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ABSTRACT: This study tackles the complex task of determining diffusion coefficients in inverse problems, addressing the
challenges of instability and computational demands. The primary objective is to introduce an efficient model for estimating
diffusion coefficients under specific conditions. Through a unique fusion of Fick’s laws and a Neural Network framework, a physics-
informed neural network (PINN) is developed for the diffusion coefficient identification problem. The model accommodates
scenarios where both diffusion flux and concentration gradient are known, where diffusion flux is known while the concentration
gradient is unknown, and where diffusion flux is unknown while the concentration gradient is known. Results demonstrate the
model’s efficiency, obtaining diffusion coefficients in less than 1000, 2000, and 3000 iterations for the respective scenarios. Sensitivity
analysis underscores the model’s validity across conditions, highlighting the positive impact of a higher proportion of effective data
on convergence and alignment with general diffusion coefficient patterns. In conclusion, the PINN model stands out as a powerful
tool for accurately estimating diffusion coefficients under varying conditions.

1. INTRODUCTION
Adolf Fick introduced Fick’s laws in 1855 to describe
diffusion’s macroscopic phenomena,1 with the first law stating
that a higher concentration gradient results in greater diffusion
flux. Building on this, the second law shows that, in non-
steady-state diffusion, the rate of change of component
concentration at a point is proportional to the spatial second
derivative of concentration. Despite Fick’s laws being over 170
years old, reliable determination of component-dependent
diffusion coefficients remains a hot research topic.2,3 The
diffusion coefficient, a crucial thermal property, plays a pivotal
role in various computational and simulation processes related
to mass transfer, absorption, and catalytic reactions. Under-
standing its dependence on different components is a pressing
research issue. Experimental measurements often involve
indirect methods,4 where the initial state is established, and
physical quantities related to the diffusion coefficient, such as
diffusion flux and concentration distributions, are measured.
The diffusion coefficient’s calculation falls under parameter
identification in inverse problems,5 typically characterized by
instability, nonlinearity, and computational demands.

There are many approaches to deal with this problem, e.g.,
the finite element method,6−8 analytical model,9−11 and
machine learning model.12,13 Although these methods are
proven to be feasible, they take a lot of computational time and
source. Recently, with the great advancement of numerical
technology and intelligent algorithms, some scholars are trying
to integrate the physical mechanism into the neural network
(NN) framework to construct the physics-informed neural
network (PINN) model. Shaban et al.14 proposed a physics-
informed deep neural network model to investigate the
chloride diffusion mechanism and predict the distribution of
chloride concentrations in concrete. Batuwatta-Gamage et al.15

proposed a PINN-based surrogate framework to simulate the
time-based moisture concentration and moisture-content-
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based shrinkage of a plant cell during drying. Lu and
Christov16 employed PINN approach to extend the utility of
phenomenological models, which can simulate the particle
migration in shear flow.

The biggest advantage of the PINN model, as we know, is
that it incorporates physical laws, specifically Fick’s laws in the
present work, into the Neural Network’s architecture. This
integration ensures that the model adheres to fundamental
principles, enhancing the reliability of the diffusion coefficient
estimates. Moreover, it is evidenced that PINN proves effective
in solving inverse problems, such as determining diffusion
coefficients, which are inherently challenging due to non-
linearity and sensitivity to initial conditions. The combination
of neural networks and physics-based constraints enables
robust solutions in less computational time compared to
traditional methods.

Therefore, the main target of the presented research is to
propose a feasible and efficient PINN approach to deal with
the diffusion coefficient identification problem even if some
parameter data is unavailable. First, a PINN model will be built
integrating the Fick’s laws into the NN framework. Second,
three different situations will be analyzed: (a) both diffusion
flux and concentration gradient are known; (b) diffusion flux is
known while concentration gradient is unknown; and (c)
diffusion flux is unknown while concentration gradient is
known. Third, the sensitivity of the proposed model will be
analyzed by investigating the effects of the error level and
amount of the testing data and the selection of the initial guess.
Finally, conclusions through the research will be drawn.

