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Abstract
The biomanufacturing industry has now the opportunity to upgrade its production processes to be in harmony with the latest 
industrial revolution. Technology creates capabilities that enable smart manufacturing while still complying with unfolding 
regulations. However, many biomanufacturing companies, especially in the biopharma sector, still have a long way to go 
to fully benefit from smart manufacturing as they first need to transition their current operations to an information-driven 
future. One of the most significant obstacles towards the implementation of smart biomanufacturing is the collection of large 
sets of relevant data. Therefore, in this work, we both summarize the advances that have been made to date with regards to 
the monitoring and control of bioprocesses, and highlight some of the key technologies that have the potential to contribute 
to gathering big data. Empowering the current biomanufacturing industry to transition to Industry 4.0 operations allows for 
improved productivity through information-driven automation, not only by developing infrastructure, but also by introducing 
more advanced monitoring and control strategies.
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Abbreviations
AI	� Artificial intelligence
BCA	� Background corrected absorption
NAD(P)H	� Nicotinamide adenine dinucleotide phosphate
FDA	� Food and drug administration
FTIR	� Fourier-transform infrared spectroscopy
GC–MS	� Gas chromatography–Mass spectrometry
GFP	� Green fluorescent protein
GMP	� Good manufacturing practice
HMI	� Human machine interfaces
HPLC	� High-performance liquid chromatography
MIR	� Mid-infrared spectroscopy
ML	� Machine learning
MVDA	� Multivariate data analysis

NIR	� Near infrared
OD	� Optical density
PAT	� Process analytical technologies
PCA	� Principal components analysis
PCC	� Pearson correlation coefficient
PLS	� Partial least squares
QbD	� Quality by design
TA	� Total absorption
TRL	� Technology readiness level
UV	� Ultraviolet
YFP	� Yellow fluorescent protein
YPD	� Yeast extract peptone dextrose

Introduction

Industry 4.0 and the smart manufacturing movement now 
provide biomanufacturing the opportunity to upgrade 
its production processes to be in harmony with the latest 
industrial revolution [118]. Due to the promise of increased 
productivity and flexibility, there is significant interest from 
both managers and process engineers to transform their 
plants to smart manufacturing facilities. However, in many 
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companies, manufacturing is usually one of the last parts to 
embrace innovation, since doing so might come with great 
investment, expensive downtime, and prolonged licensing 
and regulatory updates. Facing this risk, management has 
to be convinced of the real and distinct benefits that can be 
achieved by implementing real innovation on the produc-
tion floor.

One of the trademarks of Industry 4.0 is big data, which 
refers to large sets of process and product data collected 
by sensors and process analytical technologies (PAT) [1]. 
Among several other benefits, integration of data from oper-
ations and business activities can promote productivity by 
allowing greater visibility across upstream and downstream 
operations. Being able to use historical and real-time data 
to predict future outcomes is an empowering tool that can 
help employees to be proactive instead of reactive. They 
can understand in an agile manner what is happening in a 
process and why, as well as predict what will happen when 
variations occur [2]. The gains obtained from such a proac-
tive, predictive feed-forward control approach can exceed 
the incremental yield improvements that companies seek.

Besides bringing transparency and more informed deci-
sions, being able to use these data will also allow the factory 
to, for example, easily adapt to schedule and product changes 
in a way that requires minimal intervention, allowing swift 
changeovers and decreased cleaning validation times.

Furthermore, these data can be used for optimization 
purposes by applying advanced big data analytics. Machine 
Learning (ML), a branch of Artificial Intelligence (AI), is 
one of the ways to achieve this. ML works with small to 
large datasets by analyzing and comparing the data so as to 
find mutual patterns and explore differences [3].

Being able to rely on automated systems that require 
minimal human/manual intervention will result in higher 
yields and quality, alongside with decreased costs and waste 
generation, which is of great importance to bio-based pro-
duction, and especially biopharma.

Although hesitant to implement AI/ML techniques due to 
strict requirements for GMP compliance [4], the biomanu-
facturing industry has a lot to benefit from data analytics. 
Data analytics are the key to provide real-time insights, as 
well as enabling evaluation and validation of all critical 
process parameters against regulatory guidelines, ranging 
from raw materials to the finished product. This actually 
helps companies, especially within the biopharma sector, to 
comply with the strict and compulsory requirements that are 
characteristic of that sector.

Nevertheless, despite this positive outlook, there are tech-
nical, economic and organizational challenges, and likely 
some unknowns, that must be addressed to successfully 
implement these technologies in biomanufacturing.

However, the most significant obstacle towards the imple-
mentation of smart manufacturing in bio-based industries is 

the collection of large sets of relevant data. The current situ-
ation is that many companies are still in the process of shift-
ing from manual to automated systems (Industry 3.0) [4].

