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Allergic diseases are significant diseases that affect many patients worldwide. In the past
few decades, the incidence of allergic diseases has increased significantly due to
environmental changes and social development, which has posed a substantial public
health burden and even led to premature death. The understanding of the mechanism
underlying allergic diseases has been substantially advanced, and the occurrence of
allergic diseases and changes in the immune system state are known to be correlated.
With the identification and in-depth understanding of innate lymphoid cells, researchers
have gradually revealed that type 2 innate lymphoid cells (ILC2s) play important roles in
many allergic diseases. However, our current studies of ILC2s are limited, and their status
in allergic diseases remains unclear. This article provides an overview of the common
phenotypes and activation pathways of ILC2s in different allergic diseases as well as
potential research directions to improve the understanding of their roles in different allergic
diseases and ultimately find new treatments for these diseases.
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INTRODUCTION

Allergic diseases, including asthma, atopic dermatitis (AD), food allergies, and allergic rhinitis (AR),
have caused a substantial public health burden, reduced quality of life, and even led to premature
death. In recent decades, with the rapid growth of the global economy, allergic diseases have become
one of the most impactful diseases in society. The prevalence of allergic diseases has increased
significantly in both developed and developing countries, but the increase is more evident in
developed countries (1). The pathogenesis of allergic diseases has long been the focus of
immunology research, and the occurrence of allergic diseases is closely related to the immune
system. The pathophysiologies of allergic diseases are dominated by IgE-mediated inflammation
and the type 2 immune response (2), and type 2 helper T cells (Th2 cells) and type 2 innate
lymphoid cells (ILC2s) play roles in the development of the type 2 immune response by releasing
cytokines such as IL-4, IL-5, IL-9, and IL-13 (3). In addition, regulatory T cells (Tregs) are very
important for maintaining immune tolerance for mucosal barriers, dendritic cells (DCs) are related
to the interaction between adaptive and innate immunity, and natural killer cells (NK cells),
monocytes, and macrophages play major roles in the occurrence and development of allergic
diseases (2).
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Innate lymphoid cells (ILCs) are innate immune cells that are
difficult to identify due to the lack of cell surface lineage markers.
ILC subtypes correspond to T cell subtypes and can be divided into
five types, namely,NKcells, ILC1s, ILC2s, ILC3s, andLTi. There is a
mirrored correlation between ILCs andT cells. NKcells correspond
to CD8+ T cells, and Th1, Th2, Th17 cells correspond to ILC1s,
ILC2s, and ILC3s.The related ILCandTcell subgroupshave similar
functions and are subject to similar regulatory pathways (4). ILC2s,
corresponding to Th2 cells in adaptive immunity, are highly
involved in many diseases, such as allergic diseases and diabetes,
and are specifically correlated with inflammation, metabolism,
tissue repair, and nervous system regulation (5).

ILC2s are tissue-resident cells that are predominantly
distributed in mucosal tissues such as lung, small intestine,
skin, and adipose tissue. ILC2s play essential roles in allergic
diseases and in the development of type 2 inflammation.
Although ILC2s are present in low numbers in various, they
are uniquely indispensable for a variety of allergic diseases
because they rapidly enhance type 2 inflammation (3).
Understanding the role of ILC2s in different allergic diseases is
of great significance for better studying the relationship between
allergic reactions and the immune system.

Neither human nor mouse ILC2s express lineage markers, but
ILC2s in the normal physiological state express surface molecules
such as CD45, CD90, C-kit, Thy-1, and MHC-II. ILC2s in the
active state can express KLRG1 and ST2 at high levels according
to their tissue location and activity status (4, 6). It is worth noting
that ILC2s also have memory functions, as mice stimulated with
TSLP or IL-33 showed an increased number of ILC2s for nearly 4
months and could react more quickly after the next antigen
stimulation (7).
INITIATION OF THE ILC2 RESPONSE
DURING ALLERGIC REACTIONS

Compared with the typical allergic response mediated by T cells
and B cells, the ILC2-mediated response is faster and
independent of antigen stimulation. ILC2s can further
aggravate local inflammation and the immune response by
releasing numerous cytokines that directly act on mucosal
epithelia, blood vessels, and nerves or promote the responses
of T cells and DCs. However, the activation of ILC2s is strongly
correlated with the microenvironment and cell-to-cell signals.
Cytokines, including IL-25, IL-33, TSLP, IL-2, IL-9, and IL-7, are
necessary for the activation, proliferation, and maintenance of
ILC2s (Figure 1) (6).

The major factors regulating ILC2s can be divided into three
categories: IL-25, IL-33 and TSLP are major stimulating factors
that are secreted by mainly epithelial cells to activate ILC2s; “IL-
2, IL-4, IL-7, IL-9, TL1A, GITRL, etc. are survival factors, or so-
called costimulators, that maintain the basic functionality of
ILC2s; and other mediators that include lipid mediators (PGD2,
LTD4), nervous peptides (neuromedin U (NMU), vasoactive
intestinal peptide (VIP)), hormones (b-adrenaline), and the ILC2
inhibitory factor cluster (IL-10, TGF-b).
Frontiers in Immunology | www.frontiersin.org 2
Epithelial-Derived Cytokines
IL-25 and IL-33 are well-described signals that lead to a type 2
immune response and induce the differentiation of ILC2s. Both
IL-25 and IL-33 can induce ILC2s to secrete IL-5 and IL-13 via
the NF-kb or MAPK pathway (8, 9). Unlike the reliance of T cells
on antigen peptide presentation for full activation, ILC2s can be
activated directly by IL-33 in a state that has not been stimulated
by antigens. However, mouse ILC2s hardly respond to IL-33
stimulation without costimulators (10). Studies have revealed
that peroxisome proliferator-activated receptor-g (PPARg) is a
member of the nuclear receptor superfamily, which regulates the
transcription of target genes after ligand activation. The IL-33
stimulation of ILC2s results in high PPARg expression on the cell
surface, upregulation of the IL-33 receptor ST2, and promotion
of the downstream release of IL-5 and IL-13. Therefore, a
positive feedback loop exists between IL-33-ST2 signal
transduction and PPARg in the regulation of ILC2 activation
(11). IL-25-induced ILC2s (KLRG1hiST2-ILC2s, also called
inflammatory ILC2s or iILC2s) are functionally different from
IL-33-induced ILC2s (KLRG1 intST2+ ILC2s, also called natural
ILC2s or nILC2s) (12), their effects are not completely
independent. IL-33 can promote the production of iILC2s by
inducing the upregulation of tryptophan hydroxylase 1 (TPH1)
expression (13). iILC2s can develop into nILC2-like cells and
ILC3-like cells, and iILC2s can traffic from the intestine to the
lung depending on the S1P protein (12, 14). Besides, IL-33 is
more effective than IL-25 in airway diseases and AD (15). Other
ILC2 subtypes, such as Thy-1+Sca-1+IL-18R+ST2-C-Kit- ILC2s,
can produce IL-5 and IL-13 after in vitro stimulation to stimulate
IgE production by B cells (16), and CD103+ ILC2s (dermis
ILC2s) mainly reside in the skin (17). In addition, ILC2s
selectively express different cytokine receptors in different
tissues. ILC2s mainly express IL-33R in lung and adipose
tissue, while ILC2s in the intestine mainly express IL-25R and
skin ILC2s express IL-18R. In bone marrow, most ILC2s express
both IL-33R and IL-25R, and a few ILC2s express IL-33R, IL-25R
or IL-18R receptors (18).