2. MODEL DESCRIPTION
The diffusion coefficient identification itself is a highly
nonlinear, uncertain, and computationally intensive problem.
Neural network algorithms can be well applied to such
problem.17,18 However, traditional neural network algorithms
when addressing these problems often rely solely on existing
data for training to predict target parameters. This approach
makes it difficult to reveal the inherent relationships among
various parameters.19 In contrast, diffusion coefficient calcu-
lations not only have abundant data sources but also are
supported by corresponding physical laws. Therefore, coupling
the physical mechanism into the deep neural framework to
achieve data-physics dual-drive can lead to more accurate
diffusion coefficient identification.20,21 The deep neural
network (DNN) algorithm is introduced and is coupled with
Fick’s laws to constrain neural network training, establishing
the PINN diffusion coefficient identification model.

2.1. Equations of Fick’s Laws. 2.1.1. Fick’s First Law.
Fick’s first law established the relationship between flux J,
diffusion coefficient D, and concentration gradient C. The
specific expression is as follows

= i
k
jjj y

{
zzzJ D C

x (1)

This formula indicates that the diffusion flux through a unit
cross-sectional area perpendicular to the diffusion direction per
unit of time is directly proportional to the concentration
gradient at that interface.

In the case of a three-dimensional diffusion system, since the
diffusion flux J is a vector, it can be decomposed into three
components along the x, y, and z coordinate axes. In this case,
the first law can be expressed as
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2.1.2. Fick’s Second Law. The first law can only be applied
for data calculations under the conditions of steady-state
diffusion, while in actual situations, most cases involve non-
steady-state diffusion. Therefore, based on the material’s
equilibrium, Fick established the second diffusion differential
equation from the first law. The second law reflects the
relationship between the rate of change of component
concentration with time under non-steady-state diffusion
conditions and the rate of change of diffusion flux with
distance. The specific expression is as follows

=
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If the diffusion coefficient D varies only slightly with
coordinates, then it can be considered as constant. In this case,
eq 4 can be rewritten as follows
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After introducing one-dimensional and multidimensional
equations for steady-state and non-steady-state processes, one
can select an appropriate diffusion equation based on the
measured diffusion flux J and diffusion coefficients D under
different conditions.22 This can be used to constrain training of
the neural network.

2.2. PINN Framework of Diffusion Coefficient Identi-
fication. PINN is essentially a combination of DNN and
physical information and for the diffusion space of a single
component in any dimension. Its basic framework is shown in
Figure 1.

2.2.1. Deep Neural Network Section. As shown in Figure 1,
the structure of the PINN primarily consists of three parts: the
input layer, hidden layers, and the output layer. Based on the
available experimental data, the data used for training mainly
include diffusion flux, concentration gradient, spatial coor-
dinate, and time. Therefore, the training and testing sets for the
neural network are selected from these data. In this paper, for
addressing subsequent issues, 80% of the data is taken as the
training set, and the remaining 20% is used as the testing set.

Figure 1. Basic framework of PINN.
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Regarding the selection of the input layer parameters, it is
necessary to analyze the correlation between time and various
spatial parameters X1, X2···Xn and the diffusion flux J as well as
component concentration C. For instance, calculating
correlation coefficients such as Pearson, Spearman, or Kendall
coefficients or plotting distribution curves can help determine
their correlations. This analysis guides the selection of the
input parameters. Concerning the selection of the output layer
parameters, the known experimental data in this study include
only diffusion flux J and component concentration C.
Therefore, J(X1, X2,···,Xn, t) and C(X1, X2,···,Xn, t) are used
as the output values of the neural network. Regarding the
selection of the number of nodes and layers in the hidden
layers, this should be determined based on the desired
prediction accuracy and computational efficiency. Regarding
the signal propagation process between neural network layers,
from the input layer to the hidden layer and then to the output
layer, it is a unidirectional propagation process, which can be
expressed as follows

= = · +a z w a b( ) ( )i
l

i
l l

i
l l1 (5)

where ail represents the set of outputs of all ith neural networks
in the lth layer; zil represents the set of inputs of all ith neural
networks in the lth layer; wl represents the set of all weights in
the lth layer; bl represents the set of all biases in the lth layer;
and σ(zil) represents the activation function.

Due to the gradient calculation issue with the primary design
parameters, this paper selects the Tanh (hyperbolic tangent)
function, which is widely applicable and has error propagation
ease, as the activation function for the neural network. Its
expression is as follows
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2.2.2. Physics Information Section. Traditional neural
networks typically minimize the difference between the actual
values and the network’s predictions as the training objective.
They commonly use the mean squared error (MSE) as the loss
function for neural network training. The specific expression is
as follows

=
=N
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where N represents the number of actual values; yi represents
the actual values used for neural network training; and f(xi)
represents the neural network’s predictions.

