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Abstract: This study was conducted to analyze the effects of multiple freeze–thaw (F-T) cycles on
microstructural disruption, water migration, protein oxidation and textural properties of cuttlefish.
Low-field nuclear magnetic resonance (LF-NMR) showed an increase in the proportion of free water in
cuttlefish flesh. It was also observed by scanning electron microscopy (SEM) that multiple F-T cycles
increased the gap between muscle fibers and disrupted the original intact and compact structure. The
results of Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy, Ca2+ATPase
content, sulfhydryl content and free amino acid content indirectly prove that multiple F-T cycles
can lead to the destruction of the a-helical structure of cuttlefish myofibril protein and the content
of irregular curls increased, protein aggregation and degradation, and tryptophan oxidation. In
addition, after repeated freezing and thawing, the water holding capacity, whiteness value, elasticity
and chewiness of cuttlefish flesh decreased, the total volatile base nitrogen content increased. It can
be concluded that the freeze–thaw cycles are very harmful to the quality of the frozen foods, so it is
important to keep the temperature stable in the low-temperature food logistics.

Keywords: cuttlefish; protein oxidation; quality; multiple freeze–thaw cycles

1. Introduction

Cuttlefish is a marine mollusk, belonging to cephalopods. It is widely distributed
along China’s coast, especially in the Zhejiang Province, where it produces the most [1]. It
is one of the four major kinds of seafood in China (big yellowtail, small yellowtail, scallop
and cuttlefish), and the fishery catch is very large. The cuttlefish has a high nutritional
value and is rich in medicinal value. In addition to being rich in protein and the amino
acids required by the human body, squid also contains a large amount of taurine, which
can inhibit the cholesterol content in the blood, relieve fatigue, restore vision and improve
liver function. Rich in calcium, phosphorus and iron, it is good for bone development
and blood production and can effectively treat anemia, and the selenium it contains has
anti-viral and anti-radiation effects.

It is known that aquatic products contain proteins, active peptides, unsaturated fatty
acids and other minerals, and they contain their own endogenous autolytic enzymes with
high activity [2]. Therefore, if there is no proper low-temperature storage conditions, it
is prone to spoilage and deterioration, thus affecting the quality of fish [3–5]. Freezing
plays a major role in ensuring the distribution of meat products supplied to the world [6,7].
However, the freezing process produces ice crystals of varying sizes, which cause some
mechanical damage to cell membranes and tissue structures, resulting in a reduction
in quality [8]. The thawing process can also result in nutrient loss and reduction of
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soluble protein content. Repeated freezing and thawing makes the ice crystals in the
food recrystallize, resulting in the destruction of cell structure, protein content decline,
fat oxidation, color deterioration, and juice loss, thus reducing the edible value of aquatic
and meat foods. Because the current cold chain technology is not perfect, especially in the
transportation, and temperature fluctuations inevitably occur, this results in a repeated
freezing and thawing process. It contributes to the changes in the physical and chemical
properties of the muscle and results in its reduced quality and economic losses [9]. In recent
years, much headway has been made in the assessment of fish freshness and safety, but
little research has been undertaken on cephalopods, much of it on squid [2,10]. The effects
of multiple F-T cycles on muscle protein and quality have been receiving attention from
several scholars both at home and abroad [11,12]. At present, few studies on the effect of
multiple F-T cycles on the quality of cuttlefish have been reported.

Therefore, using cuttlefish as research objects, protein content, fat oxidation, total
volatile base nitrogen (TVB-N), and thawing juice loss rate as evaluation indexes, combined
with texture profile analysis, the effect of repeated freezing–thawing on and quality changes
of cuttlefish was proposed and used to provide a theoretical basis for transportation, storage,
processing, and marketing in actual production.

2. Materials and Methods
2.1. Sample Preparation

Fresh cuttlefish from the same lot (dead for no more than two days) weighing 1000
± 100 g were purchased from Luchaogang, Pudong New Area, Shanghai, China. Fresh
cuttlefish were taken as the control group for 0 freeze–thaws. The sample was frozen in
a refrigerator at −23 ◦C for 24 h and then thawed in a refrigerator at 4 ◦C until the core
temperature of the sample was 2 ◦C, measured with a thermometer inserted into the center
of the cuttlefish, and the above operation was considered as 1 freeze-thaw. The experiments
were carried out for 0, 1, 2, 3, 4 and 5 freeze–thaw treatments, and the samples from each
treatment were subjected to experimental analysis.