Survival and Activation Factors
Survival factors, or so-called costimulators, are necessary for
maintaining the normal physiological function of ILC2s, and a
lack of survival factor signals leads to their dysfunction. Survival
factors include two main families, the common g chain family
and the TNF superfamily. The common g chain family, including
IL-2, IL-7, and IL-9, comprises regulatory factors necessary for
ILC2 survival, development, and maintenance; the TNF
superfamily, including TL1A and GITRL, is necessary for ILC2
proliferation and for their ability to release type 2 cytokines (6).
The activation of ILC2s is closely related to the presence of IL-2
and IL-7, as mouse ILC2s can be activated only in the presence of
IL-2 and IL-7 (19, 20), and human ILC2s can be activated only in
the presence of IL-2 (21). In addition, IL-2 allows ILC2s to self-
release IL-9 (22), and IL-9 signals are critical for the survival of
ILC2s (23). IL-2-mediated ILC2 activation has been described in
the lung, mesenteric lymph nodes (MLNs), spleen, and skin (17,
24, 25). It should be noted that ILC2s can still be activated in
June 2021 | Volume 12 | Article 586078
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Rag-/- mice infected with N. brasiliensis, which suggests the
diversity of IL-2 sources (26). Similarly, TL1A and IL-9 are
essential for maintaining the activity of IL-25-induced and IL-
33-induced ILC2s (22, 27, 28). However, in recent years, some
researchers have reported that IL-7 may not be a necessary
molecule for ILC2 development (29), and the importance of IL-7
in ILC2 development and activation needs to be further assessed.
Stem cell factor (SCF) is also a key cytokine involved in the
activation of ILC2s that binds to the receptor c-Kit on ILC2s and
further amplifies the stimulatory effect of IL-25 on ILC2s to
promote the release of downstream cytokines (30).

High-Mobility Group Box 1(HMGB1) is a late inflammatory
mediator associated with sepsis, malignancy, and immune disease.
HMGB1-dependent receptor for advanced glycation end products
(RAGE) induces ILC2 expansion after hemorrhagic shock (HS),
promotes ILC2 proliferation and promotes ILC2 survival by
attenuating mitochondrial-mediated apoptosis. Type 2 cytokine
secretion and eosinophil infiltration caused by ILC2 dilatation in
the lung lead to lung injury after HS, and lack of HMGB1-RAGE
Frontiers in Immunology | www.frontiersin.org 3
signaling can reduce ILC2-induced type 2 inflammation (31).
Besides, the activation of HMGB1-RAGE signaling pathway in
ILC2 leads to an increase in the number of ILC2s secreting IL-13
and remodeling of the airway smooth muscle (ASM) (32).

In addition, many surface molecules and transcription factors
are related to the activation of ILC2s. Airway epithelial cells
infected by respiratory syncytial virus (RSV) can induce the
production of uric acid, IL-33, TSLP and CCL2, the elevated level
of uric acid further promotes the expression of innate cytokines,
especially IL-1, by AECs and macrophages. Among these factors,
CCL2 recruits monocytes, antigen-presenting cells (APCs) and
Th2 cells to the lung, while IL-33, TSLP and IL-1b recruit and
activate ILC2s (33). The CCL1/CCR8 autocrine signaling loop
can regulate ILC2-mediated type 2 immunity and lead to
infection resistance in worms, representing a newly discovered
chemokine receptor-dependent mechanism (34). ICAM-1 is
necessary for the development and function of ILC2s depend
on ERK-GATA3 pathway. ICAM-1 deficiency leads to
downregulation of the GATA3 protein, thereby resulting in
FIGURE 1 | The main regulatory factors, surface molecules, and secretion of ILC2s. The PMIDs of relative articles: IL-1b: 32086822; IL-25:20023630,22079492;
IL-33:21909091,23810766; TSLP:22425247,26129648, 29296700; IL-2:26595888; IL-7:24388011; IL-9:21983833; TL1A:24220298,24368564; GITRL: 29427641;
E2:32648964; PGD2:24388011,31900341; LTD4:23688412; NMU:28869974; NMB: 32807943;SCF: 30617299;VIP:24037376; E-cadherin:24323357; OX40/
OX40L:31470268; PD1:27749818; MHC-II:31320835; ICOS:25769613; IL-4:26883724; IL-9:21983833; IL-10:29196657; IL-17:29625134; Areg:26243875; Met-
Enk:25533952;IL-10:29196657; TGF-b:25539814; IFN-I, IFN-II:26595888,26092469,26595887,26425820; PGI2, PGE2:26378386; b-adrenergic
receptor:29496881; LXA4:23447017; CCL-1: 31537642; HMGB1: 32658914, 31937554.
June 2021 | Volume 12 | Article 586078
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ILC2 functional defects (35). ILC2s activated by IL- 33
significantly express LFA-1 and the intercellular adhesion
molecule-1 (ICAM-1), the receptor of LFA-1. LFA-1
significantly promote the homing of ILC2s to the lung, and
ICAM-1 deficiency significantly downregulates the levels of
proinflammatory cytokines such as IL-5, IL-9, and IL-13 (36).

