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Introduction
Diabetes is one of the fastest-growing health chal-
lenges, with 463 million diagnosed today and ris-
ing to an estimated 700 million by 2045.1 Type 2 
diabetes (T2D) is by far the most prevalent sub-
type, accounting for 90% of all cases of diabetes.1 
Patients with T2D have 2- to 4-fold increased risk 
of cardiovascular disease (CVD) and heart fail-
ure,2–6 and, in 2019, more than 4 million people 
died globally from diabetes-related complications,7 
namely CVD and heart failure.8–11 In order to pre-
vent these premature deaths, there is a need for 
improved understanding of the pathophysiology, 

and thereby identification, of novel risk factors that 
can aid early detection of high-risk patients and 
aggressive treatments.

Obesity is one of the important risk factors driv-
ing the increased rate of CVD and heart failure in 
T2D due to, for example, altered hemodynamic 
load, neurohumoral activation, cardiac metabo-
lism, adipokine secretion, and low-grade inflam-
mation.12–19 Traditionally, obesity [defined as 
body mass index (BMI) > 30 kg/m2] per se has 
been viewed as a risk factor, but it is now recog-
nized that fat depots are heterogenous; they differ 
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in their lipolytic activity, insulin sensitivity, secre-
tory capacity and location, and, thus, in their  
atherogenic potential.15,16,18,20–24 This recognition 
has shaped the idea that it is primarily the vis-
ceral fat tissues located adjacent to the coronary 
arteries and the myocardium, the epicardial adi-
pose tissue (EAT) and pericardial adipose tissue 
(PAT), that accelerate coronary atherosclerosis 
and myocardial dysfunction due to their lipolytic 
and secretory hyperactivity leading to accumula-
tion of toxic lipid metabolites in the myocardium 
and endothelium. Since T2D is accompanied by 
an expansion of EAT and PAT,25 these depots 
have been suggested to play a critical role in 
accelerating CVD and heart failure, particularly 
in patients with T2D.26–30 In support of this, high 
levels of EAT in T2D have been associated with 
atherosclerosis,31 diastolic dysfunction,32 and 
incident cardiovascular events.33

In this review, we outline the evidence that EAT 
acts as a link coupling diabetes and CVD. First, 
we present the pathophysiological mechanisms 
of EAT and PAT. Next, we account for the role 
of EAT in T2D, and, finally, we discuss the  
clinical potential of EAT in cardiovascular risk 
assessment and prevention, including how it  
can be targeted, and highlight future research 
questions.

Mechanisms of epicardial adipose tissue  
and cardiovascular pathophysiology

Anatomical characteristics of EAT  
affecting pathophysiology
Human EAT comprises adipocytes, stromo-vas-
cular cells, neurons, and immune cells.34–36 Several 
characteristics related to the anatomy of EAT sug-
gest that this depot may play a particularly impor-
tant role in T2D and cardiovascular physiology 
and pathophysiology. First, since no fascia sepa-
rates the tissues, EAT is in direct contact with the 
myocardium, allowing direct communication.37–39 
Second, EAT and the myocardium share micro-
circulation, enabling vasocrine crosstalk.34,35,40 
Third, despite the fact that EAT is associated 
mostly with the free wall of the right ventricle, the 
atrioventricular grooves, the apex, and the coro-
nary arteries, it can cover up to 80% of the surface 
of the heart.34,41 Consequently, it is possible that 
EAT affects the circulation of the coronary artery 
and the myocardial diastolic and systolic proper-
ties mechanically.

Metabolic characteristics of EAT
For the major part of the 20th century, EAT was 
considered an unimportant inert supporting 
structure and energy depot of the heart, and 
attracted no attention apart from sporadic scien-
tific papers that hinted at an active metabolic 
role.42 However, in 1989, Marchington et  al. 
showed that lipolysis and fatty acid synthesis are 
greater in EAT compared with visceral fat (VAT) 
and other cardiac fat tissue (the PAT).41 This 
finding demonstrated that EAT is metabolically 
very active, which fitted with the finding that EAT 
adipocytes are smaller than other VAT cells.34 The 
appreciation of EAT as a metabolically active tis-
sue motivated hypotheses of EAT being an impor-
tant source of energy for the myocardium during 
periods of increased energy demand, and for 
being able to regulate free fatty acids levels in the 
coronary arteries and the accumulation of toxic 
lipid levels in cardiomyocytes.41