2.2. Thawing Loss

Thawing loss was measured by Tan et al. [13]. The weight of samples was measured
before freezing (M1) and after freeze–thaw cycle (M2), and then Formula (1) was used for
the calculation of thawing loss:

Thawing Loss/% =
M2
M1

× 100% (1)

2.3. Cooking Loss

Cooking loss was extracted according to the method of Lan et al. [14]. The thawed
cuttlefish flesh was divided into small pieces of 2 × 2 × 1cm. Weighed before steaming
(M3), placed in a sealed bag, heated in a water bath at 85 ◦C for 20 min, then removed
and cooled to room temperature, the water on the surface of the cuttlefish flesh pieces was
absorbed with paper and weighed after steaming (M4). The cooking loss rate of cuttlefish
was calculated according to Equation (2).

Cooking Loss/% =
M3 − M4

M3
× 100% (2)

2.4. Centrifugal Loss

The centrifugal loss was measured by Tan et al. [15]. Remove about 2 g of thawed
cuttlefish flesh and record its weight accurately as M5. Wrap it with filter paper and place it
in a centrifuge tube. Centrifuge at 5000 rpm for 10 min at 4 ◦C. At the end of centrifugation,
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it was removed and weighed and recorded as M6. The centrifugal loss was calculated
according to Equation (3).

Centrifugal loss(%) =
M5 − M6

M5
× 100% (3)

2.5. Low-Field Nuclear Magnetic Resonance(LF-NMR) and Proton Magnetic Resonance
Imaging (MRI)

LF-NMR and MRI extracted according to the procedure used by Lan et al. [16]. T2
measurements were performed using a MesoMR23-060H.I LF-NMR analyzer (Niumag
Corporation, Shanghai, China). The parameters were set according to the method of Lv
et al. [17]. Imaging resonance images were made using the PQ001 benchtop pulsed MRI
analyzer, which also performed pseudo-colorization.

2.6. Color Properties Analysis

The color values L*, a* and b* of the flesh on the inside of the thawed cuttlefish
were measured by a CR-400 colorimeter (Konica Minolta, Tokyo, Japan), and whiteboard
correction was performed before the measurement of the cuttlefish products.

2.7. pH

pH value was extracted according to the method of Song et al. [18]. Measured using a
pH meter (Sartorius, Gottingen, Germany). Dilute 2 g of cuttlefish with distilled water to
form a 20 mL homogenate. Use a pH meter (Sartorius, Gottingen, Germany) to measure
the pH.

2.8. Texture Profile Analysis (TPA)

The texture properties of cuttlefish flesh were measured according to the method of
Tan et al. [19]. Thawed cuttlefish meat thawed to 4 ◦C was removed, cut into 4 × 4 × 1 cm
squares and measured using a texture analyzer (TMS-Pro, FTC Corporation, Washington,
DC, USA) with a P/6 flat-bottom column probe.

2.9. Myofibrillar Proteins (MP) Extraction

MP was extracted according to the method of Lv et al. [17]. A total of 2 g of cuttle-
fish flesh and 20 mL 20 mmol/L Tris-maleate (0.05 mol/L KCl, pH = 7.0) were mixed,
homogenized and then centrifuged at 10,000 rpm for 10 min, and the supernatant was
discarded, and the above process was repeated twice. To the obtained precipitate, 20 mL
of 20 mmol/L Tris-maleate (0.6 mol/L KCl, pH = 7.0) was added, homogenized and then
extracted at 4 ◦C for 3 h, centrifuged at 10,000 rpm for 10 min, and the supernatant was
myofibrillar protein solution.

2.10. Total Sulfhydryl (SH) Group Content and Ca2+-ATPase activity

The content of total sulfhydryl groups and the activity of Ca2+-ATPase were deter-
mined using the methods described in A063-1 (Jiancheng, Nanjing, China) and A070-4
(Jiancheng, Nanjing, China), respectively [20]. The reagents were added to the 10% ho-
mogenate supernatant sequentially according to the method attached to the kit, and the
absorbance was measured at 412 and 636 nm using an enzyme marker (Thermo Scientific,
Shanghai, China), respectively, after the reaction was completed.