Hence, there is still a long way to go for many biomanu-
facturing companies to fully benefit from smart manufac-
turing as they need to transition their current operations to 
a data-rich future first. Thus, the objective of this manu-
script is both to summarize recent advances with regards 
to the monitoring and control of bioprocesses, and to high-
light some of the key technologies that have the potential to 
overcome the aforementioned limitations, which have, so 
far, prevented smart manufacturing from being fully real-
ized in the bio-based industry. By developing the required 
infrastructure as well as data-driven monitoring and control-
strategies, this transition of the current biomanufacturing 
industry to Industry 4.0 operations allows for improved pro-
ductivity while ensuring regulatory compliance.

State of the art

Smart factories hold the promise to also increase sustain-
ability through real-time monitoring of production, where 
the automated control systems are expected to reduce the 
number of faulty batches and cut the maintenance costs. 
Thus, the aptitude of biomanufacturing companies to auto-
matically and appropriately control the bioprocesses in their 
optimal state is of crucial importance, as this helps to reduce 
or maintain the production costs and increase yields, while 
keeping the uniformity of product quality. The technology 
readiness level (TRL) of advanced sampling methods and 
automated measurement techniques may significantly reduce 
the time needed for process monitoring and control. This is 
emphasized by the FDA, which highlights the use of new 
monitoring and control approaches, such as Process Ana-
lytical Technology (PAT) tools, to improve and guarantee 
product quality, particularly in the pharmaceutical industry 
[5]. Noteworthy is that, a great part of the PAT objectives are 
general in nature and thus can be applied not only to pharma 
but also to any biomanufacturing process [6].

Carrying out the effective implementation of PAT, or 
any other monitoring and control approach, depends on, 
among other things, the availability of robust and reliable 
sensors, and full understanding of the intrinsic variability 
of bioprocesses [7]. Thus, this framework requires process 
understanding based upon scientific knowledge aiming at 
monitoring and control of all critical process parameters 
that affect the quality of the final product [8]. To this end, 
PAT consists of tools that include design of experiments, 
bioprocess modelling, multivariate data analysis and sensor 
technologies. Studies presented along the years, such as [9, 
10], have shown that there are great benefits behind devel-
oping mathematical models especially for the optimization 
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and control of bioprocesses. The development and imple-
mentation of modelling strategies, real-time monitoring, 
optimization and control, is required to ensure operational 
reproducibility, quality control and consistency [11]. How-
ever, although being aware of the potential benefits, in the 
biomanufacturing industry the processes are still vastly 
optimized and controlled without the explicit use of these 
models.

Monitoring and control of bioprocesses

Notwithstanding the different objectives and end products, 
most biomanufacturing processes include the cultivation of 
microorganisms, which implies a process consisting of com-
plex chemical, physical and biological phenomena [12]. A 
dependable and consistent analytical system is necessary to 
control the process conditions in all parts of the biomanu-
facturing process (upstream, downstream and product for-
mulation). For example, the upstream processing part, once 
it includes cell growth, is a complicated multi-phase system 

with a considerable variability due to the inherent nature 
of the cell cultures. Hence, sensors are required to measure 
physical variables such as temperature and pressure, chemi-
cal quantities such as pH and dissolved oxygen as well as 
biological parameters such as cell density or metabolite con-
centrations (Fig. 1). It may be noted that most biological 
variables are particularly difficult to measure and monitor.

Monitoring methods and their associated sensors and ana-
lyzers, can be further categorized according to their position 
regarding the process unit as in-line, at-line or off-line as 
illustrated in Fig. 2.

An in-line sensor produces data continuously (no sam-
pling), and it is in direct contact with the process medium 
(invasive) or separated from the medium by a glass window 
(bypass, non-invasive, also called on-line sensor). By pro-
viding continuous information, these sensors are enablers of 
continuous process control.

At-line sensors analyze samples in close proximity to the 
bioreactor. Even though the samples are collected at regular 
time-intervals (manually or automatically), time delays due 
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Fig. 1   Schematic of bioprocess monitoring: variables and different 
analytical techniques. NIR near-infrared spectroscopy, DS dielectric 
spectroscopy, FTIR Fourier-transform infrared spectroscopy, FS fluo-
rescence spectroscopy, HPLC high-performance liquid chromatogra-
phy, ELISA enzyme-linked immunosorbent assay, GC gas chromatog-

raphy, MS mass spectrometry, PTR-MS proton transfer reaction mass 
spectrometry, MALDI-TOF-MS matrix-assisted laser desorption ioni-
zation time-of-flight mass spectrometry, NMR nuclear magnetic reso-
nance, FIA flow-injection analysis. Not all methods can be deployed 
in an on-line fashion. Adapted from [11]
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to the analysis (depending on the equipment) render such 
data suitable for monitoring purposes, but not for control. 
Finally, samples for off-line measurements are collected 
manually or automatically and then transferred to the labo-
ratory to be analyzed. This causes long time delays, so that 
such measurements cannot contribute to the control of the 
dynamic process behavior [8, 12].