Later observational studies showed that the 
amount of EAT is increased in patients with T2D 
and CVD,25 and associated with intramyocardial 
fat accumulation.43–46 Translational mechanistic 
studies have shown that factors secreted from 
EAT disrupt fatty acid beta oxidation in cardio-
myocytes, which normally is their major source of 
energy, accounting for 60–70% of the ATP pro-
duced.47 Thus, EAT is now recognized as a meta-
bolic tissue, having the highest rates of lipolysis 
among the VAT depots, which, in obesity and 
T2D, may accelerate atherosclerosis in the coro-
nary vasculature and lipotoxicity of the cardio-
myocyte. Specifically for patients with T2D, it 
was found that the fatty acid profile of EAT was 
different from that of patients without T2D, and 
there was a decrease in 16:0 and omega 3 fatty 
acids and an increase of trans and conjugated 
fatty acids, which may worsen the formation of 
atheroma in the neighboring arteries.48 Secretory 
products from EAT from patients with T2D have 
also been shown to impair cardiomyocyte con-
tractile function and fat oxidation.49 Overall, this 
metabolic hyperactivity indicates that EAT has a 
pathophysiological potential that may be aggravated 
by diabetes (Figure 1).

Adipokine secretion of EAT
The recognition of EAT as an active secretory tissue 
came from a seminal finding by Mazurek and col-
legues in 2004.28 They showed that, in patients with 
coronary artery disease (CAD), EAT has a higher 
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expression of pro-inflammatory cytokines (TNFα, 
IL-6, IL-1β, and others), a higher infiltration of 
chronic inflammatory cells, and secretes more pro-
inflammatory cytokines compared with subcutane-
ous fat (SAT) biopsies from the same patient.28 
Moreover, adiponectin expression was found to be 
lower in EAT from patients with CAD compared 
with non-CAD patients,51 and was lower in EAT 
compared with SAT.52 Chatterjee et al. expanded 
the adipokine list by demonstrating that cultured 
EAT adipocytes secrete IL-8.53 Subsequently, we 
found an indication that the local inflammatory 
response identified from the above studies could be 
measured systemically since EAT was associated 
with increased levels of IL-8 in plasma.31 However, 
whether EAT contributes markedly to the systemic 

low-grade inflammation needs to be investigated. 
Since then, others have confirmed the pro-inflam-
matory transcriptome of EAT,54–58 and indicated 
that EAT is more inflamed compared with intra-
abdominal VAT.55 In patients with CAD, the 
secretome of EAT compared with SAT (in condi-
tioned media from tissue explants) showed an ath-
erogenic and inflammatory protein secretion 
profile.59 Moreover, a few studies have shown that 
the secretome of EAT disrupts cardiomyocyte 
metabolism,47 depresses cardiomyocyte contractile 
function,49 and alters expression of adhesion mark-
ers of primary cardiac endothelial cells.60 A recent 
intervention study in a rat model of myocardial 
infarction (MI) showed that surgical removal of 
EAT improves myocardial function following MI.61 

Figure 1.  Mechanisms whereby epicardial (and potentially also pericardial) adipose tissue expansion in T2D 
may accelerate atherosclerosis, myocardial remodeling and diastolic dysfunction, MI, or HF. Clipart provided 
by Servier Medical Art.50

HF, heart failure; MI, myocardial infarction; T2D, type 2 diabetes.
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Causal evidence was further provided in a pig model 
of atherosclerosis, where resection of EAT from the 
anterior descending coronary artery reduced ather-
osclerotic plaque progression exclusively at the site 
of adipectomy.62 Obese mice fed a high fat diet spe-
cifically induced a pro-inflammatory adipokine state 
and increased adipocyte size in pericardial fat.63 
Specific for T2D, a study by Sacks et al. indicated a 
predominantly pro-inflammatory adipokine signa-
ture in EAT from patients with metabolic syndrome 
and T2D,64 and this was confirmed by another 
research group who demonstrated that adiponectin 
gene expression was reduced, whereas CD68, 
MCP-1, and adipocyte size were increased in EAT 
from patients with T2D versus controls.65 The 
immune cell population found in EAT may also be 
influenced by diabetes since dendritic cells (profes-
sional antigen-presenting cells contributing to regu-
lation of lymphocyte immune response) were 
downregulated,66 whereas infiltrating pro-inflam-
matory macrophages were upregulated in EAT 
from patients with T2D. 67 Thus, EAT in T2D is 
particularly inflamed, which could accelerate ather-
osclerosis and cardiac complications in this popula-
tion (Figure 1).