However, this approach requires a large number of samples
for training and cannot reflect the correlations among various
parameters. To further enhance the training speed and
prediction accuracy of the neural network, this paper integrates
Fick’s laws into the loss function. It calculates the physical
residual terms corresponding to the conditions of Fick’s laws
and combines them with the mean squared error between
actual and predicted values to jointly penalize solutions that do
not satisfy both predictive and physical conditions. Building
upon eq 8, an improved loss function is proposed as follows
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where Nm represents the number of sets of experimentally
determined data; Nc represents the number of neural network
nodes; Θ represents the neural network’s parameters to be
identified, Θ = [w, b]; Ji and Ci, respectively, represent the
experimentally determined values of diffusion flux and
component concentration; J(X1,···,Xn, t) and C(X1,···,Xn, t)
represent, respectively, the network’s predicted values of
diffusion flux and component concentration; and f(X1,···,X2,
t) represents the modified loss function derived from Fick’s
laws under different conditions, with an optimization goal of 0.
The modified equation only contains the unknown diffusion
coefficient D, and the specific equation needs to be determined
based on different experimental conditions.

Based on the improved loss function expression in eq 9, it is
embedded into the DNN framework, ultimately forming the
PINN diffusion coefficient identification model. Under the
data-physical-driven conditions, the PINN network structure is
continuously updated, and the parameter values of the iterative
loss function are also continuously updated, ultimately yielding
the global optimal values or distribution of the diffusion
coefficient D and the parameters Θ to be identified. The global
optimum solution can be expressed as follows

* * =D L D( , ) arg min ( , ) (9)

3. NUMERICAL SOLUTION PROCEDURE
Figure 2 presents the flowchart of the proposed PINN model.
And a simplified pseudocode is presented in Appendix. Three
situations are considered in this section.

3.1. Both Diffusion Flux and Concentration Gradient
are Known. It is assumed that both diffusion flux J and

Figure 2. Flowchart of the proposed PINN model.
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component concentration C have a strong correlation with
distance and time. Therefore, the input layer parameters for
the neural network are selected as distance and time (x and t),
and the output parameters are diffusion flux J and component
concentration C. Also, 80% of the data from the data set is
used as the training data set, and the remaining 20% is used as
the testing data set. The variations of MSE and iteration count
with different numbers of layers are analyzed. As can be seen
from Figure 3, it is found that the values of MSE decrease with

higher number of layers but vary little when the number of
layers exceeds 6. In this case, more importantly, the value of
the MSE is already under 0.05. That means, the error of the
model satisfies the requirement and convergences under 6
hidden layers and more layers are unnecessary and will do little
help. Furthermore, as the hidden layers are getting more, the
iteration times are also getting longer, which means more
calculation time and source will be needed. When the number
of hidden layers exceeds 6, the iteration count is more than
3000. Therefore, with a target control error within 0.05, it is
found that using 15 hidden nodes and 6 hidden layers achieves
a relatively high accuracy and efficiency.

According to eq 10, the identification of the diffusion
coefficient can be assumed as a one-dimensional problem. And,
the diffusion coefficient cannot be treated as a constant, so
further corrections are needed for eq 10. For the prediction
error part of the diffusion flux J and component concentration
C, the following equation can be derived based on eq 10

= | | + | |
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i i i i i i
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2
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It is known that the value of diffusion coefficient D is
influenced by distance x. To represent the variation of the
diffusion coefficient, this paper uses a third-order polynomial
to express the influence of distance on the diffusion coefficient.
The specific expression is as follows

= + + +D x ax bx cx d( ) 3 2 (11)

Combining eq 10 with eq 11, the physical constraint
equation for diffusion motion is as follows
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Then, by combining eqs 10, 11, and 12, the total loss
function under the conditions is obtained as follows
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So far, the diffusion coefficient identification model based on
PINN has been successfully established, and its specific
structure is shown in Figure 4.