Towards real‑time data collection

Real-time monitoring of bioreactors is seen as a crucial 
part of effective bioprocess control since it can help achieve 
high efficiency, productivity and reproducibility [12, 13]. 
Although seldom available, timely process information 
about biomass, substrates, metabolites, products and nutri-
ents is vital to take effective control decisions [11, 14, 15]. 
Furthermore, measuring products such as cells, proteins and 
by-products is crucial to guarantee that the production pro-
cess is developing as expected. The opportunity to assess 
how the fermentation is progressing makes it possible to not 
only optimize the process by promptly regulating specific 
parameters, but also to spot when the process is not under 
optimal operation [11, 16].

In the particular case of fermentation processes, addi-
tional measurements may be used to measure variables such 
as dissolved CO2 (in the off-gas) and optical density. For 
example, in the case of cell density, it is usually measured 
using optical in-situ probes, or chemometrics coupled with 
intact cell mass spectrometry (ICMS) [16], impedance spec-
troscopy [17], near infrared spectroscopy (NIR) or Fourier-
transform-infrared spectroscopy (FTIR) [18].

Furthermore, combined analytical and chemometric 
approaches are being developed to monitor the substrate, 
metabolites and products in bioprocesses. Chemometrics 
are employed to provide real-time analysis of variables that 
otherwise would require off-line analysis and interpretation 

using methods such as HPLC or GC/MS [19]. A few exam-
ples include in-situ biosensors [20–22], optical sensors [23, 
24], at-line implementations of traditional methods (HPLC, 
GC/MS) [19, 25] and spectroscopic sensors [26–42], among 
others.

These combined analytical and data-driven approaches 
are promising new developments that have the potential 
to monitor key process parameters in real-time. There-
fore, they will be discussed in more detail in the following 
sub-sections.

In‑situ biosensors

Biosensors are analytical tools consisting of an immobilized 
sensing material in close contact with a suitable transducer 
that converts the biochemical signals into quantifiable elec-
trical signals [43]. A typical biosensor includes three parts, 
an immobilized biological detection element on a signal 
transducer unit, which is amplified by a signal conversion 
unit.

The analytes are sensitively and selectively recognized by 
the bio-components either via a catalytic mechanism (e.g. 
enzymes, cells, tissues, organelles, etc.) or through binding 
(e.g. protein channels, antibodies, nucleic acids, etc.). The 
interaction of the biological detection element and the ana-
lyte is determined by the transducer unit. This unit can use 
optical [44], electrochemical [45], calorimetrical [46], or 
piezoelectrical principles [47]. The integration of biological 
elements such as enzymes, microorganisms, and antibodies 
as sensing materials makes the transducer selective and sen-
sitive. Due to their properties, these sensors have the capa-
bility of providing fast, cost effective and reliable analytical 
results [43], which together with expanding computation 
power, enables the use of biosensors as another promising 
solution enabling the drive towards smart manufacturing. 
Recently, several biosensors have been developed for the 
control and monitoring of many different analytes [44, 48, 
49]. In particular, biosensors for the on-line determination of 
glucose, glutamate, and lactate are available [49, 50], which 
are delivered ready to use and can be directly integrated with 
bioreactors via standard ports. However, these sensors are 
still in the development stage and are not used in industrial 
scale production processes.

Spectroscopic sensors

Spectroscopic sensors are quite promising for successful 
bioprocess monitoring for two reasons. Firstly, nearly all 
biological, chemical and physical variables are accessible by 
spectroscopy using the whole spectrum (from UV to MIR) 
[51]. Secondly, as non-destructive in-line sensors they pro-
vide information with little or no time delay, thus enabling 
real-time monitoring and control of several process variables 

In-line

In-line probe

At-line

Filtration 
probe/sampling 
unit

On-line

Off-line

Bypass

Analyzer

Fig. 2   In-line, at-line and off-line sensors. Adapted from [8]
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[12, 51, 52]. A good example of the implementation of spec-
troscopic sensors in biomanufacturing is the in-line use of 
2-D fluorescence spectroscopy which was applied in a high-
throughput fermentation system called BioLector®. This 
system enables the monitoring of different microorganisms 
and mammalian cells, fluorophores (e.g., GFP, YFP), and 
NAD(P)H [53, 54].

Even though spectroscopic sensors fall in line with the 
PAT initiative [55] and seem to be a promising step towards 
smart manufacturing, there are far more applications of 
spectroscopy published in research than in industry. There 
are several reasons behind this: (i) high requirements for 
well-documented analytical systems especially in GMP 
manufacturing environments; (ii) many industries do not 
publish the details of the monitoring procedures used; and, 
(iii) great investment involved in its industrial implementa-
tion, both in terms of equipment and in terms of the require-
ment of highly qualified personnel to set up and maintain 
such an instrument. Some companies have attempted to 
tackle the need for qualified personnel in the industries by 
developing solutions that give a third party access to the 
data, such as AnalyticTrust from Q-Interline [56], where the 
quality of the analytical instrument and the data it generates 
is monitored by a third party. However, the security issues 
are a usual argued obstacle as to fully embrace these new 
technologies, and it is important to ensure that all data are 
protected sufficiently.