Thermogenic capacity of EAT
EAT is hypothesized to offer cardiac cryoprotection 
due to its thermogenic capacity, resembling that of 
brown/beige adipocytes.60,68,69 However, it is not 
known whether the thermogenic properties are 
functional in adult humans. Moreover, the heat gen-
erated by EAT thermogenesis may be of little or no 
physiological significance compared with the heat 
generated by the cardiomyocyte during the contrac-
tile cycle. Interestingly, a brown-to-white transition 
of EAT, due to downregulation of brown adipose 
tissue and upregulation of white adipose tissue asso-
ciated genes, has been suggested to occur in patients 
with CAD compared with non-CAD.70 While it is 
not known whether T2D induces brown-to-white 
transition in EAT, or if this plays a role in mediating 
the cardiometabolic disease progression,71 a study 
by Moreno-Santos et al. supports this idea by show-
ing that T2D was associated with decreased expres-
sion of PGC1α and UCP1 mRNA in EAT of 
patients with T2D and CAD, likely reflecting a loss 
of brown-like fat features72 (Figure 1).

PAT pathophysiology
Human PAT is located within, and on the exter-
nal site of, the pericardium and is of a different 

origin (primitive thoracic mesenchyme) than 
EAT (splanchnopleuric mesoderm).30,73–75 PAT 
is supplied by blood from the thoracic vasculature 
and it is not in direct contact with the myocar-
dium.30,73,74 Therefore, cardiac physiology may 
only be affected indirectly by PAT and it is also 
not directly affected by the “inside-to-out” parac-
rine signaling of the myocardium to the adipose 
tissue.21,36 Despite these marked differences of 
the depots, EAT and PAT have similar transcrip-
tional profiles,76 and, when EAT and PAT are 
combined, this entire fat pad remains associated 
with an increased risk of future CVD, which has 
been shown in prospective studies.31,77–82 Similar 
to EAT, PAT has a higher expression of pro-
inflammatory adipokines compared with intraab-
dominal VAT.63,83 While one paper suggests PAT 
to be more closely associated with cardiovascular 
risk factors compared with EAT,84 others have 
found that PAT alone does not predict future 
CVD and all-cause mortality in patients with dia-
betes.31 Overall, the literature points towards a 
role of PAT in cardiac disease pathology, but the 
physiology of PAT and its importance in cardiac 
disease progression in patients with T2D is not 
fully clarified.

Altogether, these mechanistic in vitro and in vivo 
studies indicate a pro-inflammatory, proathero-
genic, and cardiotoxic effect of EAT and PAT in 
general and in diabetes. However, an important 
limitation is that, in all studies, the fat is obtained 
from patients/animals with established CVD 
undergoing open heart surgery, which per se affects 
the physiology of EAT and PAT and limits the 
conclusions. In the next section, we move from 
mechanistic to epidemiological and clinical stud-
ies investigating whether EAT plays a particularly 
important role for CVD progression in T2D.

High levels of EAT in patients with T2D
Several studies have reported that patients with 
T2D have higher levels of EAT compared with 
non-diabetic controls (Table 1). In 2009, Wang 
and colleagues showed that mean EAT was 
166.1 ± 60.6 cm3 in patients with T2D compared 
with 123.4 ± 41.8 cm3 in patients without diabe-
tes.85 This finding of high amounts of EAT in 
patients with T2D was confirmed by several subse-
quent studies,86–88 including a recent large cohort 
of 1000 patients.32 In 2014, a meta-analysis con-
firmed the association of EAT and parameters  
of the metabolic syndrome,89 and, in 2019, a 
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Table 1.  Amount of EAT in patients with and without diabetes.