Transcription Factors
RANK-L, the ligand of NF-kB, is mainly expressed in Th2 cells
and CXCL16+ APCs in nasal polyps (NPs). The ligand of
chemokine receptor 4 (CCR4) could recruits ILC2s and
RANK-L+ cells into the NP and promotes the production of
type 2 cytokines in ILC2s through a RANK-L-mediated pathway
(37). In addition, c-Myc is a basic helix-loop-helix transcription
factor mainly responded to IL-33, IL-25 and TSLP, which is
closely related to the activation and pathogenicity of ILC2s
in vivo. The activation of ILC2s results in the upregulation of
c-Myc expression, which leads to proliferation and cytokine
production of ILC2 (38). The AP-1 superfamily basic leucine
zipper transcription factor, activating transcription factor-like
(BATF) potentially regulates ILC2s. BATF defects cause selective
damage to iILC2s in response to IL-25, are the early sources of
IL-4 and IL-13 and serve as early guardians of mucosal barrier
integrity (39). Runx proteins are a family of transcription factors
necessary for many biological processes, and all Runx proteins
require heterodimer formation with Subunit b of core binding
factor (Cbfb) (40). With the study of transcription factor Runx,
the vital role of Runx in ILC2 proliferation and function has been
recognized. The stimulation of Runx protein prevent ILC2 from
overactivation which could inhibit the emergence of exhausted-
like ILC2s during Allergic Inflammation (41).

Lipoproteins
Lipoproteins, such as prostaglandins (PGs) and leukotrienes
(LTs), the primary lipid mediators in the early stage of
inflammation, are also active regulators of ILC2s. CRTH2 is
used to identify human ILC2s, and PGD2, a CRTH2 ligand that
is mainly expressed by mast cells, can promote the migration of
ILC2s and the secretion of IL-13 (42, 43). Activated ILC2s also
express high levels of LT receptors, and LTD4 is an effective
stimulator of ILC2 activation and IL-5 and IL-13 production (44,
45). Although the secretion of IL-4 by ILC2s has rarely been
reported, the stimulation of LTD4 allows ILC2s to produce IL-4
rather than IL-33 or IL-25 (44, 46). LTE4 LTC4 are also involved
in the regulation of ILC2s, and LXB4 induces IL-13 production
in mouse ILC2s (45, 47). Moreover, Group V phospholipase A2
(Pla2g5) is a lipid-generating enzyme that is required for the
effects of macrophages on pulmonary inflammation.
Macrophage-associated Pla2g5 plays an important role in type
2 immunity by regulating IL-33 induction and free fatty acid
(FFA)-driven ILC2 activation (48).

Neural Peptides and Hormones
ILC2s also have a strong relationship with the nervous system.
VIP, a member of the neuropeptide secretin family expressed by
intestinal cells, pancreatic neurons and suprachiasmatic nuclei of
the brain, costimulates the VPAC2 receptor on ILC2s together
Frontiers in Immunology | www.frontiersin.org 4
with IL-7 and promotes the release of IL-5, inducing the
generation and recruitment of eosinophils (49). NUM derived
from mucosal neurons plays a vital role in ILC2 activation,
proliferation, and secretion of type 2 cytokines. NMU stimulates
the NMU receptor on ILC2s, which phosphorylates ERK1/2 and
induces the activation of the intracellular Ca2+-calcineurin-
NFAT cascade to induce the expression of downstream type 2
cytokines (50). Several studies have shown that type 2 cytokines
and alarm factors can modulate neuropeptide release and further
regulate the immune system. Interestingly, ILC2s are localized
around several pulmonary neuroendocrine cells (PNECs) and
regulated by PNECs through calcitonin, thereby stimulating the
production of ILC2 factors. PNECs produce calcitonin gene-
related peptide (CGRP) in combination with IL-7, IL-33 or IL-
25, which can stimulate CGRP receptors on ILC2s and induce
more IL-5 and IL-6 production (51). In addition, derivatives of
testosterone and estradiol have regulatory effects on ILC2s (52,
53). Basophils can enhance the expression of the neuropeptide
neuromedin B (NMB) receptor in mouse ILC2s, and NMB
stimulation can inhibit ILC2-mediated type 2 inflammation
(54). Compared with wild-type Esr1-/- mice, those stimulated
by Alternaria extract (Alt Ext) exhibited fewer IL-33eGFP+
epithelial cells, reduced IL-33 release, reduced secretion of IL-5
and IL-13 and fewer bronchoalveolar lavage (BAL) eosinophils.
It has been suggested that ER-a (Esr1) signaling increases the
release of IL-33 and ILC2-mediated airway inflammation (55).

Inhibitory Regulation of ILC2
ILC2s are downregulated by several inhibitory factors and
regulatory T cells. IL-1b, derived from pulmonary macrophages,
restricts type 2 inflammation and mucinous cell carcinoma after
early rhinovirus infection by inhibiting the secretion of congenital
cytokines such as IL-25 and IL-33 by epithelial cells, and this effect
may be partially mediated by IL-17 (56). Moreover, IFN-I, IFN-II,
and IL-27 can inhibit ILC2s, thereby limiting allergic airway
inflammation in mice (57). Several lipid molecules were involved
in the downregulation of ILC2, PGI2 and PGE2 are effective
inhibitors of ILC2 activation (58), and LXA4 effectively inhibits
cytokine production in ILC2s (59). Murine intestinal ILC2s
express the b-adrenergic receptor, and the b-adrenergic pathway
is a cell-intrinsic factor that negatively regulates ILC2 responses by
inhibiting cell proliferation and effector functions (60).

Tregs play a key role in the inhibitory regulation of ILC2s, as an
increase in Treg numbers leads to a decrease in the production of
ILC2 cytokines, with IL-10 and TGF-b released by Tregs playing
central roles in this process (61). Targeted deletion of RORa in
mouse Tregs led to an exaggerated increase in the number of
ILC2s (62). ICOS is an important pathway that is required for the
proliferation, differentiation, and proinflammatory effects of ILC2s
in various diseases. Tregs can also inhibit ILC2s through ICOS-
ICOS-L, thereby controlling airway inflammation in mice, and the
ICOS-ICOS-L pathway is integral to Treg-mediated ILC2
suppression (63–65). In contrast, ILC2-derived IL-4 could block
Treg function to promote food allergies (66). Wu et al. also
reported that PGD2 can activate ILC2s to release IL-5 through
CRTH2, thereby inducing the production of CD4+CD25+IL5Ra+
Tregs (67). At the same time, ILC2s function in autocrine IL-9
June 2021 | Volume 12 | Article 586078
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signaling, and IL-9 can reduce Treg cell activation, leading to
chronic arthritis. Treatment with IL-9 activated ILC2-dependent
Tregs and effectively attenuated inflammation (68). In addition,
Treg-dependent immunosuppression is correlated with ILC2
augmentation, and Tregs can induce tumor metabolic
reprogramming via the STING/ILC2 axis (69). PD-1 is highly
inducible in IL-33-activated ILC2s, PD-1 deficiency converts the
ILC2 metabolic process into glycolysis, glutamine catabolism and
methionine catabolism, enhances the activation and proliferation
of ILC2s induced by IL-33, and regulates the production and
survival of cytokines in aILC2s, including IL5, IL-13, IL-9 and
CSF2 (70).
FUNCTION OF ILC2S IN
ALLERGIC REACTIONS

ILC2s respond quickly to allergic reactions mainly by secreting
type 2 cytokines and other peptides, such as IL-4, IL-5, IL-13, IL-
9, and amphiregulin (Areg), and by intercellular regulation of the
cell-to-cell pathway. ILC2s are tissue-resident cells and can be
quickly activated by several epithelial-derived cytokines, which
allows ILC2s to release type 2 cytokines in the early stage of
antigen sensitization (sensitization phase) (Figure 2).