After the diffusion coefficient identification model is
established, it is possible to solve for the diffusion coefficient.
In this paper, the data set which includes a total of 505 sets of
data for diffusion flux J and 505 sets for component
concentration C. The neural network structure is given in
Figure 4. After training and optimization, the convergence
curve of the corresponding loss function is plotted as follows in
Figure 5.

From Figure 6, it can be observed that under the condition
of both physical and data-driven factors, the PINN diffusion
coefficient identification model requires nearly 3000 iterations
to minimize the loss function, demonstrating a relatively fast
computational speed. After training the network, the globally
optimal values for the diffusion coefficient are determined to
be a = 0.05608, b = −0.06263, c = 0.02506, and d = 0.04971.

Figure 3. Variations of MSE and iteration count under different
numbers of layers.

Figure 4. Diffusion coefficient identification model based on PINN.
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Substituting these values into eq 14, the expression for the
diffusion coefficient as a function of distance x is obtained

= + +D x x x x( ) 0.05608 0.06263 0.02506 0.049713 2

(14)

Based on eq 14, the diffusion coefficient values for different
distances are calculated. Combining these values with the
component concentration values, the variation curve of the
diffusion coefficient D with component concentration C is
plotted as shown in Figure 7.

From Figure 7, it can be observed that the diffusion
coefficient increases with an increase in the component
concentration, forming a monotonically increasing curve. The
curve’s trend follows an S-shaped pattern, with a gradually
slowing increase until it stabilizes, followed by a further
increase. This behavior is in line with the general trend of the
diffusion coefficient changing with component concentration.

3.2. Diffusion Flux is Unknown While Concentration
Gradient is Known. In most cases, only one parameter would
be obtained, and the other is unknown. So now, it is assumed

that the diffusion flux J is unknown while the spatial
distribution of component concentration C is known. The
expression of the diffusion coefficient varying with space can be
assumed as

= + + +D x ax bx cx d( ) 3 2 (15)

According to eqs 13 and 15, one can obtain
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Therefore, the physical constraint equation under this
diffusion process is
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And, the loss function can be expressed as
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By incorporating the loss function into the PINN model and
using the data set, calculation can be performed. After less than
2000 iterations, the spatial part function of the diffusion
coefficient can be obtained

= + +D x x x x( ) 0.05666 0.05663 0.02114 0.049933 2

(19)

Figure 8 shows the change in the loss function value during
the iterative process. As can be seen from the figure, in the
early iterations, the loss function has already decreased to a low
level. In the subsequent iterations, there are slight fluctuations,
but they remain within an acceptable error range until

Figure 5. Convergence analysis of the PINN diffusion coefficient
identification model.

Figure 6. Diffusion coefficient variation with the component
concentration.

Figure 7. Diffusion coefficient behavior with the component
concentration.
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convergence tolerance. This indicates that the solution process
of the model has good convergence, achieving convergence
requirements in less than 2000 iterations. Figure 9 illustrates

the relationship between the component volume concentration
and the diffusion coefficient in the solution. From the figure, it
can be observed that the diffusion coefficient gradually
increases with an increase in concentration, following an
increasing cubic curve, consistent with the general trend of the
diffusion coefficient changing with concentration.

3.3. Diffusion Flux is Unknown While Concentration
Gradient is Known. On the other hand, it is assumed that the
diffusion flux J is known while the spatial distribution of
component concentration C is unknown. The expression of the
diffusion coefficient varying with space can be also assumed as

= + + +D x ax bx cx d( ) 3 2 (20)

Integrating both sides of eq 20 with respect to t

=C
t

t
J
x

td d
(21)

Then, one has

= +C
J
x

t A xd ( )
(22)

where A(x) is the integral expression with respect to x,
determined by the initial condition of C. Substituting eq 21
into eq 22, one can obtain

Figure 8. Convergence of the loss function during iterations.

Figure 9. Diffusion coefficient vs component concentration.