2.11. Free Amino Acids (FAA)

Refer to Wang et al. [21] for the determination method. A total of 2.0 g of cuttlefish
meat was homogenized with 10 mL of 5% trichloroacetic acid (TCA) and then centrifuged
at 8000 rpm for 10 min. The residue was extracted twice with the same volume of 5%
TCA. The supernatant was collected in a volumetric flask and diluted to 25 mL. FAAs and
ammonia were analyzed in an L-8900 amino acid analyzer (Hitachi High-Tech Co., Ltd.,
Tokyo, Japan) using 10 µL of the diluted solution.
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2.12. Fourier Infrared Spectroscopy

The secondary structure of cuttlefish proteins was studied by freeze-drying pre-
extracted cuttlefish myofibrillar proteins for 72 h, with slight modifications referring to
the method of Wang et al. [20]. Using an FT-IR spectrometer (Spotlight 400, PerkinElmer
Instruments, Waltham, MA, USA), approximately 0.2 g of lyophilized MP was spread
on the surface of attenuated total reflection crystals with a wavelength range set to
600–4000 cm−1, and the spectra were collected.

2.13. Intrinsic Fluorescence Spectra

According to Chu’s method [22], intrinsic fluorescence spectra were measured using
the F-7100 fluorescence spectrophotometer (Hitachi Co., Tokyo, Japan). The protein solu-
tions were excited at 290 nm (slit width was 5 nm), and the emission spectra were recorded
from 300 to 410 nm at a scanning speed of 1200 nm/min.

2.14. Total Volatile Base Nitrogen (TVB-N)

Determination of TVB-N by the method of Liu et al. [23]. A total of 5 g of minced
cuttlefish flesh was weighed and measured with the automated Kjeltec nitrogen analyzer
(Kjeltec 8400, Foss, Denmark).

2.15. Determination of Microstructure by SEM

Refer to the method of Lv et al. [17].

2.16. Statistical Analysis

Each group was set up into three parallel groups, and a total of 18 fresh cuttlefish
were used in the experiment. The experiment used SPSS 20.0 for statistical analysis.
The values in the article are expressed as mean ± standard deviation difference, and
significant differences between means were assessed by Tukey’s (HSD) comparison test
with a significance level of p < 0.05. Plots were made using Origin 2021 software.

3. Results and Discussion
3.1. Water Holding Capacity

Figure 1A shows the effect of F-T cycles on the change of the thawing loss rate of
cuttlefish. The results showed that the thawing losses increased to 2.53%, 4.39%, 7.0%,
8.32% and 10.07% after the 1st, 2nd, 3rd, 4th and 5th freeze–thaw cycles. Figure 1B,C
shows that the cooking loss and centrifugal loss had the same tendency as the thawing
loss, and all the three indexes showed an elevated trend with increasing number of F-T
cycles (p < 0.05). The centrifugal and cooking losses of fresh cuttlefish were 8.5% and
11.66%, respectively. For centrifugal loss and cooking loss, there is no significant difference
between one cycle and zero cycles (p < 0.05), while they reached 22.11% and 27.46% after
five freeze–thaw cycles, with an increase of 13.61 and 15.8 percentage points, respectively.
When aquatic products were frozen, the fluid in the body formed ice crystals of varying
sizes. These ice crystals caused mechanical damage to the cells, and the solution inside the
cells then flowed out during thawing if it could not be absorbed. When aquatic products
were repeatedly frozen and thawed, the ice crystals in the body recrystallized and the
damage to the cell membrane was even more serious [6].
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3.2. Moisture Distribution

Figure 2A shows the three-dimensional plot of the variation of the transverse relax-
ation time for the six groups of samples, and it can be seen that there are three peaks in
the distribution of T2 within the relaxation time of 0–10,000 ms. T21 represents bound
water, which is mainly bound to proteins and other macromolecules. T22 represents im-
mobile water, which is the most abundant form of water in meat, taking up more than
98% of the total water content of cuttlefish, and T23 represents free water present in the
extracellular space.

It can be seen from Figure 2B that the content of free water increased significantly
(p < 0.05) with the increase in the number of F-T cycles. The free water content of cuttlefish
meat after zero F-T cycles was 0.219%, and there was no significant difference between
one freeze–thaw cycle and zero. After five F-T cycles, the content of free water increased
to 0.571%. This was due to the physical destruction of cuttlefish muscle cells by ice
crystals during the F-T process and the weakening of the binding force between water and
protein molecules due to protein oxidation, which caused an increase in the free water
content [24]. Therefore, the control samples showed lower juice loss and poorer water
holding capacity [25].