Chemometrics (multivariate data analysis)

Spectroscopic sensing produces large datasets and thus 
requires chemometrics, or multivariate data analysis 
(MVDA), to be able to provide continuous real-time moni-
toring of the bioprocess variables. MVDA is a subset of 
machine learning algorithms that deals with multiple vari-
ables simultaneously. MVDA is used to extract information 
from the spectra, by processing the data and reducing the 
complexity of a data set. To this end, data pre-processing is 
a powerful tool that can reveal relevant information in the 
data [8, 12, 57]. After pre-processing, model calibration is 
performed so as to retrieve qualitative and quantitative infor-
mation from the spectral data. Many MVDA approaches 
are based on Principal Component Analysis (PCA), which 
is often used to investigate the structure, variance and/or 
distribution of the dataset and to identify outliers [58]. As 
a qualitative approach and consistent with the PAT initia-
tive [59], PCA has been used for process supervision, to 
classify raw materials and batches, as well as to deduce the 
process status based on the spectral data [58, 60]. In this 
way, a process target line or trajectory, also called golden 
batch, can be identified from similar and ideal process runs 
[61–63]. Quantitative models, most often using partial least 
square regression (PLS) or sometimes neural networks, are 

used to characterize correlations between process variables 
and spectral data [8], and thus different variables can be 
predicted on-line from these measurements. This provides 
a thorough view of the process and enables process automa-
tion and rapid fault detection by closed loop control [8].

For example, in the case of fermentation, in regression 
models such as PLS, accounting for the linear relationship 
between the spectral data and the concentrations is very 
important due to the fact that many highly correlated com-
pounds contribute to the spectral matrix. Thus, by constrain-
ing the I/O relation to a linear system, it is possible to make 
PLS models predict on causal relation, i.e., the absorption 
peaks of each pure compound are reflected in the latent 
structures of the PLS. This is important when the model is 
expected to be used in systems were these correlations can 
change.

After the model calibration, external validation is neces-
sary so as to ensure that the developed model is as accurate 
as possible and behaving as expected. The model developed 
should adapt to the process and measurement conditions, 
thus changes in the actual process such as raw materials or 
equipment require model updates [8]. Model changes and 
updates require highly qualified personnel, and therefore, 
third parties such as Analytic Trust [56] are often seen as 
quite relevant and necessary to provide these resources.

As highlighted, new opportunities for automation, moni-
toring and control are closely related to the use of machine 
learning algorithms to interpret the large quantities of data 
collected and return intelligent information.

Free‐floating wireless sensors

Recently, floating sensor devices without a physical connec-
tion to a reactor have been proposed. These floating sensors 
follow the flow in the bioreactor and collect data along a 
trajectory, transmitting it by wireless technology [64]. Zim-
mermann et al. [65] developed the wireless spherical par-
ticles for the determination of fluid dynamics. This type of 
sensors are already commercially available (e.g., smartINST, 
smartCAPS, France, and Freesense, Denmark) in the form 
of spheres. These spheres are deployed inside the bioreactor 
and move around freely to measure variables such as pH, 
temperature, pressure, conductivity, and turbidity during 
production. The sensor spheres are composed of a steriliz-
able shell, electronic boards, a battery, and the sensing ele-
ment. They gather data on several variables (e.g. tempera-
ture, pH, pressure, dissolved oxygen) simultaneously and 
then transmit this information in real-time to an external data 
analysis unit. These mobile wireless sensing devices offer 
significant potential for real-time monitoring and control of 
bioprocesses, not only due to the on-line data collection and 
analysis, but also due to the fact that these data represent real 
gradients inside the reactor. While these sensors would not 
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be used during all production campaigns, they can be used 
during selected ones to monitor the spatial evolution of a 
reactor (fermenter) and hence provide valuable insights so 
as to carry out operational changes.

Soft sensors

Soft sensors are advanced process monitoring systems, 
which use algorithms to assess measurements in an on-line 
manner to generate information about an otherwise unmeas-
ured process state [6, 66]. Recently, they have been the focus 
of many studies since they appear to be an alternative to the 
traditional automated approaches, enabling the monitoring 
of state variables that indeed affect the bioprocesses but can-
not be measured in real-time [67–70]. Spectroscopic sensors 
have, in some occasions, been labeled ‘soft sensors’ in the 
bioprocessing literature due to the fact that spectroscopic 
data is modeled using software and these models produce 
information similar to hardware sensors [57, 66, 71].

Three modelling approaches can be used for the design of 
soft sensors: (i) mechanistic models based upon first princi-
ples (white box) [10, 72–74]; (ii) data-driven models (black 
box) [58, 61, 75, 76]; and, (iii) hybrid models (grey box) 
[77–81].