Figure 10. Loss function behavior during iterations.
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Therefore, the physical constraint equation under this
diffusion process can be expressed as
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The loss function can be expressed as
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By incorporating the loss function into the PINN model and
using the data set, calculation can be performed. After
approximately 1000 iterations, the spatial part function of the
diffusion coefficient in this problem is

= + +D x x x x( ) 0.0349 0.04082 0.01466 0.0523 2

(26)

Figure 10 shows the change in the loss function value during
the iterations. As seen in the graph, in the early iterations, the
loss function exhibits significant oscillations, but the overall
level still decreasing. In subsequent iterations, there are varying
degrees of numerical oscillations, but they remain within an
acceptable error range until convergence tolerance is reached.
This is because the solution of the diffusion model involves
complex numerical operations with differentiation and
integration, leading to inevitable numerical oscillations and
computational errors. Figure 11 shows the relationship
between the component volume concentration and diffusion
coefficient in the solution. From the graph, it can be observed
that the diffusion coefficient tends to increase with increasing
concentration, but there is a plateau in the range of component
concentrations from 0.01 to 0.04, with a slow growth rate.

4. ANALYSIS AND DISCUSSION
4.1. Effect of the Error Level of the Testing Data.

Because the known experimental data consist of single-point
measurements, it is impossible to objectively assess the impact
of measurement data errors on the diffusion coefficient.
Therefore, when considering the error level of experimental
data, it is assumed that the known experimental data closely
approximate the true values. One can then artificially alter the
degree of deviation in the experimental data to obtain
experimental data with different error levels.

For both the spatial and temporal distribution matrices of
the component concentration and diffusion flux, 10% of the
data points have been randomly selected for deviation. Taking
the spatial distribution matrix of component concentration as
an example, the specific deviation operation is expressed as

= [ + ]+C C1 ( 1)x t
i j

x t, ,i j i j (27)

where xi, tj denotes the measurement value at the ith spatial
location at the jth time point, Cxdi,tdj

′ denotes the new component
concentration values after deviation, Cxdi,t dj

denotes the initial
component concentration, and ξ denotes the degree of
deviation, i.e., the artificially set error level.

The same operation is performed for the deviation of
random samples of the spatiotemporal distribution matrix of
the diffusion flux.

= [ + ]+J J1 ( 1)x t
i j

x t, ,i j i j (28)

From Figure 12, it is evident that with the same amount of
bias data, when the input data are unbiased, the loss function

exhibits good convergence. However, when there is bias in the
input data, the loss function demonstrates significant
oscillations. Comparing the convergence curves of the loss
function for error levels of 5, 10, and 15%, it can be further
concluded that as the error level increases, the amplitude of
oscillations in the loss function becomes larger, and the
number of iterations required to reach convergence increases.
Additionally, it is observed that when data contains errors,
there is a plateau period in the first 1000 iterations, during
which the loss function rapidly oscillates around a certain value

Figure 11. Diffusion coefficient vs component concentration with
plateau.

Figure 12. Understanding loss function oscillations in PINN training.
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(plateau value). Moreover, as the error level in the input data
increases, the duration of this plateau period and the plateau
value both increase.

When training the PINN model, noticeable and severe
oscillations in the loss function can occur. While in most cases
training can continue, these oscillations are indicative of
underlying issues. Through the comparative analysis in Figure
13, one can identify two primary factors that influence the

oscillation of the convergence function. First, the limited size
of the training sample data set is a significant factor. Each
variable has at most a numerical matrix of dimensions,
provided in the attached data. The scarcity of data samples
prevents the mitigation of the impact of error data, which
constitutes 10% of the data set, leading to the prominent
oscillations in the loss function. Second, due to the random
selection of data for perturbation, we observe that, at t = 0.2s,
the magnitude of data values is relatively small, with the
smallest order of magnitude being on the order of 10−6. In
contrast, at t = 1s, the smallest order of magnitude for species
concentration is on the order of 10−3, and for diffusion flux, it
is on the order of 10−4. Changes in the higher-order
magnitudes in the randomly perturbed data have a more
significant impact than those in the lower-order magnitudes.
This is also one of the objective factors contributing to the
oscillations observed. In conclusion, these two factors, namely,
the limited size of the training data set and the varying
magnitudes of perturbed data, play a crucial role in causing the
observed oscillations in the convergence function during the
training of the PINN network.