The red color in the pseudo-color map of nuclear magnetic imaging indicates 1H
high proton density, and the high proton density represents the high water content of that
part of the fish, and the blue color indicates low water content, so the water content and
migration characteristics can be reflected by the signal color change [26]. As can be seen in
Figure 2C, after three freeze–thaw cycles, a distinct blue color appeared at the edges of the
flesh, and by the fifth freeze–thaw cycle, a large blue area appeared. The increase in blue
areas indicates more juice loss, which is consistent with the conclusion of water holding
capacity in the above reaction.
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3.3. Colour

As can be seen from Table 1, there was no significant difference in L*, a*, b* of cuttlefish
meat between zero F-T cycles and one F-T cycle (p < 0.05). The L* of cuttlefish in the first
three freeze–thaw cycles showed a remarkable decreasing trend (p < 0.05), which may be
due to protein and lipid oxidation. However, after the fourth time, it increased significantly,
which may be due to the continuous recrystallization of ice crystals in the three freeze–
thaw cycles. The thawing process destroyed the integrity of the fish tissues, resulting in
the increase in free water content between tissues, the increase in light reflectivity and
brightness on the surface of cuttlefish flesh.

Table 1. Color change of cuttlefish flesh that had undergone repeated freeze–thaw cycles.

F-T Cycles L* a* b*

0 65.49 ± 1.13 a −2.84 ± 0.10 a −5.64 ± 0.40 a

1 65.65 ± 0.26 a −2.80 ± 0.27 a −5.65 ± 1.10 a

2 59.14 ±1.11 b −3.46 ± 0.24 b −5.66 ± 0.45 a

3 51.89 ± 1.61 c −2.35 ± 0.27 a −7.49 ± 0.36 b

4 57.90 ± 1.01 b −3.01 ± 0.22 a −8.10 ± 0.37 b

5 54.02 ± 0.74 c −3.21 ± 0.41 b −5.79 ± 1.14 a

The letters “a–c indicate significant differences (p < 0.05).

3.4. pH

As shown in Figure 3, the pH value of fresh cuttlefish flesh was 6.51. The pH of
cuttlefish flesh showed an increasing trend (p < 0.05) during the first four freeze–thaw
cycles. In particular, the pH reached 8.01 after four freeze–thaw cycles, which was 1.1 higher
than the third time. The increase in pH may be due to the decomposition of proteins in the
fish body into alkaline substances such as amines. The decrease after the fifth freeze–thaw
may be due to the enzymatic decomposition of neutral fatty acids and phospholipids in
the meat to produce free fatty acids. The enzymatic degradation of ATP occurred with the
release of inorganic phosphate and ammonia, which was also associated with the change
in pH value.
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3.5. TPA

Table 2 shows the changes in hardness, elasticity, chewiness and cohesion of cuttlefish
after F-T cycles. After five freeze–thaw cycles, the hardness of cuttlefish meat dropped to
nearly a quarter of that of fresh cuttlefish flesh. Cuttlefish meat is rich in proteins, and the
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proteins and their hydrated layers form a mesh structure and thus have some resistance to
external forces, and this resistance was expressed as the elasticity of the meat. The elasticity
of cuttlefish meat did not differ significantly after the first three freeze–thaws compared to
fresh samples (p < 0.05) and decreased significantly when freeze–thaws were performed
four times (p < 0.05). The trend of cuttlefish cohesiveness was similar to elasticity. The
masticatory properties of cuttlefish flesh decreased the most after the F-T cycle, and after
the fifth F-T cycle, the masticatory properties of cuttlefish flesh were only 10,326.34, which
was only one-third of the fresh sample. This may be due to the destruction of the natural
structure by ice crystals in the cells during the repeated freeze–thaw treatment, resulting
in poor resistance to external forces [27], leading to a decrease in the hardness, elasticity,
and masticatory properties of cuttlefish flesh [28]. Repeated freeze–thawing can reduce the
acceptability to consumers.

Table 2. Texture profile analysis change of cuttlefish flesh that had undergone repeated freeze–thaw cycles.