Study DM Epicardial adipose tissue Number
(T2D versus controls)

Measurement tool Year 
published

  T2D Controls  

Iacobellis et al.90 T1 7.2 ± 2.1 mm 4.9 ± 2.5 mm 30 (15 versus 15) Echocardiography 2014

Chambers et al.91 T1 1.65 ± 0.44 mm 1.37 ± 0.27 mm 40 (20 versus 20) Echocardiography 2019

Cetin et al.88 T2 6.0 ± 1.5 mm 4.42 ± 1.0 mm 139 (99 versus 40) Echocardiography 2013

Kang et al.95 T2 5.4 (4.2, 7.4) mm 3.9 (2.9, 4.8) mm 321 (40 versus 281) Echocardiography 2018

Christensen et al.32 T2 4.6 ± 1.8 mm 3.4 ± 1.2 mm 1004 (770 versus 234) Echocardiography 2019

Ojeda-Peña et al.96 T2 7.0 mm¤ 5.7 mm¤ 60 (30 versus 30) Echocardiography 2016

Vasques et al.97 T2 10.2 ± 2.8 mm 8.2 ± 1.8 mm 49 (31 versus 18) Echocardiography 2015

Peraza-Zaldivar  
et al.98

T2 8 (7, 9) mm# 6 (2, 10) mm# 40 (22 versus 18) Echocardiography 2016

Seker et al.99 T2 6.5 ± 0.7 mm 5.3 ± 1.0 mm 454 (186 versus 268) Echocardiography 2017

Chun et al.100 T2 17.6 ± 6.7 mm 14.4 ± 5.9 mm 1048 (141 versus 907) CT 2015

Wang et al.101 T2 5.0 ± 1.2 mm 3.1 ± 0.8 mm 100 (68 versus 32) Echocardiography 2017

Yazici et al.102 T1 3.3 ± 1.1 mm 2.3 ± 0.3 mm 79 (36 versus 43) Echocardiography 2011

Tonbul et al.86 n/a 215.5 (126.5, 271.2) cm3 116.0 (91.6–139.4) cm3 60 (17 versus 43) CT 2011

Versteylen et al.103 T2 98 ± 41 cm3 75 ± 34 cm3 292 (83 versus 209) CT 2012

Wang et al.85 T2 166.1 ± 60.6 cm3 123.4 ± 41.8 cm3 127 (49 versus 78) CT 2009

Milanese et al.104 T2 112.9 [21.4, 442.2] ml 82.6 [11.3, 318] ml 596 (215 versus 381) CT 2019

Svanteson et al. 93 T1 52.3 (36.1–65.5) cm3 55 (38.3–79.6) cm3a 148 (88 versus 60) CT 2019

Zobel et al.105 T1 106 ± 78 ml 99 ± 61 mla,b 90 (60 versus 30) CT 2020

Zobel et al. 105 T2 228 ± 97 ml 99 ± 61 mlb 90 (60 versus 30) CT 2020

Yang et al.82 T2 89 ± 24.6 ml 67.6 ± 26.7 ml 407 (50 versus 357) CT 2013

Akyürek et al.106 T2 172.8 ± 64.9 cm3 68.9 ± 37.7 cm3 152 (90 versus 62) CT 2015

Gaborit et al.87 T2 213 ± 34 ml 141 ± 18 ml 30 (13 versus 17) MR 2012

Rado et al.107 T2 7.7 (5, 10) cm3# 10.3 (7, 14) cm3#x 272 (52 versus 220) MR 2019

van Woerden  
et al.108

T2 116 ± 10 ml/m# 100 ± 10 ml/m# 64 (28 versus 36) MR 2018

Gullaksen et al.109 T2 119 ± 49 mm3 86 ± 40 mm3 103 (44 versus 59) CT 2019

IQR [range].
¤No SD or IQR available.
#Estimated or partly estimated from a figure.
aNot significant.
bNo discrimination between EAT and PAT.
CT, computed tomography; EAT, epicardial adipose tissue; IQR, interquartile range; MR, magnetic resonance; PAT, pericardial adipose tissue; SD, 
standard deviation; T2D, type 2 diabetes; T1D, type I diabetes.
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meta-analysis including 13 studies confirmed the 
association of EAT and T2DM.25 While it is now 
clear that EAT is increased in patients with T2D, 
it is not established in type 1 diabetes (T1D). 
Although some studies do support a role of EAT in 
cardiac disease in T1D,90–92 it has recently been 
reported that EAT volume was not higher and not 
associated with coronary atherosclerosis in T1D 
patients.93 In support of this, we recently found 
patients with T1D to have lower cardiac adipose 
tissue volumes compared with patients with T2D, 
and levels similar to those of controls.94

Taken together, while not yet established in T1D, 
EAT is increased in patients with T2D, suggest-
ing a potential importance in CVD progression in 
this population, which will be discussed below.