Several cytokines secreted by ILC2s are involved in crosstalk
with other immune cells: IL-13 is involved in the migration of
activated DCs and activation of macrophages, and IL-5 is
involved in the activation of eosinophils. For instance, the IL-
33/ST2 axis is associated with bone marrow ILC2s and IL-5-
dependent eosinophilia. Exposure to protease allergens increases
the ST2 expression in bone marrow ILC2s, and the production of
a substantial amount of IL-5 increases the number of eosinophils
(71). IL-9 is involved in the activation of mast cells and ILC2s
themselves. In addition, ILC2-derived IL-13 plays a decisive role
in the migration of DCs to lymph nodes, which leads to the
differentiation of Th2 cells and to the secretion of antibodies (72).

Crosstalk also exists between the two main innate immune
components, complement components and ILC2s. C3a is a
major driver of the ILC2-mediated inflammatory response to
allergens and IL-33 and can increase and enhance the number
and function of ILC2s induced by IL-33 and induce IL-13 and
granulocyte-macrophage colony-stimulating factor (GMCSF) to
inhibit IL-10 production in ILC2s. For ILC-T cell crosstalk,
ILC2s exert antigen-presenting effects through C3a signaling.
At the same time, C3a promotes the activation of MHC-II-
dependent T cells, thus promoting the differentiation and
proliferation of Th2 cells and further enhancing Th2
immunity (73).

Additionally, Madouri F et al. found that mice lacking PKC-q
had reduced ILC2 numbers, Th2 cell numbers, and AHR.
Adoptive transfer of ILC2s restored eosinophil influx and IL-4,
IL-5 and IL-13 production in the lung tissue as well as TH2 cell
activation, demonstrating the vital role of PKC in the crosstalk
between ILC2s and Th2 cells (74). ILC2s and Th2 cells, the
leading promoters of the type two immune response in natural
and adaptive immunity, are reciprocal activators during allergy
Frontiers in Immunology | www.frontiersin.org 5
initiation. Pelly found that ILC2-derived IL-4, which is induced
by LTD4, is necessary for Th2 cell differentiation, and the lack of
ILC2-derived IL-4 can lead to Th2 cell dysfunction (46). On the
other hand, Oliphant reported that ILC2-derived IL-2, rather
than IL-4, is essential for Th2 maintenance (24). In the recall
phase, T cell infiltration conversely promotes the activity of
ILC2s via the release of IL-2 and IL-4 and via B cells to
promote the development of allergic reactions. Activated B
cells release numerous IgE antibodies and bind to FCϵR on the
surface of mast cells and basophils to enhance allergic responses.
PAG1, a transmembrane connexin that affects the signal
transduction of T and B cell receptors, can promote airway
epithelial activation, ILC2 expansion and TH2 differentiation
and aggravate the severity of asthma (75).

ILC2s also express several surface markers, such as ICOS
ligand, MHC-II, and OX40L, which have broad effects on TH2
cells, B cells, and Tregs. ICOS belongs to the CD28 superfamily,
and both human and mouse ILC2s express ICOS and its ligand
(ICOSL), which can regulate the function of effector T cells (63).
ILC2s play a role in APCs by upregulating MHC-II, regulating
the Th1/Th2 balance, and transforming adaptive immunity into
a Th2-type response (76). Lung ILC2s may regulate the
proliferation and activation of CD4 T cells induced by RSV
through the OX40/OX40L interaction (77). Death receptor 3
(DR3) is involved in inducing naïve and activated ILC2s to
produce type 2 cytokines. The latest research shows that IL-33
can induce fat retention and the expression of DR3 in human
peripheral blood ILC2s and participate in canonical and/or
noncanonical NF-kB pathways to improve glucose tolerance
and regulate the metabolic homeostasis of adipose tissue; thus,
IL-33 can be used to treat patients with type 2 diabetes (T2DM)
(78). Tumor necrosis factor-like protein 1A (TL1A) and the
receptor DR3 costimulate T cells and ILC2s and play roles in a
variety of autoimmune and allergic diseases. For example, the
expression of RORa in resident T cells in the skin can upregulate
the expression of DR3, promote T cell function, and inhibit
allergic dermatitis. Therefore, the RoRa and TL1a-DR3
pathways can be used as therapeutic targets for allergic
dermatitis (62). ILC2s can interact with Tregs through ICOS/
ICOS L and IL-4, thereby inhibiting Treg activity. Tregs can
downregulate ILC2 function via TGF-b and IL-10 (65, 66).

ILC2s can destroy the integrity of the mucosa by secreting IL-
13, thereby making it easier for allergens to enter the stroma
through the epithelium (79). However, most ILC2s are associated
with mucosal repair. Mucosal barrier dysfunction can lead to the
release of epithelial alarm molecules, including IL-33, IL-25, and
TSLP, thereby activating ILC2s. In contrast, ILC2s can promote
epithelial cell repair by producing Areg. IL-33 can be used to
treat intestinal inflammation through the Areg-EGFR pathway
(80). The secretion of IL-4 and IL-13 by ILC2s is crucial for the
formation of AAMs, which are involved in the repair of epithelial
cells (81). In addition, IL-9-mediated ILC2 survival is necessary
for maintaining tissue integrity and lung function (23). ILC2s
can release IL-9 to prevent epithelial cell apoptosis in mice with
sepsis (82). Simultaneously, some researchers have shown that
IL-9 secreted by ILC2s has a specific protective effect on
June 2021 | Volume 12 | Article 586078

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. ILC2s in Allergic Diseases
inflammation. IL-9 treatment can promote ILC2-dependent
Treg activation and effectively reduce inflammation, which
may explain the unique role of IL-9 in arthritis (68).
ILC2S IN ALLERGIC ASTHMA

Chronic airway inflammation commonly presents clinically as
AR or chronic rhinosinusitis (CRS) in the upper airway and as
asthma in the lower airway (83). A total of 19-38% of AR patients
have concomitant asthma, and a much higher proportion of
asthma patients have concomitant AR (84). This indicates that
these diseases share some pathophysiological and immunological
pathways, in which the type 2 immune response and IgE-
mediated inflammation play a vital role. ILC2s, as newly
Frontiers in Immunology | www.frontiersin.org 6
identified participants in the innate immune system, have a
wide range of effects on these diseases.

