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Abstract
Background: Lectins are carbohydrate-binding proteins which potentially bind to cell surface
glycoconjugates. They are found in various organisms including fungi. A lectin from the mushroom
Xerocomus chrysenteron (XCL) has been isolated recently. It shows insecticidal activity and has
antiproliferative properties.

Results: As the monosaccharide binding specificity is an important determinant of lectin function,
we determined the affinity of XCL for the galactose moiety. Isothermal titration calorimetry studies
revealed a dissociation constant Kd of 5.2 µM for the XCL:N-acetylgalactosamine interaction at
27degreesC. Higher affinities were observed at lower temperatures and higher osmotic pressures.
The dissociation constant was five hundred times higher for the disaccharide beta-D-Gal(1–3)-D-
GalNAc, Thomsen-Friedenreich (TF) antigen (Kd of 0.94 µM). By using fetuin and asialofetuin in
interaction with the XCL, we revealed its ability to recognize the Thomsen-Friedenreich motif on
glycoproteins.

Conclusion: The XCL antiproliferative effect and the TF antigen specificity presented in this work
suggest that XCL and ABL may have similar binding mechanisms. The recent structure
determination of these two proteins lead us to analyse these interactions in the light of our
thermodynamic data. The understanding of this type of interaction may be a useful tool for the
regulation of cell proliferation.

Background
Lectins are carbohydrate-binding proteins found in vari-
ous organisms including fungi [1,2]. Despite the large
amount of informations available on lectin sequence and
specificity, relatively little is known about their biological
significances. The abundance and the variety of carbohy-

drate specificities of lectins raised the interest to use them
for isolation and analysis of complex carbohydrates, cell
separation and studies of cell surface architecture [3]. For
a long period, legume lectins were the model system of
choice to study the molecular basis of carbohydrate-lectin
recognition. They are easy to purify in large quantities,
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and they exhibit a wide variety of carbohydrate specifici-
ties despite strong sequence conservation [4].

Mushroom lectins have captured the attention of investi-
gators on account of their antiproliferative, immunomod-
ulatory, antitumor and cytotoxic activities, and more than
50 mushroom lectins have been reported [5]. We recently
isolated a lectin from Xerocomus chrysenteron (XCL) [6].
The X ray crystal structure resolution of XCL revealed a
tetrameric assembly and an unexpectedly similarity with
actinoporins [7]. XCL was reported as an insecticidal pro-
tein [6] and shares antiproliferative properties against two
mammalian cell lines [8]. We can also mention Agaricus
bisporus lectin (ABL), another mushroom lectin well
known for its reversible antiproliferative effects [9].

ABL is a member of a group of proteins, which bind the
Thomsen-Friedenreich (TF) antigen selectively and with
high affinity. TF antigen is represented by galactosyl β-1,
3-N-acetylgalactosamine and is common in malignant
and pre-malignant epithelia [10,11]. There are three other
well known dietary TF-binding lectins: jacalin from the
seeds of jackfruit Artocarpus integrifolia, the peanut lectin
from peanut Arachis hypogaea, and amaranth lectin from
Amaranthus caudatus. These four lectins have been used in
histochemistry for identification of the TF antigen in tis-
sues [12,13].

As previously reported by Rosen and al. [14], ABL belongs
to a lectin fungi family based on sequence homology and
N-acetylgalactosamine and galactose affinity. At present

ITC profile and treatment of data of XCLtag and N-acetylgalactosamine interaction using 25 mM Na2HPO4/NaH2PO4 as bufferFigure 1
ITC profile and treatment of data of XCLtag and N-acetylgalactosamine interaction using 25 mM Na2HPO4/NaH2PO4 as buffer. 
A: Top: raw data obtained from 98 automatic injections (3 µl each), by titration of 50 mM N-acetylgalactosamine into 0,394 
mM XCLtag solution. Bottom: the integrated curve showing the experimental points (■ ) and the best fit (-) B: Comparison of 

titrations realized at two different temperatures. Red scatter ( ): 10°C data titration; black scatter (■ ): 27°C data titration.
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this family contains: Agaricus bisporus lectin (ABL), Arthro-
botrys oligospora lectin, Xerocomus chrysenteron lectin (XCL),
Pleurotus cornucopiae lectin, Gibberella zeae lectin, Paxilus
involutus lectin [15]. The sequence homology between
XCL and its family members varies from 65% to 35% sug-
gesting that all these lectins could recognize TF antigen.