The growing computer capacity and the advances in sig-
nal processing (AI and ML algorithms) have made soft sen-
sors very convenient and enticing to monitor and control 
industrial manufacturing. Hence, the opportunities behind 
their implementation perfectly align with the PAT initiative 
and the smart manufacturing movement. Examples and more 
details on the development and implementation of soft sen-
sors in the biomanufacturing industry are given in [6, 66].

Enabling smart biomanufacturing

As illustrated in the state of the art section, there are recent 
developments in sensors, process monitoring and closed 
loop process control that are enabling the drive towards 
smart manufacturing in the biotech industry. The objective 
of this section is to present three specific examples of smart 
solutions developed by the team of authors at the Technical 
University of Denmark in close collaboration with industrial 
partners.

Case study 1: monitoring of fermentation processes 
by imaging and image analysis

The assessment of microbial growth and the quantification 
of biomass, respectively, is the most evident way to evaluate 
the progress of any fermentation. The microbial biomass 
as such is the producing core of any fermentation process 
and frequently, the biomass is the product itself. However, 

biomass assessment and quantification are mostly limited 
to off-line analysis. Even if on-line growth detection sys-
tems may be applied, their performance is impaired dur-
ing the very early and late stages of the fermentation, when 
very low and very high biomass concentrations are present, 
respectively.

The current status-quo method for growth detection is 
the measurement of the optical density (OD). The increase 
in absorbance, typically measured at 600 nm, represents the 
progress of the biomass formation. However, such measure-
ments are compromised by a narrow linear OD detection 
range of 0.1–1, which equates to a cell dry weight concen-
tration span of approximately 0.1–1 g/l. Besides, the lim-
ited reproducibility between different spectrometers also 
affects the results obtained by such measurements. To this 
end, there is an apparent need to identify alternative meth-
odologies that provide better detection of these critical state 
parameters to make smart manufacturing a reality.

Recent progress in microscopic imaging and image 
analysis have opened an optical window into the reac-
tor, so that cellular events may be observed and microbial 
growth be evaluated automatically. Microscopy has grown 
into an efficient tool establishing a basis for novel image-
based monitoring and future control strategies. The imag-
ing of living cells has yielded tremendous insights into 
cellular growth, functions and responses to environmental 
changes, for instance through information about cell size, 
shape, position and motility [82–84]. Challenges arising 
from different microscopic techniques such as bright-field 
[85] and fluorescence microscopy [86] that result in poor 
counting statistics, for instance a small field of view or the 
visualization of objects that are transparent on the image, so 
called ‘phase objects’, are solved by phase contrast [87] and 
confocal [88] microscopy. Yet, they are expensive, require 
dedicated infrastructure, have long acquisition times and, in 
addition, improper settings can cause significant artefacts 
on the images [89].

The oCelloScope instrument (BioSense Solutions ApS, 
Farum, Denmark) is a novel and compact solution based 
on bright-field, digital [90] and time-lapse [91] microscopy. 
The instrument facilitates a magnification factor of 200 and 
hence, enables the detection and segmentation of objects 
with a size between 0.5 µm and 1 mm. Accordingly, it is suit-
able for the investigation of mammalian cells, yeast/fungi, 
bacteria and crystals in (semi) transparent substances. The 
software for operation and analysis includes several state-of-
the-art algorithms facilitating automated image acquisition 
and robust analysis. Objects are identified from segmented 
images by their true shape, while key properties such as 
surface area, perimeter and circularity are assigned.

The open software platform in use has been shown to 
provide considerable advantages in several research fields 
including microbiology [92], medicinal chemistry [93], 
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pharmaceutical biotechnology [94] and basic cancer research 
[95]. Moreover, the technology has found a solid application 
area in both monitoring of bacterial growth and growth inhi-
bition [96], respectively, as well as for detection of changes 
in microbial morphology [97].

The ability to measure microbial growth and to detect 
morphological features simultaneously render this system 
particularly attractive. For example, information about the 
cell size and cell size distribution in yeast cultivations have 
been shown to be correlated with the cell viability (dead/
alive, osmotically stressed [98, 99]) and the growth rate of 
the culture [100]. Furthermore, the cell size was recently 
correlated to the accumulation of an internal product (fatty 
acids) in microalgae [101]. Consequently, image analysis 
seems to be a powerful tool that provides snapshots of the 
physiological state through the assessment of morphological 
features. Ultimately, image analysis can be used to assess 
the most crucial parameters such as microbial growth, sub-
strate and product levels at a specific point in time, which 
forms the basis for novel image-based control strategies for 
fermentation process operations.