The prevalence of asthma has increased by almost 30% in the
past two decades. Over 30 million patients worldwide suffer from
it each year, which poses a heavy burden on public health
services (85). Asthma is a chronic inflammatory respiratory
disease characterized by AHR, type 2 inflammation, and
airway remodeling. Classically, Th2 cells play an important
role in the development of asthma by releasing type 2 cytokines.

Role of ILC2s in Asthma
The numbers of both blood ILC2s and bronchoalveolar lavage
fluid (BALF) ILC2s were shown to be increased in asthmatic
mice, which contributed to the development of experimental
asthma via the rapid secretion of IL-5 and IL-13 to aggravate
FIGURE 2 | The roles of ILC2s in immune responses. AAM, alternative activated macrophage; DC, dendritic cell; TH cells, T helper cells; Areg, amphiregulin.
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lung eosinophilia and mucus production and exacerbate AHR
(86, 87). In the house dust mite (HDM) mouse model, ILC2-
deficient mice showed decreased IgE levels (87). In patients with
severe asthma patients, the levels of ILC2s in the blood and
sputum are increased significantly (88). These results suggest
that ILC2s are highly involved in asthma.

ILC2s are the predominant population of ILCs in the lung in
the steady state but still represent only a small group of immune
cells in the lung (89). The persistence of the mouse asthma model
has been proven to be dependent on ILC2s rather than antigen-
specific T cells (20, 90). In a mouse model of asthma, IL-25-
induced ILC2s and IL-33-induced ILC2s contributed 50~80% of
the total IL5 and IL-13 production in the lung (91), although
stimulation with IL-25 or IL-33 separately did not cause
excessive lung reactions (92). It should be noted that different
airway allergens may play different roles in the activation of
ILC2s. Helfrich found that different airway models and mouse
strains exhibited vastly different ILC2 numbers and distribution
patterns in the lung and MLNs, suggesting the necessity of using
multiple mouse strains to study ILC2 function in asthma (93).

In asthma, after activation by epithelial-derived alarm
cytokines, ILC2s promote pulmonary inflammation by
secreting type 2 cytokines, including IL-4, IL-5, and IL-13, to
enhance the contraction of smooth muscle, secretion of mucus,
and infiltration of inflammatory cells (94). IL-2 was found to
effectively aggravate the inflammatory response in the lungs. The
loss of IL-2 was shown to decrease ILC2 function, thereby
reducing the lung inflammation caused by asthma in IL-2-
deficient mice (25). Basophil-derived IL-4 and T cell-derived
IL-2 are necessary for establishing rapid allergic reactions
mediated by ILC2s (25, 95). In addition, CD127 (IL-7
receptor) is generally considered to be a marker of ILC2s, and
some researchers have found that ILC2s can be activated only in
the presence of IL-7. However, CD127low ILC2s have also been
identified in asthma patients and mice, and it is worth noting
that CD127 expression was shown to be decreased after IL-25
stimulation (12). The dependence of ILC2s on IL-7 in asthma
and the regulatory mechanism of IL-7 on ILC2 function remain
unclear and need further study.

In Rag-/- and WT mice, inhalation of papain caused mucus
production, which was alleviated by IL2rg knockout, and mucus
production resumed after the adoptive transfer of ILC2s, which
indicated the critical role of ILC2s in inducing mucus secretion
(96). The enhancement and activation of eosinophils are decisive
for increasing airway mucus. LTD4 and papain can potentiate
eosinophil and ILC2 proliferation in Rag-/- mice, and a lack of
ILC2s leads to a decrease in the number of eosinophils (20, 44).
Some scholars further verified that IL-5 and IL-13 released by
ILC2s are the key cytokines responsible for eosinophil induction.
Lack of ILC2-derived IL-5 and IL-13 leads to a decrease in the
number of eosinophils (97, 98). These results also corresponded
to the early increase in eosinophil numbers found in asthma
models and suggest that ILC2s can enhance the activation of
eosinophils in the early stage of asthma to produce mucus. At the
same time, IL-13 produced by ILC2s could directly affect
epithelial and smooth muscle cells, thereby inducing the
Frontiers in Immunology | www.frontiersin.org 7
production of AHR, mucus secretion, and airway remodeling
in patients with allergic asthma. Researchers found that H3N1-
infected Rag-/- mice could still develop AHR, but the AHR
response disappeared after the depletion of ILC2s with Thy1.2
(19). ILC2s can produce IL-13 to stimulate the differentiation of
macrophages into AAMs and promote AAM accumulation,
which can lead to airway inflammation and airway remodeling
(99, 100).

ILC2s also affect the differentiation of Th2 cells and IgE
production by B cells, which is the key process in the
development of asthma. ILC2s stimulate the migration of DCs
into MLNs by secreting IL-13 to further promote the
differentiation of T cells and B cells (72), and loss of ILC2s
results in Th2 cell functional deficiency (72, 88). ILC2s can also
stimulate the function of B cells through ICOS ligands, which are
necessary to enhance airway inflammation and AHR (63).
Interestingly, transcriptomic and epigenetic studies of human
and mouse ILC2s showed that these cells were positively
correlated with genes known to be responsible for asthma
susceptibility (including RORA, Smad3, GATA3, IL13, il18r1,
and il1rl1), suggesting that ILC2s are downstream regulators of
some susceptibility genes in asthma development (101).

Although ILC2s are thought to induce inflammation in
patients with asthma, researchers found that they also protect
against inflammation by releasing IL-9. ILC2s could prevent the
apoptosis of epithelial cells in subjects with sepsis through the
secretion of IL-9, but whether ILC2-derived IL-9 plays an
essential role in asthma remains unclear (82). Some researchers
discovered a group of new ILC2 subsets that have the ability to
produce IL-10 under IL-2 stimulation to further reduce
inflammation in the lungs. It is worth noting that IL-2 is also
an effective cytokine for inducing the production of IL-9 in ILC2s
(22), suggesting that the IL-2-ILC2 axis functions in tissue repair.