Here we focus on XCL binding constants for specific sug-
ars and quantify the underlying thermodynamic parame-
ters of the carbohydrate-XCL lectin interactions by direct
measurement of the enthalpy using isothermal titration
calorimetry method. We found that XCL recognizes TF
antigen with high affinity (Kd: 1 µM).

Results
Sugar – XCL interaction
Red blood cell agglutination by XCL was inhibited when
galactose, lactose and N-acetylgalactosamine was added
to the system but no effect was seen with glucose, fucose,
fructose, sorbitol, mannose and sucrose [6]. We first per-
formed a titration of lactose and galactose to the protein,
however the low binding affinity of both sugars was
below the detection limit of the method (data not
shown). Subsequently, we investigated the N-acetylgalac-
tosamine/XCL interaction. With N-acetylgalactosamine,
the acetamide group on the galactose ring can bring one
more hydrogen bond, which can contribute to the
enthalpy of the reaction and affinity values, and then titra-
tion was possible [16].

Figure 1A shows a titration of N-acetylgalactosamine into
XCL protein at 27°C, together with a least squares fit. An
apparent monotonic decrease in the heat release evolves
when increasing amount of ligand is added, suggesting
that XCL displays only one type of binding site and the
absence of allostery between the four sites present on the
tetramer. The fit of the data based on the one type site
model reveals a binding constant of 192 M-1 and a reac-
tion enthalpy of – 6.27 kcal/mol when the monomer con-
centration was considered for the calculations. As this
affinity is very small, the enthalpy was estimated sepa-
rately in another experiment where small quantities of lec-
tin were injected into a N-acetylgalactosamine containing
solution. We obtained a ∆H value of – 25.20 kcal/mole

corresponding to four independent binding sites (data
not shown).

Binding of carbohydrates to a number of proteins is char-
acterised by small enthalpy and heat capacity changes.
Hydrogen bonding interactions are essentially enthalpi-
cally driven with little change in the heat capacity, while
hydrophobic interactions are essentially entropically
driven [17]. Measurements performed at 10°C using the
same titration conditions indicate that the enthalpy of
binding of N-acetylgalactosamine does not vary signifi-
cantly with temperature and small changes in the heat
capacity are observed. The fit of the data with one set of
site model (figure 1B, red spectra) gave an affinity value of
362 M-1 and no important change of the reaction enthalpy
was observed (- 6.25 kcal/mole). In many cases, binding
of saccharides to lectins is coupled to changes in solvent
accessibility that result in negative, albeit small, ∆Cp val-
ues [16]. This is also the case of XCL – N-acetylgalactos-
amine interaction.

Variation of osmotic stress allows to measure the energetic
contribution of the solvatation effect on the enthalpy of
the reaction [18]. The water activity was reduced by add-
ing 10 % (w/v) PEG 8000 to the system. An increase in the
binding constant value (280 M-1) and a reduction of the
binding enthalpy (- 5.82 kcal/mole) were observed. Ther-
modynamics parameters, which characterize the XCL – N-
acetylgalactosamine interaction are summarised in Table
1. The ∆G values and the deduced binding constants are
higher at low temperature or under osmotic stress.

The N-acetyllactosamine was also used as a ligand and the
affinity constant at 27°C is in the range of 50 M-1 but with
significant errors. These errors are due to an uncertainty in
fitting the data at Ka values of smaller than 100 M-1.

We especially checked the XCL interaction for TF antigen,
β-D-Gal(1–3)-D-GalNAc, since ABL was previously
shown to bind this disaccharide with a high affinity con-
stant. A ∆H value of -9.13 kcal/mole and an affinity con-
stant of 1.06 105 M-1 were obtained (fig. 2 and table 2).
This value is 500 fold higher than the affinity constant
determined for N-acetylgalactosamine interaction.

Table 1: Thermodynamic values, which characterize the interaction of XCL with N-acetylgalactosamine

Ka, M-1 -∆H, kcal/mole -∆G, kcal/mole -∆S, cal/moleK Nr exp.