Does EAT drive the association  
of T2D and CVD?
While several large-scale epidemiological stud-
ies,79,80,110–116 including recent meta-analyses,117,118 
have implicated a role of EAT in provoking  
atherosclerosis independently of diabetes, the 
increased level of EAT in T2D may suggest it is an 
important link coupling diabetes and cardiovascu-
lar disease (Table 2). Wang and colleagues were 
among the first to describe an association of EAT 
volume with coronary artery calcium (CAC) scores 
and significant coronary lesions (more than 50% 
stenosis) in asymptomatic patients with T2D.85 
Others have reported similar findings,31,119 includ-
ing Kim et al., who found an association with coro-
nary lesions, but, on the contrary, reported that 
EAT was not independently associated with silent 
myocardial ischemia based on first-pass myocar-
dial perfusion magnetic resonance (MR) images 
acquired during adenosine stress and at rest.120 
Other cross-sectional studies have also reported 
that EAT in T2D is not associated with myocar-
dial perfusion or microvascular dysfunction, which 
raise uncertainty of the functional importance of 
EAT in T2D.105,121 Nevertheless, an early prospec-
tive study by Yerramasu et al. found that EAT vol-
ume was an independent marker for the presence 
and severity of coronary calcium burden in 333 
asymptomatic patients with T2D without prior 
history of CVD, and was associated with progres-
sion of CAC, whereas traditional measures of obe-
sity were not independently associated with these 
endpoints.122 Other prospective studies have 
emerged since then, including a study by our group 
performed in a cohort of 200 patients with T2D.31 
In this latter study, high cardiac adipose tissue 
levels (EAT+PAT) were independently associ-
ated with increased risk of incident CVD or all-
cause mortality after 6.1 years of follow up. We 
confirmed this finding in a larger prospective 
study of 1030 patients with T2D, where the 
results additionally indicated a gender-specific 
role of EAT as its predictive potential for CVD 
was increased for men compared with women 
after 4.7 years of follow up.33 We also found that 
EAT modestly improved risk prediction when 
added to a model including traditional CVD risk 
parameters.

Table 2.  Association of EAT and CVD in T2D.

Study Association of EAT with Design Year

Wang et al.85 CAC score, coronary 
lesions

Cross 
sectional

2009

Kazlauskaite et al.123 Diastolic dysfunction Cross 
sectional

2010

Yerramasu et al.122 CAC score, CAC 
progression

Prospective 2012

Versteylen et al.103 Coronary artery disease Cross 
sectional

2012

Kim et al.120 Significant coronary 
stenosis, myocardial 
ischemia

Cross 
sectional

2012

Chen et al.121 Myocardial microvascular 
dysfunctiona

Cross 
sectional

2014

Levelt et al.124 Cardiac contractile 
dysfunction (impaired 
systolic and diastolic strain 
rates)

Cross 
sectional

2016

Uygur et al.125 Coronary atherosclerosis Cross 
sectional

2017

Christensen et al.31 CAC score, incident 
cardiovascular events and 
all-cause mortalityb

Prospective 2017

Reinhard et al.119 CAC score Cross 
sectional

2019

Christensen et al.32 Reduced diastolic function Cross 
sectional

2019

Christensen et al.33 Incident cardiovascular 
events and all-cause 
mortality

Prospective 2019

CAC, coronary artery calcium; CVD, cardiovascular disease; EAT, epicardial adipose 
tissue; PAT, pericardial adipose tissue; T2D, type 2 diabetes.
aNot significant.
bTotal cardiac fat (EAT+PAT).
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Overall, whereas the main body of evidence  
suggests a role for EAT in the development of 
CVD in T2D, EAT is a heterogenous fat depot 
and may have different atherogenic potential 
depending on its location. Uygur et al. have sug-
gested that the left atrioventricular groove EAT 
volume was superior in the prediction of CAD in 
patients with T2D without CAD history,125 and 
Maimaituxun et  al. identified that the local fat 
thickness surrounding the left anterior descend-
ing artery (LAD), when compared with EAT at 
other locations, was a useful surrogate marker for 
estimating the presence, severity, and extent of 
CAD, independent of classical cardiovascular risk 
factors.126 A post hoc analysis from the CRISP CT 
study identified that the perivascular (epicardial) 
fat attenuation index (which captures coronary 
inflammatory load) at both LAD and the right 
coronary artery were predictive of all-cause and 
cardiac mortality and improved risk prediction 
algorithms in a mixed population of patients with 
and without T2D.127 This finding suggests that 
the physiological state of EAT or PAT (e.g. 
inflammatory or brown-fat activity) compared 
with the amount may be a better estimate for the 
risk of CVD.