Previous research has described the crosstalk between the
nervous system and asthma (102). Sui et al. found that PNECs
could regulate ILC2s, thus enhancing the allergic reaction in
asthmatic mice by releasing neuropeptides (51). Wallrapp et al.
have shown that the NUM protein can also enhance allergic
inflammation in the lungs by activating ILC2s (103). In addition,
Lauriane found that LC2s express the a7-nicotinic acetylcholine
receptor (a7nAChR), which is thought to play an anti-
inflammatory role in several inflammatory diseases. The
a7nAChR agonist could decrease ILC2-dependent airway
hyperreactivity by downregulating the transcription of GATA-
3 and NF-kB (104). Given the strong correlation between the
nervous system and asthma, the regulatory mechanism of ILC2s
and the nervous system in patients with asthma is worthy
of investigation.

Steroid therapy is a conventional treatment for asthma, but
patients often develop resistance, thus leading to refractory
asthma (105). Research shows that patients with severe
refractory asthma have significantly higher airway ILC2 levels
than those without asthma. Systemic steroids, rather than
inhaled steroids, could relieve symptoms and reduce the
number of ILC2s (106). In addition, the steroid resistance
caused by ILC2s is dependent on TSLP activation, and TSLP-
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induced steroid resistance can be reversed by MEK and STAT5
inhibitors (107, 108). These findings provide insights into
treatments targeting the TSLP pathway in steroid-resistant
patients. Additionally, Ma Suli found that the levels of the
membrane molecule OX40L were significantly increased in
patients with steroid resistance, and OX40L was shown to be
highly expressed in ILC2s (109).

ILC2 Recruitment in the Lung
Unlike Th2 cells, which reside in lymphatic tissue and mostly
migrate to tissues only after activation, ILC2s have been
described as tissue-resident cells. Upon the occurrence of
inflammation, ILC2s exert local immune effects after
stimulation by the corresponding cytokines. However, ILC2s
have the potential to translocate from one tissue to another.
Huang et al. found that ILC2s could migrate from the intestine
through lymphatic channels dependent on the S1P protein,
thereby aggravating asthma (14). In addition, LFA-1 can
significantly control the recruitment of ILC2s to the lungs,
which indicates that it is also involved in the migration of
ILC2s to the lungs (36). BATF plays a key role in the
migration of IL-25-induced ILC2s, and migratory ILC2s are an
important source of IL-4 and IL-13 in the early response
stage (39).
ILC2S IN ALLERGIC RHINITIS

Role of ILC2s in Allergic Rhinitis
AR is characterized by IgE-mediated inflammation, which results
in increased numbers of Th2 cells and type 2 cytokines in the
nasal mucosa (110). Some studies found that after intranasal
allergen challenge in cats, the numbers of CRTH2+ ILC2s in the
peripheral blood were increased significantly (111). Peng et al.
identified the distribution of ILC2s on the nasal mucosa
membrane through immunohistochemistry and found that the
number of ILC2s in the nasal mucosa was positively correlated
with the AR clinical visual analog scale (VAS) score (112). In
contrast, two articles reported that the numbers of peripheral
blood ILC2s were not significantly altered in patients with AR
and in artemisinin-induced mice (86, 113). Additionally, Kato
assessed the role of ILC2s in AR by using a ragweed-induced
mouse model and found that, compared with that in the PBS
group, sneezing either disappeared or became significantly less
frequent over time in Rag2-/- mice, suggesting that T cells, not
ILC2s, are central to the development of AR (114). All of these
findings indicate that ILC2s are far less important in AR than in
asthma, and more reliable evidence is needed to determine how
ILC2s are involved in the AR response.

Some studies have focused on the initiation pathway of ILC2s
in AR. Allogeneic and autologous Myeloid dendritic cells (MDCs)
were shown to activate ILC2s in patients with AR to produce type
2 cytokines and increase GATA-3 signal transduction and
transcription factor activation. MDCs promoted ILC2 function
in AR patients through the IL-33/ST2 pathway, and pDC
activation inhibited ILC2 function through IL-6 (112). There
Frontiers in Immunology | www.frontiersin.org 8
are several reports of multiple lipid receptors, including CysL1R
(LTD4 ligand) and PGD2, that are upregulated in AR patients.
Although LTD4 was shown to activate IL-4 production in ILC2s,
it should be noted that the levels of IL-4 in the nasal secretions of
AR patients were not significantly changed (47). In addition,
PGD2 has a chemotactic effect on CRTH2+ ILC2s in the blood of
patients with AR and may directly regulate the migration of ILC2s
into tissues (113). Whether lipid molecules regulate AR through
ILC2s needs to be further investigated. Ozone has been shown to
aggravate AR and asthma by inducing the release of IL-5 and IL-
13 from ILC2s (115).

It is worth noting that the number of ILC2s in patients with
HDM-induced AR was significantly higher than that in those
with mugwort-AR (116). The peripheral blood ILC2 content was
considerably higher in human pediatric patients with HDM-AR
than in those without HDM-AR (117). The possible mechanism
underlying this difference is that HDM is more immunogenic
than plant-derived allergens, and its sensitization mechanism is
presumably different from that of plant-based allergens, such as
wormwood pollen (118).
ILC2S IN ALLERGIC DERMATITIS

Role of ILC2s in Allergic Dermatitis
AD is a multifactorial complex inflammatory skin disease that
involves barrier dysfunction and severe itching caused by chronic
eczema (119). According to a report published in 2016, the 12-
month adult prevalence of AD was 4.9% in the US, 3.5% in
Canada, and 4.4% in the EU, with values for individual countries
ranging from 2.2% for Germany to 8.1% for Italy. Among those
countries, the US had the highest incidence rate of severe AD.
Dermatitis was reportedly one of the most significant causes of
increased years lived with disability (YLD) values and the most
prevalent skin condition in China in 2017, with 1.39 million
cases being reported, which was increased by 5.05% compared
with that in 1990 (1.32 million) (120).

The pathological process of AD is characterized by a type 2
immune response and a rapid increase in IgE, which is
accompanied by eosinophil infiltration, mast cell activation
and involvement of other related lymphocytes in the
production of typical type 2 cytokines, such as IL-4, IL-5 and
IL-13. AD always represents the first step in “atopic march”,
which leads to other allergic diseases, including asthma and AR.
The pathological process of AD is divided into 3 stages: the
nonlesional skin stage, acute lesional stage, and chronic lesional
stage. The early stage is initiated by innate immunity, in which
ILC2s play an important role. The acute stage is characterized by
a noticeable type 2 immune response and inflammation, and the
chronic stage mainly involves Th1 inflammation and the
infiltration of various inflammatory cells (121, 122).