27°C 192 ± 5 6.27 ± 0.10 3.122 10.5 2
27°C, 10% PEG 280 ± 4 5.82 ± 0.05 3.347 8.2 4
10°C 362 ± 3 6.25 ± 0.03 3.301 10.4 2
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Glycoproteins – XCL interaction
Fetuin and asialofetuin, which bear the TF antigen motif,
were used to test XCL interactions with glycoproteins.
Fetuin contains six oligosaccharides chains, namely three
carbohydrate units O-linked to Thr or Ser residues and
three complex glycans, N-linked to Asn residues [19]. A

fourth O-linked residue may exist in the fetuin structure
[20]. In fetuin, the exposed Gal residues of both O-linked
and N-linked saccharides are linked to sialic acid residues,
which are absent in asialofetuin.

Several titrations of fetuin and asialofetuin to a XCL con-
taining solution (see concentrations in material and
methods) were performed at 27°C. The binding iso-
therms for the titration of fetuin and asialofetuin into a
XCL solution are presented in figure 3A and 3B
respectively and the thermodynamic data are presented in
Table 2. Affinity constant for asialofetuin (2.59 106 M-1)
was found 4 times higher than for fetuin (5.9 105 M-1).
This suggests that XCL binds asialofetuin more avidly than
the native fetuin, and therefore that the presence of sialic
acid reduces the affinity of XCL towards such glycans. The
binding stoichiometry is of 0.23, which could correspond
to 4 similar binding sites either on fetuin or asialofetuin.
The binding enthalpy of XCL – fetuin/asialofetuin is of -
21.5 kcal/mole and -16.8 kcal/mole respectively. This sig-
nificant difference in the binding enthalpies of almost 5
kcal/mole leads us to conclude that in fetuin the sialic
acids do contribute to the energy of binding.

Discussion
As we mentioned in the introduction, there are several TF-
binding lectins. Althought they recognize the same motif,
they have different actions on the proliferation phenome-
non [21]. For example, PNA stimulates the proliferation
of human intestinal epithelial cells [22] while ABL is a
potent inhibitor of proliferation [9]. The fact that XCL
shows a dose-dependent inhibition of proliferation [8]
suggests that its effects could be mediated by glycopro-
teins bearing TF antigen. We first check the binding of XCL
with free TF antigen. Our results lead us to suggest that
water molecules involved in the sugar-lectin binding may
contribute to the energy of the reaction. This is in agree-
ment with the Chevernak and Toone work since the
amount of heat liberated on the binding of ligands with a
variety of proteins was significantly smaller (0.4 – 1.8
kcal/mol) when heavy water was used like solvent [18]. In
the case of XCL, the affinity enhancement observed when
the galactose is linked to the N-acetylgalactosamine sug-
gests the existence of an extended binding site [23]. An

Table 2: Thermodynamic values of binding with Thomsen-Friedenreich antigen (TF), fetuin and asialofetuin

Ka, 105 M-1 -∆H, kcal/mole -∆G, kcal/mole -∆S, cal/moleK Nr exp.

TF 1.06 ± 0.44 9.13 ± 0.29 6.81 ± 0.27 7.61 2
Fetuin 5.9 ± 1.4 21.5 ± 0.5 7.89 45.35 3
Asialofetuin 25.9 ± 0.6 16.8 ± 2.5 8.84 26.51 2

Binding isotherms acquired by titration of 0.95 mM β-D-Gal(1→3)-D-GalNAc into 0,14 mM XCLtag solution at 27°C, using 25 mM Na2HPO4/NaH2PO4 as bufferFigure 2
Binding isotherms acquired by titration of 0.95 mM β-D-
Gal(1→3)-D-GalNAc into 0,14 mM XCLtag solution at 27°C, 
using 25 mM Na2HPO4/NaH2PO4 as buffer.
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increase in the binding enthalpy is also observed when
disaccharides replace monosaccharides in XCL-sugar
complexes. This increase correlates with the addition of
direct hydrogen bonds and more extensive van der Waals
[24] interactions between the protein and the ligand.
Sugar binding site determined on ABL by RX
crystallography shows that water molecules are involved
in this interaction as we hypothesised [25].

On cell-surface glycoproteins, the epitope structure of TF
antigen is α-linked to either serines or threonines [26].
The affinity constants of XCL obtained for fetuin and
asialofetuin are higher than for free TF antigen. This
difference could be explained by an implication of several
residues of the glycoprotein in the interaction with the lec-
tin. Nevertheless, residues potentially involved in this
interaction are not serine or threonine linking TF antigen
[25]. Then it would be interesting to investigate the impli-

cation of the spatially surrounding residues in this
interaction.