Regarding cardiac function, several studies have 
shown that EAT is associated with diastolic dys-
function.88,128–134 Levelt et al. showed that lean ver-
sus obese patients with T2D have lower degree of 
EAT and better cardiac function,124 indicating that 
the adipose load including EAT is a factor in medi-
ating cardiac dysfunction and, in particular, medi-
ating derangements in left ventricle (LV) mass and 
volume.77 EAT has also been associated with dias-
tolic dysfunction in patients with newly diagnosed 
T2D,123 as well as with longer diabetes duration.32 
A few studies also indicate a role for cardiac fat in 
cardiac systolic dysfunction, both in general,108 
and in patients with T2D specifically.32

Taken together, there is considerable evidence to 
suggest that EAT is associated with an increased 
risk of CVD in general, and in patients with T2D 
in particular. EAT is also associated with reduced 
diastolic function in general and in T2D, and, 
although only few studies exist, there is emerging 
evidence of a role for EAT in systolic heart failure 
(Figure 1). Despite the clear evidence of EAT 
being a biomarker of heart disease and CVD, the 
question of whether T2D aggravates the patho-
genic potential of EAT remains controversial.

Clinical potential of EAT in cardiovascular risk 
prediction
From both mechanistic and epidemiological stud-
ies, it is clear that EAT is associated with increased 
cardiovascular risk, and some studies suggest that 
it may also have potential to guide clinical deci-
sion making.33,127,135 However, several aspects 
need clarification before the clinical relevance of 
EAT can be fully determined (Figure 2).

EAT can be measured by echocardiography, CT, 
or cardiac magnetic resonance imaging (MRI).136 
The measurement of EAT by echocardiography 
has several limitations, namely the discrimination 
of EAT and PAT can be difficult,3 EAT can be 
misinterpreted as pericardial effusion,2 and the 
restricted acoustic window can impair a valid 
reflection of the total fat volume and fail to iden-
tify regional differences in fat distribution. 
Therefore, echocardiography exclusively allows 
for a rough two-dimensional estimation of the 
adipose tissue beds.1,5 Conversely, CT and car-
diac MRI are gold standards and allow for volu-
metric quantifications of EAT.136 However, 
quantification in clinical practice, even by the 
gold standard, is challenging because of lack of 
sensitivity and specificity, and because it is tech-
nically difficult and there is a possibility for high 
noise and confounding due to, for example, inter-
ference of heart beats, water content, and fat 
droplets from parenchymal cells during image 
acquisition.137,138 Thus, a uniform standardized 
method for EAT quantification has not yet been 
determined, which has prevented the establish-
ment of threshold values for physiological and 
pathological levels of EAT.

Another major challenge in the evaluation of EAT 
as a novel cardiac risk factor is the physiologic 
similarities between fat depots, which makes 
quantifying their independent contributions to 
cardiac risk difficult.77,125 Whereas some causal 
evidence of an independent role of EAT in the 
development of CVD has been obtained in ani-
mal studies,62 it is generally lacking in humans 
due to the difficulty in specifically targeting the 
EAT. Despite a previous study by our group that 
indicated cardiac fat was associated with CVD 
and all-cause mortality independently of BMI,31 
it remains to be fully clarified whether EAT per-
forms better than traditional anthropometric risk 
markers (e.g., BMI or waist circumference) or 
other visceral fat depots in predicting CVD risk.
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For EAT to be a clinically important risk factor, 
we need to understand how the depot can be 
modified. Emerging evidence shows that EAT can 
be reduced by pharmacological therapies includ-
ing GLP-1 analogues and SLGT2 inhibitors.139–143 
It is, however, not known whether the cardiopro-
tective effects of these drugs are mediated through 
the reductions in EAT. Whether EAT can also be 
targeted by lifestyle modifications for example, 
exercise, has been controversial,144 but recent 
studies support this idea.145,146 A recent study by 
our group suggests that exercise training reduces 
both EAT and PAT, without a change in total fat 
mass, indicating that exercise training may be a 
means to specifically target these fat depots.147 We 
also identified that the mechanism by which exer-
cise targets EAT is through an IL-6 dependent 
mechanism, since blocking of the IL-6 receptor by 
Tocilizumab (a human monoclonal antibody) 
abolished exercise-induced EAT reductions.148 
This disclosure of one of the mechanisms regulat-
ing EAT is important in order to find potential 

novel treatment targets. In general, both mecha-
nistic and large longitudinal studies and properly 
designed intervention studies are needed to iden-
tify ways to specifically target EAT.