Overexpression of IL-33, IL-25, and TSLP has been observed
in patients with AD (122). However, it should be noted that IL-
33 may play a more prominent role in the activation of ILC2s in
patients with AD, as ILC2s isolated from lesions predominantly
responded to IL-33 rather than IL-25 and TSLP. At the same
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time, IL-33 induced ILC2 migration and cytokine production,
whereas only TSLP at a high concentration combined with IL-25
induced these phenomena (122–124). IL-33-induced AD in mice
relies on ILC2s, which are the primary mechanism responsible
for the development of human AD (124). A clinical trial on
etokimab, an IL-33 antibody, for the treatment of AD also
revealed the vital role of IL-33 in mediating human AD (125).
It has also been indicated that nILC2s but not iILC2s mainly
inhabit healthy human skin (122). An experiment utilizing
transgenic mice with a high level of skin-specific IL-33
indicated that the mice exhibited spontaneous dermatitis with
AD-like inflammation (126). In contrast, the depletion of ILC2s
via the transplantation of bone marrow from RORa-deficient
mice into IL33tg mice (a type of transgenic mouse
overexpressing IL-33) reduced IL-33-induced AD-like
inflammation (127). A study performed in 2019 proved that
eliminating T and B cells in IL33tg mice did not reduce
symptoms, such as skin inflammation and increased numbers
of ILC2s and type 2 cytokines (124).

Of note, CD103+ ILC2s, unique to the skin, were described as
dermal ILC2s (dILC2s), which are distinct from other ILC2
subgroups (17). This group of ILC2s was shown to promote
the activation of mast cells, the recruitment of eosinophils and
the production of IL-5 via IL-2 treatment (17). The dermal ILC2-
mediated expansion of DCs involves the expression of CCL17,
which is vital for the TH2 memory cell response (128, 129). This
illustrates that ILC2s are critical for orchestrating an efficient
localized memory TH2 cell response in collaboration with tissue-
resident DCs. Simultaneously, these results demonstrate the
presence of various phenotypes of ILC2s in the skin, but their
contributions to AD need to be further assessed.

High numbers of basophils were detected in subjects with AD-
like inflammation, accompanied by ILC2 proliferation and
upregulation of IL-5 and IL-4 (124). Basophils were also shown to
be involved in the exacerbation of AD-like inflammation and
activation of ILC2s via IL-4. After activation by basophils, ILC2s
not only clearly accumulate but also enhance the expression of
CCL11, IL-5, IL-9 and IL-13, which further leads to the
accumulation of eosinophils and promotes other inflammatory
responses in subjects with allergic diseases (124, 130). Cysteinyl
leukotrienes (CysLTs), including LTC4, LTD4 and LTE4, are also
effective molecules for moderating ILC2s and promoting the
process of AD. Among the three LTs, LTE4 may have the greatest
effect on ILC2 proliferation and induce the production of IL-4, IL-5
and IL-13 (44, 131). Moreover, ILC2s can regulate T cells through
MHC-II, with only 3% of ILC2s in the skin and 50%of ILC2s in the
skin-draining lymph nodes of mice expressing MHC-II (129, 132).

It should be noted that in the BALB/C mouse AD model
induced by MC903, IL-25 had a greater effect on activating ILC2s
than IL-33, but it was less important than TSLP. In contrast,
TLSP was more vital than IL-33 and IL-25 in the C578BL/6
murine model (122). AD can be simulated in a variety of mouse
models, which have skin symptoms and pathological changes
that are similar to those of humans. Although considerable
differences exist among each mouse AD model, human skin-
derived ILC2s primarily respond to IL-33 (122, 123).
Frontiers in Immunology | www.frontiersin.org 9
Outside-in Hypothesis—Local
Inflammation Induced by Skin Disorders
Filaggrin (FLG), a filament-associated protein that binds to
keratin fibers in epithelial cells, is highly associated with AD
development. Seventy-three percent of AD patients carry at least
1 FLG null mutation, and FLG-deficient mice present symptoms
of spontaneous skin lesions (133). Gene-edited mice were
generated to simulate FLG deficiency in humans, and the
frequency of ILC2s was increased in the lesions of FLG-
deficient mice (134, 135). In addition to FLG, the proteins
filaggrin-2, hornerin, and the cornified envelope precursor
SPRR3 are also linked to the onset of AD, but the mechanism
needs to be further studied (136–138). The tight junction
proteins between cells and the stratum corneum are skin
barriers that prevent the invasion of microorganisms. The
absence of epidermal keratins, such as FLG, promotes the
binding of microorganisms to the skin and further leads to an
inflammatory reaction, which is a major mechanism of AD
development. More than 90% of AD patients exhibit lesions
with Staphylococcus aureus, while only 5% of healthy people have
Staphylococcus aureus (139). After microorganisms break
through the skin barrier, the innate immune system initiates
an initial response first, which leads to the activation of adaptive
immunity. Additionally, the immune statuses of AD patients
with lesional and nonlesional skin are significantly different.
Thus, scientists have proposed that the pathogenesis of AD is
related to epidermal dysfunction caused by genetic mutations,
microbial infections, and other factors that are critical drivers of
AD. ILC2s, as the predominant producer of type 2 cytokines in the
early stage that haveMHC-II and Toll-like receptor (TLR) activity,
are broadly involved in the response tomicroorganisms.Damage to
epithelial cells leads to the production of alarm factors to
activate ILC2s.