Thus far, the application has been limited to micro-
scopic slides and microtiter plates allowing off-line sam-
ple analysis only. However, the recent development of a 
flow-through cell as an alternative sampling device by 
ParticleTech ApS enables real-time, automated on-line 
image data acquisition and analysis. Hence, by means of 
the developed prototype flow-through cell, a very first trial 
of an on-line, image-based monitoring approach of a yeast 
fermentation process was set up by connecting the oCello-
Scope via a recirculation loop to the fermenter [102]. This 
first trial aimed at both growth detection and the evalua-
tion of morphological trends. For automated distinction of 
single cells, budding cells and cell clusters, the so-called 

bright spot feature was developed and integrated into the 
software, exploiting the fact that the yeast cells appear as 
a bright spot surrounded by a dark border on the images. 
By counting the number of bright spots associated to a 
cell object, the bright-spot algorithm allows the automatic 
distinction between single cells, budding cells and cell 
clusters. An image of a yeast culture with different cell 
objects, acquired with the oCelloScope instrument, is 
depicted in Fig. 3.

The bright spot feature was demonstrated to work reliably 
with a failure rate of less than 5%, on average, as shown in 
Fig. 4.

The validation results shown in Fig. 4 are based on a lab-
scale yeast fed-batch fermentation experiment (2 l working 
volume, YPD medium, grown at 30 °C, 800 rpm, 1 vvm, 
controlled at pH 6), with glucose addition (100 ml of a 
400 g/l glucose solution) after 6 h. In parallel to the images 
collected with the oCelloScope instrument, samples from 
the reactor were withdrawn manually and diluted to an OD 
of approximately 0.1. The yeast cell concentration corre-
lated to this OD value was previously investigated to yield 
an appropriate image quality, with respect to the separation 
of cell objects. On average 1300 cell objects were segmented 
on each image, and the results of three images [after inocula-
tion (0 min of fermentation time), 240 min and 560 min of 
fermentation time] are displayed in Fig. 4. After automated 
classification into groups of cell objects exhibiting 0, 1, 2, 
3, 4, and 5 (or more) bright spots, the groups were manually 
screened for false objects and any false object was manually 
excluded from the respective group.

Furthermore, the bright spot feature is capable of exclud-
ing image artefacts that result from shadings or out-of-focus 
cells in the background, which result in objects with zero 
bright spots.

Fig. 3   Image of a yeast cell 
culture possessing an OD 
value of approximately 0.1, 
grown in YPD medium. Yeast 
cells appear as a bright spot 
surrounded by a darker border. 
The bright spot feature counts 
the number of bright spots per 
object. As indicated in the fig-
ure, one bright spot represents 
a single yeast cell, two bright 
spots represent a budding yeast 
cell and three and more than 
three bright spots represent a 
cluster of yeast cells
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The application of the prototype flow-through cell effec-
tively demonstrated the use of this technology for auto-
mated on-line growth detection. Images were collected 
every 10 min and a selection of these images acquired 

with the help of the prototype flow-through cell are shown 
in Fig. 5.

However, the chosen settings (300 µm depth of the pro-
totype flow-through cell) limited the upper detection to an 

Fig. 4   Evaluation of the bright spot feature exemplarily shown on 
images acquired after 0, 240 and 560  min of a lab-scale yeast fer-
mentation process. The figure at time point 0 (inoculation) is to be 
interpreted as follows: 8% of all objects segmented on the image were 
automatically classified to have zero bright spots, out of which 0% 

were manually selected and excluded due to false segmentation. 28% 
of all objects segmented on the image were automatically classified 
to have one bright spot, out of which 2% were manually selected and 
excluded due to false segmentation. The other bars in the bar charts 
have to be read accordingly

Fig. 5   60% zoom into the images acquired on-line, and the relative 
time point of image acquisition is indicated for each image. The big 
shading on the left corner on the image acquired at 480 min resulted 

from the border of an air bubble which was temporarily stuck inside 
the flow-through cell
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OD value of 4 (a cell dry weight of ca. 2 g/l). The growth 
detection achieved on-line by the so-called TA (total 
absorption) and BCA (background corrected absorption) 
algorithms is shown in Fig. 6. Note that the growth detec-
tion algorithms are based on absorption measurements 
(pixel intensity). Hence, reducing the liquid depth inside 
the flow-through cell decreases the overall absorption and 
thus increases the upper detection limit of biomass that 
can be measured.

For that reason, a new generation of flow-through cells 
was developed whose depth can be adjusted automati-
cally, allowing the system to handle a wider range of cell 
concentrations during the fermentation process. Secondly, 
a dual pump flow controller for automatic dilution was 
developed (ParticeTech ApS). In this way, samples from 
the fermenter can be automatically diluted providing an 
appropriate cell-concentration or, respectively, image 
quality for segmentation. This, together with the height 
(depth) adjustment of the flow-through-cell, simplifies 
tremendously the acquisition of on-line image data over a 
much larger range of cell concentrations.

