cognitive behavioural measures.
This can help guide future research, and our clinically relevant results
can lead to the eventual optimisation of fMRI-NF protocols in ADHD
patients to increase the success rates of NF training. This would also
make it possible to predict which patients will respond and which will
not respond to fMRI-NF and hence help with precision medicine.
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