Conclusion
At present, only limited informations on the thermody-
namics datas of the lectin-sugar recognition are available
and much work remains to be done to understand the
underlying forces that govern these interactions. In this
study, we investigate the specificity of XCL for carbohy-
drates and especially for Thomsen-Friedenreich antigen
and glycoproteins bearing this disaccharide. Kinetic
studies using a resonant mirror biosensor reported a bind-
ing affinity value of 3.3 106 M-1 for the asialofetuin-ABL
interaction [27] which is very close to that of the asialofe-
tuin-XCL interaction (2.59 106M-1). The XCL antiprolifer-
ative effect [8] and the TF antigen specificity presented in
this work suggest that XCL and ABL may have similar
binding mechanisms. The recent structure determination

Binding isotherms corresponding to the titration of 38 automatic injections (5 µl each) of 2 mM fetuin (A) or 2 mM asialofetuin (B) into 0,25 mM XCLtag solution at 27°C, using 25 mM Na2HPO4/NaH2PO4 as bufferFigure 3
Binding isotherms corresponding to the titration of 38 automatic injections (5 µl each) of 2 mM fetuin (A) or 2 mM asialofetuin 
(B) into 0,25 mM XCLtag solution at 27°C, using 25 mM Na2HPO4/NaH2PO4 as buffer.
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of XCL and ABL lead us to currently analyse these interac-
tions in the light of our thermodynamic data.

Methods
Materials
All products, mono- and di-saccharides, fetuin and
asialofetuin from fetal bovine serum were purchased from
sigma.

XCL expression and purification
A fusion protein containing histidine tag, TEV site and
XCL was expressed in E. coli BL21-DE3 strain. The histi-
dine tag was added to facilitate the purification of the
recombinant protein on an affinity column using nickel
as ligand [28] and the TEV site was added to eliminate the
tag by incubation with TEV protease [29]. Freshly trans-
formed BL21(DE3) cells were grown overnight in a NZY/
agar – kanamycin medium at 37°C. Colonies of bacteria
were grown in an NZY medium at 37°C. When an O.D.600

nm of 1 was reached, the induction of T7 RNA polymerase
with IPTG (final concentration 0.4 mM) was realized.
Then the culture medium was allowed to grow overnight,
at 16°C. Cells were harvested by centrifugation, washed
and then lysed by sonication. Isolated XCL was purified
by affinity chromatography on Ni-NTA column and dia-
lyse methods. Protein purity was assessed using over-
loaded SDS-PAGE gels with Coomassie blue staining. XCL
concentrations were determined spectrophotometrically
from molar extinction coefficients at λ = 280 nm, ε =
31150.

Isothermal titration calorimetry, ITC
Isothermal titration calorimetry was performed using a
VP-ITC microcalorimeter from Microcal Inc. (Northamp-
ton, MA). Several experiments were performed to deter-
mine the binding constant values. In individual titrations,
injections of 3 to 10 µl of carbohydrate/glycoprotein were
added by computer-controlled 296 µl microsyringe at an
interval of 200 seconds into the XCL solution (cell volume
= 1.437 ml). The experiments were realized at 27°/10°C
and a stirring speed of 300 rmp. 10% (w/v) PEG 8000 was
used for some of the experiments. As the lectin affinity for
sugars is relatively small, high sugar and protein concen-
trations were required. The XCL concentration varied
between 0.14-0.4 mM, the monosaccharide concentra-
tions between 30–50 mM, 0.95–3 mM for TF antigen and
glycoproteins concentrations between 0.66–2 mM. The
carbohydrates were dissolved in the buffer solution (25
mM Na2HPO4/NaH2PO4, pH = 7) from the last protein
dialysis.

Several blind titrations were performed to determine and
correct for unspecific heat contributions (heat of
dilution).

The experimental data were fitted to a theoretical titration
curve using software supplied by Microcal, with ∆H
(enthalpy change in kcal/mole), Ka (association constant
in M-1) and n (number of binding sites), as adjustable
parameters. The monomer concentration was used
throughout the analysis. The instrument was calibrated
using the built in mode of electric field heat pulses. Ther-
modynamic parameters were calculated from the relation:

∆G = ∆H - T∆S = - RT ln Ka

where the ∆G, ∆H and ∆S are the changes in free energy,
enthalpy and entropy of binding; T is the absolute temper-
ature and R = 1.98 cal mol-1K-1.
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