Recent technological advances such as the oCelloScope 
instrument deliver information about both, the cell con-
centration and the morphology dynamics regarding cell 
size, the cell size distribution and the distribution between 
single cells, budding cells and cell clusters. The latter may 
for example be correlated with the production of insulin, 
which is highly relevant for insulin production processes 
based on yeast. Besides, studying the effect of relevant 
process events frequently challenging process operation, 
such as failure of stirring or aeration, on the cell morphol-
ogy might bring significant benefits for integrated trouble-
shooting. Such findings may lead to novel, image-based 
monitoring strategies at production scale.

Case study 2: real‑time particle monitoring

In the last decade, there has been significant developments 
within digital imaging, image analysis algorithms and com-
putational processing power. This has allowed for the devel-
opment of new real-time direct particle analysis methods, 
where high-resolution microscopic imaging can be used to 
capture images of particles in liquid suspension. By applying 
an image segmentation algorithm and subsequently analys-
ing the identified particles, one can obtain information on 
particle population properties in a matter of seconds, includ-
ing particle shape-, size- and morphology-distributions. The 
process of particle analysis using image analysis can be seen 
illustrated in Fig. 7.

A number of commercial particle monitoring solutions 
have become available in the last two decades. This includes 
in-line probe-based sensors (Mettler Toledo ParticleView 
[103], SOPAT [104]) but also non-invasive on-line flow-cell 
based sensors (Sympatec [105], ParticleTech [106]). The lat-
ter technology has the benefit of a more controllable imaging 
environment that improves image quality, which also heavily 
affects the measurement accuracy. This includes decreased 
background noise due to thinness of the flow-cell, improved 
lighting sources etc. Many of the commercial solutions have 
a lower detection limit down to a particle size of 0.5 μm. 
This allows for studying various chemical and biochemical 
processes that have particles in suspension. For instance, it is 
possible to study eukaryotic cells in fermentations, crystals 
in crystallizations, flocs in flocculation etc. With sampling 
times of less than a minute, one can now observe the process 
dynamics related to the particles and furthermore use the 
particle analysis as data source in process control strategies.

Nielsen et al. [107–110] have recently analyzed a number 
of different particle processes, including a lab-scale crystal-
lization, an industrial scale crystallization and a lab-scale 

Fig. 6   The increase of biomass followed by a off-line OD600 measurements, and b on-line via the normalized BCA and TA algorithm during a 
lab-scale yeast fermentation process (2 l working volume, YPD medium, grown at 30 °C, 800 rpm, 1 vvm, controlled at pH 6)
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flocculation. Here they have used on-line and at-line sam-
pling respectively, and analyzed the particles using the Parti-
cleTech solution [106]. For the on-line measurements, liquid 
samples were withdrawn from the reactor using a peristaltic 
pump to an 800 µm thick flow-cell inside the Particle Tech 
microscope unit. After imaging, the liquid samples were 
returned to the reactor. For at-line measurements, samples 
were withdrawn manually from the process tank to a micro-
titer plate, which was then placed in the microscope unit 
for imaging. By sampling every 4–5 min, it was possible to 
capture the process dynamics as a set of time-series data of 
particle properties and particle concentration.

Data from a lab-scale batch cooling crystallization, pre-
sented in the work by Nielsen et al. [103], is illustrated in 
Fig. 9. Two batch crystallizations were carried out with 
slightly varying cooling profiles, resulting in varying particle 
size distributions. This can clearly be seen in the differences 
in median diameters (D50 FeretMean) at the end of the two 
batches, illustrated in the plot to the left. From the plot to 

the left in Fig. 8 it is also easy to see how the crystals are 
growing throughout the batch crystallizations, starting from 
an almost uniform distribution to a wide distribution.

As the mentioned particle analysis sensors can provide 
relatively frequent measurements, it becomes possible to 
capture intermediate process dynamics. This also makes it 
feasible to use more data-driven and complex kinetic models 
to improve the model prediction accuracy.

Nielsen et  al. [107, 108] have recently proposed a 
hybrid modelling approach that accommodates the 
increased quantity of data available from real-time parti-
cle analysis sensors. Here they suggest a model structure 
combining first-principles mass and population balance 
models with a data-driven neural network model for esti-
mating the process kinetics. Their model structure can be 
seen in Fig. 9. The inputs to the data-driven model consist 
here of multi-dimensional data from additional at-line/on-
line/soft-sensors. The output of the data-driven model is 
a number of kinetic rates of particle phenomena, such as 

Area: 5265.70 µm2

EQPC: 81.88 µm
Circularity: 0.79
FeretMin: 60.29 µm
FeretMax: 124.47 µm
FeretMean: 98.52 µm

Fig. 7   The process of image analysis, from imaging (left), through segmentation (middle) to analysis of individual particles (right). The particles 
are given random colors to indicate the particles detected during image segmentation
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nucleation, growth, shrinkage, agglomeration and break-
age rates. These rates are then included into a discretized 
first principles population balance model.