F-T Cycles 0 1 2 3 4 5

Hardness (g) 42,438.83 ± 1628.43 a 38,855.80 ± 591.46 b 35,806.38 ± 237.32 b 28,311.67 ± 612.78 c 17,880.11 ± 51.20 d 12,404.90 ± 1193.63 e

Springiness 0.958 ± 0.00 a 0.922 ± 0.00 a 0.917 ± 0.01 a 0.916 ± 0.03 a 0.794 ± 0.17 bc 0.526 ± 0.03 c

Cohesiveness 0.740 ± 0.01 a 0.738 ± 0.01 a 0.572 ± 0.23 ab 0.399 ± 0.02 ab 0.246 ± 0.06 b 0.25 ± 0.04 b

Chewiness 30,086.68 ± 1682.64 a 27,658.23 ± 3295.74 a 26,425.71 ± 103.67 a 22,171.80 ± 3120.66 ab 15,435.80 ± 3105.86 bc 10,326.34 ± 161.10 c

The letters “a–e” indicate significant differences (p < 0.05).

3.6. Total Sulfhydryl Content

During freeze–thaw, changes in the structure of the head region of actin, which
exposes the buried sulfhydryl groups inside the protein and oxidizes them into disulfide
bonds, lead to a decrease in the content of sulfhydryl groups [29]. As can be seen from
Figure 4, the total sulfhydryl content decreased with the increasing number of F-T cycles
(p < 0.05). The content of total sulfhydryl groups in fresh cuttlefish flesh was 0.58 mmol/g
prot, which was significantly reduced after one freeze–thaw cycle. The decrease in total
sulfhydryl content was not marked (p < 0.05) in the first four freeze–thaw cycles, but there
was a significant decrease (p < 0.05) in the fifth freeze–thaw cycle.

Foods 2021, 10, x FOR PEER REVIEW 8 of 15 
 

 

3.5. TPA 

Table 2 shows the changes in hardness, elasticity, chewiness and cohesion of cuttle-

fish after F-T cycles. After five freeze–thaw cycles, the hardness of cuttlefish meat dropped 

to nearly a quarter of that of fresh cuttlefish flesh. Cuttlefish meat is rich in proteins, and 

the proteins and their hydrated layers form a mesh structure and thus have some re-

sistance to external forces, and this resistance was expressed as the elasticity of the meat. 

The elasticity of cuttlefish meat did not differ significantly after the first three freeze–

thaws compared to fresh samples (p < 0.05) and decreased significantly when freeze–

thaws were performed four times (p < 0.05). The trend of cuttlefish cohesiveness was sim-

ilar to elasticity. The masticatory properties of cuttlefish flesh decreased the most after the 

F-T cycle, and after the fifth F-T cycle, the masticatory properties of cuttlefish flesh were 

only 10,326.34, which was only one-third of the fresh sample. This may be due to the de-

struction of the natural structure by ice crystals in the cells during the repeated freeze–

thaw treatment, resulting in poor resistance to external forces [27], leading to a decrease 

in the hardness, elasticity, and masticatory properties of cuttlefish flesh [28]. Repeated 

freeze–thawing can reduce the acceptability to consumers. 

Table 2. Texture profile analysis change of cuttlefish flesh that had undergone repeated freeze–thaw cycles. 

F-T Cycles 0 1 2 3 4 5 

Hardness (g) 42,438.83 ± 1628.43 a 38,855.80 ± 591.46 b 35,806.38 ± 237.32 b 28,311.67 ± 612.78 c 17,880.11 ± 51.20 d 12,404.90 ± 1193.63 e 

Springiness 0.958 ± 0.00 a 0.922 ± 0.00 a 0.917 ± 0.01 a 0.916 ± 0.03 a 0.794 ± 0.17 bc 0.526 ± 0.03 c 

Cohesiveness 0.740 ± 0.01 a 0.738 ± 0.01 a 0.572 ± 0.23 ab 0.399 ± 0.02 ab 0.246 ± 0.06 b 0.25 ± 0.04 b 

Chewiness 30,086.68 ± 1682.64 a 27,658.23 ± 3295.74 a 26,425.71 ± 103.67 a 22,171.80 ± 3120.66 ab 15,435.80 ± 3105.86 bc 10,326.34 ± 161.10 c 

The letters “a–e” indicate significant differences (p < 0.05). 