Based on different error levels, further analysis of the
relationship between component volume concentration and
diffusion coefficient is presented in Figure 13. As the error level
in the data set gradually increases, the relationship between the
diffusion coefficient and the component volume concentration,
which initially exhibited a roughly monotonically increasing
trend with increasing component volume concentration,
gradually changes to a pattern of initial increase followed by
a decrease, reaching a local minimum before continuing to
increase monotonically. When a 15% deviation occurs in the
error data, which constitutes 10% of the data set, the local

minimum of the diffusion coefficient with respect to the
component volume concentration falls even below the initial
condition’s corresponding diffusion coefficient value. This
implies that under conditions where dynamic equilibrium
convergence has not been reached, a reverse diffusion process
(aggregation of grain boundary impurities) has a reaction rate
exceeding the diffusion rate. This suggests a significant
reduction in the accuracy of the mathematical model for
identifying the diffusion coefficient at the 15% error level.
Furthermore, by comparing error levels of 5 and 10%, it can be
observed that when the error level is relatively low, the trends
in the relationship between the component volume concen-
tration and diffusion coefficient remain largely consistent. This
analysis indicates that the mathematical model constructed
based on the known data set for identifying the diffusion
coefficient is effective and can provide different feedback
responses for different error levels in the data samples.
Additionally, within a certain range of component volume
concentrations, the diffusion coefficient consistently exhibits an
approximate monotonically increasing trend as the component
volume concentration increases.

4.2. Effect of the Amount of the Testing Data. In this
model, the identification of diffusion coefficients in the context
of substance diffusion described by Fick’s laws presents
significant nonlinear and uncertain characteristics. Moreover,
during the experimental measurement process, the measure-
ment methods, observation techniques, measuring instruments,
and data processing procedures may all introduce certain
errors, ultimately leading to bias in the identification of
diffusion coefficients. When using neural networks to solve this
problem, a substantial amount of data samples is often required
for training to enhance the network’s ability to fit and predict
nonlinear functions. Insufficient data samples can lead to
overfitting, where the model becomes overly influenced by the
data errors during training, resulting in the amplification of
sample data errors in the predictions and, consequently,
inaccurate computational results. To further investigate the
impact of the sample data size on the identification of diffusion
coefficients in this model, calculations will be performed using
randomly selected data at 100, 80, and 60% of the data. The
results of these calculations are discussed to analyze how the
sample data size affects the diffusion coefficient identification
in the PINN model.

As shown in Figure 14, all three sets of computational results
exhibit relatively good convergence and meet the convergence
tolerance requirements. When 100% of the data volume is
used, the loss function value does not exhibit oscillations
during the iterative process and continuously decreases until it
reaches convergence tolerance. This indicates an excellent
convergence performance. Although a local optimal solution
causes a sharp drop in the loss function value at the 300th
iteration, it does not significantly impact the subsequent
iterations. In comparison to the 100% data volume case, both
the 80 and 60% data volume cases exhibit oscillations in the
loss function value in the early stages of iteration due to the
reduced data volume. The computation process is less stable
than that of the 100% data volume case, with the 60% data
volume case showing oscillations slightly larger than those of
the 80% data volume case. Furthermore, upon comparison of
the convergence curves of the three cases, the convergence
curve for the 100% data volume case exhibits a slower initial
descent in the loss function value. This is because the larger
data volume increases the time and computational cost of

Figure 13. Exploring the impact of error levels on the relationship
between component volume concentration and diffusion coefficient.
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network training, making it more challenging to find the
optimal solution. In contrast, the lower data volumes (such as
80 and 60%) experience faster declines in the loss function
value but also exhibit convergence oscillations and instability.

As depicted in Figure 14, the computational results for all
three different data volumes show a general trend of
monotonically increasing diffusion coefficients with increasing
component volume concentration, which aligns with the
typical behavior of diffusion coefficients varying with the
component volume concentration. The diffusion coefficient
calculated with 80% of the data volume exhibits the fastest rate
of increase. However, it starts to deviate gradually from the
curve of the 100% data volume case when the species
concentration exceeds approximately 0.05. This deviation is a
result of the accumulated computational errors due to the
reduced training data input into the neural network, leading to
a decrease in prediction accuracy. Nevertheless, the error
remains within an acceptable range, indicating that training the
neural network with 80% of the data volume is effective. On
the other hand, the curve for the 60% data volume case shows
a plateau and even a decreasing trend in the diffusion
coefficient within the concentration range of 0.01−0.05. This
behavior occurs because the input data volume for the neural
network is only 60%, resulting in insufficient data for the PINN
model, leading to inaccurate predictions and an anomalous
relationship between component volume concentration and
diffusion coefficients. In summary, using an appropriate data
volume (above 80%) for neural network training effectively
ensures the accuracy of the model’s prediction results, while
insufficient data volumes can lead to abnormal prediction
values due to overfitting.