Immune Disorder Hypothesis—
Immune-Mediated Skin Disorders
The incidence of AD is related to not only genetic factors and
microorganisms but also endogenous factors, such as diet, pressure
and living conditions. Internal factors must exist that regulate the
pathogenesis of AD. Some studies found that over 50% of patients
with severe AD had asthma, AR, or food allergies, suggesting the
importance of immune system-mediated skin dysfunction in the
pathogenesis of AD (140). IL-4, IL-13, IL-22, and IL-13 can reduce
the protein expression of FLG and activate the release of bradykinin
(141, 142), and the effectiveness of anti-IL-4 and anti-IL-13 in AD
treatment shows the importance of the type 2 immune response in
humans with AD (143). Moreover, immunosuppressive therapies
and immunotherapies, such as steroids, were shown to inhibit the
epidermal responses of clinical AD patients (144), suggesting that
epidermal dysfunction induced by immune system abnormalities is
another mechanism leading to the development of AD. Although
ILC2s can repair epidermal damage through Areg, various
phenomena suggest that ILC2s are likely key factors that
aggravate skin inflammation in AD patients. However, the
specific role and mechanism of ILC2s in epidermal repair and
injury still need further exploration.
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ILC2S IN FOOD ALLERGIES

Role of ILC2s in Food Allergies
Food allergies are incurable, and allergen-specific IgE antibodies
are usually produced, which mediates hypersensitivity. At
present, the development of food allergy sensitivity remains
poorly understood, but IL-9 is known to induce the release of
mucosal tissue mast cells (MMC9), basophils and Th2 cells, and
Treg cells play a significant role in this process (145). The
intestinal mucosa contains a large number of ILC2s, which
promote allergic reactions by releasing IL-4, IL-5, IL-9 and IL-
13. Scholars have also discovered the important role of ILC2s in
the pathogenesis of food allergies (146). In addition, because the
ingredients in food are mostly nonself-antigens, the tolerance
established by gastrointestinal lymphoid cells such as Tregs is
essential, and the reduction or loss of Tregs is a crucial
mechanism underlying food allergies.

Food allergies can be divided into two types: IgE-mediated
and non-IgE-mediated. In general, DCs and other APCs present
antigens to Treg cells to build immune tolerance (147). However,
in some cases, the Treg pathway is inhibited or transformed into
Th2 cell-activated and IgE-driven immune responses. Sribava
found that the ILC2 content in the small intestine was increased
in mice with IgE-mediated food allergies (148), and the content
of ILC2s was decreased in the small intestine after GATA-1
activity was reduced, indicating the roles of ILC2s and GATA-1
in IgE-mediated food allergies (146). In addition, ILC2s can
inhibit the formation of Treg-mediated tolerance by releasing IL-
4 and further aggravate food allergies (66).

Although food allergies are typically considered to be IgE-
mediated allergic inflammatory diseases, the association between
the IgE concentration and the allergic reaction severity is weak
(145). IgE may not be the only factor determining the severity of
the disease, as scientists have discovered the importance of IL-25
and IL-33 in food allergies, and IL-33 has been shown to
stimulate Th2 cells (149), mast cells and ILC2s to promote the
type 2 immune response and IgE release (150, 151). In addition,
IL-33 was shown to be necessary for the development of a peanut
allergy mouse model (152). ILC2s can also release IL-5 and IL-13
under the stimulation of TH2 cells and IL-25, which is vital for
the development of eosinophilic inflammation (153).

Animal food allergy models rely on IL-4-mediated immune
responses, and IL-4 can decrease Treg-mediated tolerance, which
is a critical mechanism of food allergies. It is worth noting that
the IL-4 in subjects with food allergies is primarily derived from
CD4+ T cells rather than ILC2s, and IL-4 released by ILC2s has
no discernible effect on food allergies (154). In ILC-deficient
mice, eosinophilic inflammation was significantly weakened, but
the Th2 activation, IgE production, and allergic reactions were
not significantly changed (154). Correspondingly, Th2 cells
rather than ILC2s seemingly play a decisive role in food allergy
production. The depletion of CD4 cells or Th2 cells made it
difficult for mice to develop an allergic response (153). However,
some researchers have reported that ILC2-derived IL-4 is
necessary for the development of peanut allergies (154). In
addition, the importance of IL-9 in food allergies has been
gradually elucidated. MMC9 induction is key to the
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development of IgE-mediated food allergy sensitivity, which is
the main factor mediating intestinal hypertrophy (155). The
production and development of MMC9 require stimulation with
exogenous IL-9 signals, while ILC2s have the ability to secrete
IL-9 (156). It is not clear whether ILC2-derived IL-9 and MMC9
interact with each other and affect food allergies.

Multiple Routes of Food Sensitization
Epidemiological investigations have revealed significant
correlations between food allergies and other allergic diseases,
as approximately 50% of patients with food allergies suffer from
AD (157). Some patients with food allergies present symptoms
after the first contact with a certain kind of food, and peanut
allergies and the use of skin preparations containing peanut oil
are significantly correlated (158). This suggests that sensitization
is established via routes other than oral administration. Earlier
studies showed that oral, sublingual, nasal contact, and skin
contact antigens could induce food allergies and be reproduced
by oral administration (159). Skin exposure to allergens
promoted the sensitization of mice and activation of Th2 cells
to aggravate peanut allergies (149). Subsequently, researchers
found that IL-33, but not IL-25 or TSLP, led to significant
changes in skin exposed to peanuts, which was sufficient to
activate Th2 cells. This indicates that further studying the
contribution and mechanism of ILC2 in multiple food
sensitization routes is worthwhile.
CONCLUSION

Although ILCs have been known to exist for only approximately
one decade, their role in the immune system is increasingly
valued. As mirrors of TH2 cells, ILC2s play a pivotal role in the
type 2 response, especially in allergic diseases. As indicated in the
current research, ILC2s seemingly play a more important role in
asthma and AD than in AR and food allergies, and there are few
studies on ILC2s in AR and food allergies. Therefore, substantial
evidence needs to be collected to assess the role of ILC2s
more clearly.

Compared with TH2 cells, ILC2s are much more involved in
the early allergy stage, especially in the induction of eosinophilia.
ILC2s can be activated without antigen presentation and thus
play a unique role in allergic diseases. ILC2s respond more
quickly and have a better recognition ability than other cells.
IL-33 induces ILC2s to produce 80% of the IL-5 and IL-13 found
in the lungs. ILC2s, to some extent, make up for some of the
regulatory functions of TH2 cells in the immune response. In
addition, the normal function of ILC2s requires support from
other cells via the secretion of IL-2, IL-7, and IL-9. In short, the
ILC and adaptive immune systems play complementary roles in
the development of allergic diseases.

Current research on ILC2 subtypes remains incomplete.
Although some scientists have confirmed the existence of two
major ILC2 subtypes, nILC2s and iILC2s, whether more
functional subtypes exist and the roles of ILC2s in allergies still
need to be determined. In addition, allergic disease treatments
based on the ILC2 axis offers a new approach to the discovery of
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allergy drugs. It is imperative to better understand the basic
functions, distributions, and classifications of ILC2s and to
further explore the relationships between ILC2s and other
immune cells, which will enable us to comprehensively
understand allergic diseases.
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