3.6. Total Sulfhydryl Content 

During freeze–thaw, changes in the structure of the head region of actin, which ex-

poses the buried sulfhydryl groups inside the protein and oxidizes them into disulfide 

bonds, lead to a decrease in the content of sulfhydryl groups [29]. As can be seen from 

Figure 4, the total sulfhydryl content decreased with the increasing number of F-T cycles 

(p < 0.05). The content of total sulfhydryl groups in fresh cuttlefish flesh was 0.58 mmol/g 

prot, which was significantly reduced after one freeze–thaw cycle. The decrease in total 

sulfhydryl content was not marked (p < 0.05) in the first four freeze–thaw cycles, but there 

was a significant decrease (p < 0.05) in the fifth freeze–thaw cycle. 

 

0 1 2 3 4 5

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

a

b

bc

cd

cd
e

F-T cycles

T
o

ta
l 

su
lf

h
y

d
ry

l 
c
o

n
te

n
t(

m
m

o
l/

g
p

ro
t)

Figure 4. The total sulfhydryl content of cuttlefish after freeze–thaw cycles. Error bars show standard
deviation. The letters “a–e” indicate significant differences (p < 0.05).

3.7. Ca2+-ATPase Activity

Myosin heads are very sensitive to the freeze–thaw process, and their molecular
conformation is prone to change, leading to a decrease in Ca2+-ATPase activity. The activity
of Ca2+-ATPase is often considered to be indicative of the denaturation of myogenic
fibronectin [30]. As can be seen from Figure 5, the number of freeze–thaws had a significant
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effect on Ca2+-ATPase activity of cuttlefish (p < 0.05). The initial Ca2+-ATPase activity of
cuttlefish tissues was 0.91 U/mg prot, and the enzyme activity decreased with the increase
in freeze–thaw cycles. The rate of decrease in Ca2+-ATPase activity slowed down after the
third freeze–thaw cycle, the activity of Ca2+ATPase decreased to 0.38 U/mg prot. Protein
interactions and aggregation in the freeze–thaw cycle had relation to the decrease in ATPase
activity [31]. In addition, oxidation of sulfhydryl groups in the myosin head may also bring
about a decrease in Ca2+-ATPase activity [32].
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Figure 5. The Ca2+-ATPase activity of cuttlefish after freeze–thaw cycles. Error bars show standard
deviation. The letters “a–e” indicate significant differences (p < 0.05).

3.8. FAA

Free amino acids are also used as quality control indicators for kinds of aquatic
products. As shown in Table 3, 17 free amino acids were detected from cuttlefish meat,
among which the main amino acids were pro line, arginine and alanine. They accounted
for about 39.76% of the total amino acids. The two biological amines that have the greatest
impact on human health, histamine and tyramine, are formed by the direct decarboxylation
of histidine and tyrosine, respectively. The content of these two amino acids is directly
related to the corruption of cuttlefish [33]. After five freeze–thaw cycles, histidine and
tyrosine increased from the initial 7.04 and 15.96 mg/100 g to 20.7 and 46.88 mg/100 g,
respectively. This shows that as the number of freeze–thaw cycles increases, the corruption
of cuttlefish deepens. Methionine and cysteine are sulfur-containing amino acids, both of
which have a bad effect on the taste of fish meat. After five cycles, the content increased
from 15.36 and 2.24 mg/100 g to and 3.44 mg/100 mg [34]. After the freeze–thaw cycle,
the total free amino acids increased from the initial 363.945 to 813.187 mg/100 g. This is
because proteolytic enzymes hydrolyze the protein in cuttlefish muscle and connective
tissue during the freeze–thaw cycle [34,35].

3.9. Protein Secondary Structure

Figure 6A shows the infrared spectra of freeze-dried cuttlefish meat-like proteins
scanned in the full band from 600 to 4000 cm−1. The characteristic absorption peaks in
the figure are mainly caused by peptide and protein secondary structure vibrations. The
absorption peaks in the 1700~1600 cm−1 band caused by the C=O stretching vibration are
usually referred to as the amide I band, and the study of the protein secondary structure
is analyzed in this band, and the vibration frequency of the amide I band component is
closely linked with the secondary structure of each protein [29,36].
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Table 3. Free amino acid content change of cuttlefish flesh that had undergone after freeze–thaw cycles.