4.3. Effect of the Selection of the Initial Guess. In a
DNN model, it is essential to input initial sample data for
training to obtain a neural network that meets the required
accuracy. The goal is to ensure that the predicted data
approach the real data within an allowable error range. The
selection of initial samples plays a significant role in
determining the training effectiveness and time efficiency of
the neural network. An effective method for choosing initial
samples can greatly enhance the training efficiency with
minimal time costs and improve prediction accuracy. There-

fore, this study considers four initial sample data selection
methods, each involving different proportions of valid data.
The goal is to investigate how the proportion of valid data in
the initial samples affects the performance of the PINN model
and the identification of diffusion coefficients.

It is evident that the numerical values at spatial boundaries
(x = 0,1) and at the initial time (t = 0) are all zero, indicating
the presence of zero boundary conditions and zero initial
conditions. Additionally, the component concentration meas-
urement data exhibit a spatial distribution change at the initial
time, which can be considered as anomalous data due to the
spatial discontinuity. These abrupt changes in boundary data
can have an effect on the training efficiency of the neural
network and are treated as invalid data. Therefore, the
spatiotemporal boundary data will be considered as invalid
data, while the remaining data will be considered as valid data,
as depicted in Figure 15. Subsequently, initial data samples
were selected using a combination of random sampling and
setting the proportion of valid data, as outlined in Table 1.

As shown in Figure 15, all four initial data selection methods
exhibit varying degrees of oscillation in the loss function value
during the early stages of iteration. This oscillation is primarily
due to the significant influence of the initial values on the
results in the initial computations, resulting in numerical
oscillations. However, as the number of iterations increases,
this oscillation gradually diminishes and the loss function value
stabilizes, approaching convergence. In the later stages of
iteration (approximately around 1700 iterations), there is a
sharp drop in the function value. This phenomenon occurs
because, during the iterative computation process, the
calculation encounters a local optimal solution, leading to

Figure 14. Diffusion coefficient variation with component volume
concentration at different data volumes.

Figure 15. Comparative analysis of the component volume
concentration and diffusion relationship: random selection vs Method
1.

Table 1. Initial Data Sample Selection Method

selection method description

random selection randomly select data
method 1 90% valid data, 10% invalid data
method 2 80% valid data, 20% invalid data
method 3 70% valid data, 30% invalid data
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the so-called premature convergence phenomenon, where the
loss function value decreases. However, the model aims to find
the global optimal solution; thus, this local optimal solution
does not meet the requirements, and the loss function value
does not satisfy the convergence tolerance. Therefore, the
iterative process continues until the global optimal solution is
reached.

The convergence curve for the Random Selection method
exhibits relatively small loss function values at the beginning of
the iteration with less pronounced oscillations during the early
stages, indicating good convergence performance. However,
this method involves no deliberate intervention and carries a
high degree of uncertainty and dependence on probability. It
can be used with a certain level of confidence when it is
challenging to distinguish between valid and invalid data.
Method 1, which includes 90% valid data, exhibits higher loss
function values during the early stages of iteration but
experiences smaller amplitude and shorter duration of
oscillations. It demonstrates good stability and can quickly
find the global optimal solution after encountering a local
optimal solution in the later stages of iteration, reaching the
convergence requirements. Therefore, Method 1 has the best
overall computational performance. In comparison to Method
1, Method 2 contains a higher proportion of invalid data
(20%), leading to more pronounced oscillations during the
early stages of iteration with larger amplitudes and longer
durations. It faces greater challenges in convergence through-
out the entire iterative process but ultimately meets the
convergence tolerance requirements. Method 3, despite not
exhibiting significant oscillations during the early stages of
iteration, experiences small oscillations throughout the entire
iterative process and fails to meet the convergence tolerance
requirements. Therefore, Method 3 is not successful in solving
the problem.