Overall, we now know from several observational 
studies that EAT shows promise as a modifiable 
cardiac risk factor. The underlying mechanisms 
by which EAT may accelerate atherosclerosis and 
myocardial damage have also been investigated in 
several studies and summarized in excellent 
recent reviews by Packer,26,27,149 Iacobellis34,150 
and others,21,29,128,151 who shaped the idea that 
EAT plays a critical role as a metabolic trans-
ducer of systematic inflammation and thereby 
exerts deleterious effects on the myocardium and 
coronary arteries. Despite this, there are several 
aspects to be clarified before we understand 
whether EAT is a clinically relevant risk factor 
that will improve risk stratification and guide 
future clinical decision-making. Some essential 
aspects will be to establish how, and at what 

Molecular phenotype of physiological vs. pathophysiological EAT and PAT
Since EAT and PAT biopsies are obtained from patients undergoing open heart surgery, 
they represent pathophysiological adipose tissue from patients. In order to understand the 
physiological functions of EAT and PAT, we need to investigate the depots in healthy 
individuals. This may be possible with the advances in cardiac imaging that allow for 
functional assessment of EAT and PAT (e.g. inflammation18,107 and browning18,149). 
Physiological properties of EAT vs. PAT and within-depot differences 
EAT and PAT are often not or only inconsistently discriminated.33 Their individual 
importance in the development of CVD needs to be determined in translational in vitro, in 
vivo and human studies.
Clinical relevance of EAT and PAT 
The clinical relevance of EAT and the contribution by PAT have not robustly been 
determined. Despite a few important papers,18,150 it is not firmly established whether 
EAT adds incremental predictive value to traditional CVD risk factors. EAT threshold 
values have not been identified consistently, and we do not know whether the physiological 
status of EAT (e.g. inflamed vs. non-inflamed EAT18) or the total volume of EAT150 
or EAT at a specific location92,106 is the superior cardiac risk measure. Moreover, even 
though MRI/CT are golden standards and superior to echocardiography a standardized 
measurement method is lacking. Additionally, we do not know the importance of PAT in 
CVD risk prediction. As most work is done in patients with prevalent/suspected CVD, we 
do not know whether EAT and PAT play a role in cardiac risk prediction in populations at 
different risk stages (e.g. patients with vs. without T2D), and whether threshold values are 
similar in these populations. 
Targeting EAT, PAT and VAT specifically
Given that visceral and cardiac adipose tissue is of particular importance for cardiac disease 
pathogenesis we need to investigate how these depots can be targeted specifically. 
Moreover, the various mechanisms regulating adipose tissue should be identified to find 
novel treatment targets.

Figure 2.  Future questions for epicardial and pericardial adipose tissue research.
CT, computed tomography; CVD, cardiovascular disease; EAT, epicardial adipose tissue; MRI, magnetic resonance imaging; 
PAT, pericardial adipose tissue.
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location, this depot should be measured, whether 
we need to measure the total amount of fat 
(EAT + PAT) or rather the physiological state 
(e.g. inflammatory or brown fat activity), and 
whether EAT can be used in both males and 
females, and in the general population or only in 
sub-populations, for example, high-risk patients 
with T2D. We also need to understand how, and 
to what degree, EAT should be targeted to trans-
late into clinically relevant reductions in cardio-
vascular risk (Figure 2).

Conclusion
EAT and PAT are emerging as potential clinically 
relevant cardiovascular risk markers, but several 
unanswered questions remain about these regional 
depots. The next leap forward will be to clearly 
establish the clinical relevance of EAT and PAT 
and their relative contributions to CVD and the 
predictive potential, both in the general popula-
tion and in patients with T2D. Subsequently 
modifying EAT and PAT may become targets to 
reduce the excess cardiovascular morbidity and 
mortality in diabetes and obesity.
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