0 1 2 3 4 5

ASP 3.84 ± 0.15 e 3.86 ± 0.01 e 7.03 ± 0.11 d 9.69 ± 0.03 c 12.02 ± 0.00 a 11.57 ± 0.07 b

Thr 18.71 ± 1.81 d 26.87 ± 0.09 c 36.74 ± 0.29 b 43.21 ± 0.14 a 35.80 ± 0.08 b 41.94 ± 0.10 a

Ser 19.92 ± 2.14 e 26.82 ± 0.06 d 36.33 ± 0.04 b 30.50 ± 0.30 c 38.10 ± 0.08 b 45.06 ± 0.25 a

Glu 24.21 ± 1.79 e 19.42 ± 0.02 f 37.94 ± 0.35 d 77.81 ± 0.10 a 50.55 ± 0.04 c 61.54 ± 0.11 b

Gly 13.58 ± 1.25 e 14.99 ± 0.05 de 18.94 ± 0.11 c 22.76 ± 0.01 b 16.83 ± 0.01 d 26.24 ± 0.04 a

Ala 34.00 ± 3.84 bc 30.85 ± 0.05 c 45.27 ± 0.28 a 46.98 ± 0.02 a 38.72 ± 0.06 b 49.61 ± 0.13 a

Cys 2.24 ± 0.25 d 3.73 ± 0.03 c 6.05 ± 0.05 a 4.88 ± 0.04 b 2.27 ± 0.03 d 3.44 ± 0.11 c

Val 17.23 ± 1.59 d 16.22 ± 0.03 d 22.60 ± 0.14 c 30.23 ± 0.03 b 30.71 ± 0.02 b 36.66 ± 0.24 a

Met 15.36 ± 1.21 e 23.55 ± 0.05 d 26.45 ± 0.18 c 40.49 ± 0.08 a 29.30 ± 0.12 b 39.90 ± 0.96 a

lle 12.78 ± 0.69 d 9.53 ± 0.03 e 13.20 ± 0.10 d 19.63 ± 0.00 c 26.06 ± 0.15 b 30.86 ± 1.01 a

Leu 28.54 ± 1.39 f 38.41 ± 0.00 e 45.18 ± 0.29 d 71.34 ± 0.02 b 54.57 ± 0.07 c 78.45 ± 0.53 a

Tyr 15.96 ± 0.32 d 27.65 ± 0.03 c 27.88 ± 0.24 c 46.42 ± 0.24 a 35.12 ± 0.16 b 46.88 ± 0.60 a

Phe 20.25 ± 1.42 f 42.59 ± 0.16 d 37.88 ± 0.26 e 69.14 ± 0.25 b 51.63 ± 0.35 c 80.27 ± 0.84 a

Lys 25.00 ± 0.13 f 34.58 ± 0.07 e 46.36 ± 0.33 d 58.69 ± 0.08 b 50.35 ± 0.08 c 66.46 ± 0.24 a

His 7.04 ± 0.25 e 11.15 ± 0.00 d 15.01 ± 0.11 c 17.28 ± 0.02 b 15.63 ± 0.37 c 20.70 ± 0.02 a

Arg 40.01 ± 6.33 bc 20.22 ± 0.05 d 48.69 ± 0.52 ab 50.47 ± 0.01 a 14.33 ± 0.00 d 36.87 ± 0.01 c

Pro 65.30 ± 10.16 b 43.57 ± 0.49 b 54.21 ± 1.76 b 44.58 ± 1.47 b 36.36 ± 1.50 b 136.75 ± 16.00 a

Total 363.95 ± 31.89 d 394.01 ± 0.18 d 525.74 ± 5.07 c 684.09 ± 2.17 b 538.35 ± 0.43 c 813.19 ± 20.26 a

The letters “a–f” indicate significant differences (p < 0.05).

PeakFit EXE software was used to analyze the ATR-FTIR spectra in the 1700–1600 cm−1

band. After deconvolution, second-order derivation and curve fitting, the information of
individual IR peaks is obtained, as shown in Figure 6B, and the content of the protein sec-
ondary structure is shown in Figure 6C. With the increase in the number of freeze–thawing,
the α-helical content of cuttlefish gradually decreased, while the content of irregular curl
gradually increased, and the trends of β-turn and β-folding were not obvious. The content
of α-helix in the control group was 32.63%, and the content of α-helix decreased by 3.52%,
10.47%, and 17.72% after one, three, and five freeze–thaw cycles, respectively. The content
of irregular curl in the control group was 15.64%, and the contents of irregular curl after
one, three, and five freeze–thaw cycles were 17.89%, 21.15%, and 25.05%, which increased
by 2.24%, 5.51%, and 9.41%, respectively. It indicates that the protein structure changes
from regular to sparse [15]. During multiple freeze–thaw cycles, protein denaturation,
sulfhydryl oxidation and weakening of the hydrogen bond between water and protein lead
to the disruption of the protein spatial conformation [25,26,37].