As shown in Figure 16, both the Random Selection and
Method 1 methods for component volume concentration and
diffusion relationship curves exhibit similar trends. They both
show an increase in the diffusion coefficient with increasing
concentration, and the results are relatively close, demonstrat-
ing good consistency. This further confirms that these two

methods yield better computational results. The relationship
curve for Method 2 also shows an overall increasing trend, but
due to its lower proportion of valid data (80%), the increase in
the diffusion coefficient is less pronounced in the concen-
tration range of 0.01 to 0.05. Additionally, it deviates
significantly from the results of Random Selection and Method
1, indicating some bias in the computational results due to the
increased amount of invalid data in Method 2. In the case of
Method 3, the relationship curve shows a decrease in the
diffusion coefficient within the concentration range of 0.01−
0.05. This behavior is not observed in the rest of the solution
process, and as previously analyzed, Method 3 does not
converge during the iterative process. This further confirms
that the results obtained through Method 3 are inaccurate.

In conclusion, when there is a higher proportion of valid
data in the initial sample data, the convergence during the
solution process is better and the accuracy of the results is
higher. For Random Selection, even though the proportion of
valid data cannot be controlled, it can still meet the
requirements for computational results. Therefore, in sit-
uations in which the proportion of valid data is unknown,
random selection can be a viable method.

5. CONCLUSIONS
This study introduces a physics-informed neural network
(PINN) model as an effective and efficient solution to the
challenging task of diffusion coefficient identification in inverse
problems. By seamlessly integrating Fick’s laws into the neural
network framework, the PINN model demonstrates its
capability to provide reliable estimates under various scenarios
involving known and unknown flux and concentration
gradients. The main conclusions can be drawn as follows:

(1) Three specific situations are considered herein, including
known diffusion flux and concentration gradient, known
diffusion flux and unknown concentration gradient, and,
unknown diffusion flux and known concentration
gradient. Results demonstrate the model’s efficiency,
obtaining diffusion coefficients in less than 1000, 2000,
and 3000 iterations for the respective situation.

(2) The effect of the error level of the testing data is
investigated. As the error level increases, the amplitude
of oscillations in the loss function becomes larger, and
the number of iterations required to reach convergence
increases, but all less than 3000. And changes in the
higher-order magnitudes in the randomly perturbed data
have a more significant impact compared to those in the
lower-order magnitudes.

(3) The effect of the amount of the testing data is
investigated. The lower the data volume is, the faster
the loss function value declines but the more oscillation
and instability exhibit. Also, insufficient data volume can
lead to abnormal prediction values due to overfitting.

(4) The effect of the selection of the initial guess is
investigated. When there is a higher proportion of valid
data in the initial sample data, the convergence during
the solution process is better, and the accuracy of the
results is higher. 30% of invalid data causes a failure in
solving the problem.

In the future, the proposed model would be improved to
accommodate more situations, such as missing data, data
incorrection, etc. In that case, the model would be introduced
to deal with practical physical problems, e.g., chloride diffusion

Figure 16. Effect of the valid data proportion on convergence and
accuracy: random selection vs Method 1.
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in concrete. Also, extensive performance evaluators were
employed to estimate the accuracy of the result.

■ APPENDIX
Below is a simplified pseudocode for a physics-informed neural
network (PINN) model addressing the diffusion coefficient
identification problem in Fick’s law.
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■ NOMENCLATURE
ail the set of outputs of all i neural networks in layer l
bl the set of all biases in layer l
C the volume concentration of diffusing substances

(components) (number of atoms/m3 or kg/m3)
D diffusion coefficient, the flow rate through unit area

per unit time when the concentration gradient is one
unit (m2/s)

D̃ the integrated diffusion coefficient (m2/s)
f(xi) the predicted value of the neural network
J diffusion flux is the flow of diffusing material through

unit cross-sectional area perpendicular to the direction
of diffusion in unit time (kg/(m2·s))

N the number of true values
NA, NB the mole fractions of components A and B,

respectively
Nc the number of coordination points of the neural

network
Nm the number of groups of experimental measurement

data
t the measurement time of experimental data
wl the set of all weights in layer l
x measurement location of experimental data (one-

dimensional space)
yi the true values used for neural network training
zil the set of inputs of all i neural networks in layer l

■ GREEK LETTERS
∇ gradient operator
σ(zil) represents the activation function
Θ the parameters to be identified of the neural network, Θ

= [w, b]
ξ indicates the degree of deviation, that is, the artificially

set error level
v the translation speed of the reference plane at x (m/s)
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■ ABBREVIATIONS
DNN deep neural networks
MSE mean square error
PINN physics-informed neural network
Tanh hyperbolic tangent function
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