3.10. Intrinsic Fluorescence Spectroscopy Analysis

As can be seen from Figure 7, the fluorescence intensity of myogenic fibronectin re-
duced significantly with the increasing cycles of freeze–thaw treatments, which indicated
the unfolding of the protein tertiary structure. This is because the protein endogenous
tryptophan fluorescence is very susceptive to the polarity of its surrounding microen-
vironment [38]. When the protein exists in a folded state, the tryptophan residues are
mainly located in a hydrophobic environment such as the protein core, when the excited
tryptophan has a relatively high fluorescence intensity [39]. If the protein is unfolded,
tryptophan residues are more exposed on the surface of the protein molecule, and the
fluorescence intensity of the excited tryptophan decreases. In addition, it is possible that
free radicals and fat oxidation products such as hydrogen peroxide, MDA and ketones
can oxidize tryptophan residues or bind them to other products, which can also lead to a
decrease in protein fluorescence intensity [26].
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3.11. TVB-N

During the storage of fish meat, due to the combined action of microorganisms and
endogenous fish enzymes, fish proteins are degraded and amines are produced, resulting
in an increase in TVB-N values, and therefore, TVB-N values are an important indicator of
the degree of spoilage of aquatic products. Figure 4 shows the effect of repeated freeze–
thawing on the change of TVB-N value content of cuttlefish meat. From Figure 8, it can
be seen that the rising trend of TVB-N content changes in cuttlefish flesh was relatively
stable, and the TVB-N content of cuttlefish flesh was positively correlated with the number
of freeze–thaws. The initial TVB-N content of cuttlefish flesh was 5.51 mg/100 g, and the
increasing trend of TVB-N content after one freeze–thaw cycle was not obvious. After the
third freeze–thaw cycle, it increased to 10.08 mg/100 g and reached 14.18 mg/100 g at the
end of the fifth freeze–thaw cycle.
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Figure 8. The content of TVB-N of cuttlefish after freeze–thaw cycles. Error bars show standard
deviation. The letters “a–d” indicate significant differences (p < 0.05).
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3.12. Microstructure

Figure 9 is an SEM image of the effect of freeze–thaw cycles on the microstructure
of cuttlefish. From the control group, it can be seen that the muscle tissue lines of the
non-freeze–thawed samples were compact and clear, well arranged, and without obvious
gaps. After freeze–thawing, the muscle fibers underwent significant structural changes,
with significant contraction of muscle fibers and an increase in the space between muscle
bundles. After two and three freeze–thaw cycles, the cell gaps were significantly enlarged.
After four freeze–thaw cycles, the fiber structure of muscle fibers was distorted. After
five cycles of freeze–thawing, the muscle fiber borders were blurred, disorganized and
collapsed. This is mainly because the free water and part of the bound water in cuttlefish
muscle moved from the inside to the outside of myogenic fibers during multiple freeze–
thaw cycles, and even moved to the outside of muscle bundles to form larger ice crystals,
thus seriously damaging the tissue structure.
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Figure 9. Changes in the microstructure of cuttlefish caused by freeze–thaw cycles under SEM.

4. Conclusions

In this study, with the number of freeze–thaws increasing, the process of ice crystal
formation, melting and recrystallization in the muscle cells of cuttlefish caused irreversible
physical damage to the muscle cells, leading to a decrease in WHC, hardness elasticity
and chewiness. In addition, after the freezing and thawing cycles, the protein undergoes
oxidative denaturation and the free amino acid content increased, and the content of
TBV-N after the fifth freezing and thawing exceeded the standard of first-class freshness.
Therefore, in order to keep the good quality of cuttlefish before consumption, the number
of freeze–thawing should be less than five. In conclusion, cuttlefish should be kept in cold
chain technology during transportation, storage and consumption to prevent repeated
freezing and thawing of muscles caused by temperature fluctuations as much as possible,
and temperature fluctuations should not be violent to reduce its quality deterioration.
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