The neural network here substitutes the conventional 
case-specific kinetic expressions. The conventional kinetic 
expressions typically contain one to five model parameters 
that are estimated using small amounts of experimental 
data, and typically only rely on a few process variables. 
For instance, for a crystallization such as the one presented 
in Fig. 10, one would typically only use the relative super-
saturation, calculated based on the reactor temperature and 
solute concentration. Using a neural network instead, the 
number of input process variables can easily be extended 
beyond two process variables, but also reduced for systems 

with only limited process knowledge and/or lack of meas-
ured process variables.

The hybrid model structure was implemented by Nielsen 
et al. [108] using Tensorflow [111], an open source python 
software library. Automatic differentiation was here 
employed to significantly speed up the training of the hybrid 
model, which opens up for training the hybrid model during 
process operation, utilizing the latest process data.

Nielsen et al. [108] compared the hybrid model struc-
ture in Fig. 9, using the lactose case study data presented 
in Fig. 8, where temperature was used as the only measured 
process variable to model nucleation and growth rates, with 
a conventional, mechanistic model. They trained/fitted the 
hybrid model and a corresponding conventional crystalliza-
tion model respectively using data from batch 2 and carried 
out end-to-batch simulations of the validation batch (batch 
1) using both models. The resulting predictions can be seen 
in Fig. 10.

Nielsen et al. [108] concluded that the hybrid model 
was capable of capturing slightly more of the phenomena 
dynamics than the conventional model. There were however 
still discrepancies between the hybrid model and the final 
measured distributions, which was explained by the lack of 
training data. They also presented two additional case stud-
ies, on flocculation/breakage of silica particles and a phar-
maceutical crystallization respectively, which both showed 
good results where only limited prior process knowledge 
was available.

One should note that the model complexity still needs to 
be decided based on the quality and quantity of experimental 
data, as an overly complex model will lead to over-fitting and 
a too simple model will lead to under-fitting. The increased 
data coming from the new real-time monitoring methods do 
however allow for using models with increased complexity 
without over-fitting, which in the end results in higher pre-
diction accuracies.

Fig. 9   Hybrid model structure 
by Nielsen et al. [107] where 
they have used a deep neural 
network as the machine learn-
ing model. 

−

x represents the 
state variables, 

−

z represent the 
control actions and 

−

y represent 
the kinetic rates. Reprinted 
from Computers and Chemical 
Engineering, Volume 140, RF 
Nielsen, N Nazemzadeh, LW 
Sillesen, MP Andersson, KV 
Gernaey, SS Mansouri, Hybrid 
machine learning assisted mod-
elling framework for particle 
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Case study 3: monitoring and closed loop control 
of cellulosic fermentations

Using non-refined natural substrates such as lignocellulosic 
material for the production of renewable fuels or chemi-
cals has been central in the transition towards a sustainable 
economy. The main operational challenges associated with 
lignocellulosic material are the presence of mixed carbon 
sources (including C6 and C5 sugars such as glucose and 
xylose, respectively), the presence of potent inhibitors 
derived from the pretreatment of the biomass, and the high 
batch-to-batch variability of the substrates. Typically, cellu-
losic processes are run as fed-batch, where the concentration 
of substrates and inhibitors are kept below a certain level to 
avoid inhibitions and to increase the space–time yield. Con-
trol of the feed rate is a widely studied and often complex 
challenge in fermentation processes due to the non-linear 
nature of biological kinetics and to the limited ‘real-time’ 
data extracted from such processes. Using lignocellulosic 
feedstocks as a substrate for the fermentation increases this 
challenge due to its inherent natural variability. Not account-
ing for such variations often results in productivity losses 
and raises scheduling issues in the down-stream operations. 
Therefore, real-time monitoring methods are needed to 
implement advanced control schemes, whereas implement-
ing better controls inevitably leads to improved operations 
with quantifiable benefits [112].

Open‑loop data‑driven monitoring of cellulose to ethanol 
fermentations

When selecting a real-time monitoring scheme for fer-
mentation processes, it is crucial to account for the ease of 
implementation and for how the information can be used 
to implement control strategies [113]. In cellulose-based 
fermentations, the commonly monitored variables such as 
pH or pO2 are easy to implement, but they do not deliver 
actionable information to develop control loops. Data-driven 
models are used to find correlations between the collected 
spectra and the concentration of the different analytes of 
interest. Linear models such as partial least squares (PLS) 
regressions are often used to model spectral data making use 
of the linear correlation between the analyte concentration 
and the absorbance in the spectra defined by Lambert Beer’s 
law. Training such algorithms to monitor fermentation pro-
cesses efficiently is challenging due to the many sources of 
variation and the correlations between analyte concentra-
tions occurring during the fermentation. In cellulose-to-eth-
anol fermentations, S. cerevisiae mainly consumes glucose 
and xylose to produce ethanol, CO2, and biomass. However, 
to sustain its growth, yeast also takes up nitrogen or vitamins 
and produces other byproducts such as glycerol or acetate. 
Moreover, during the initial stage of the fermentation, S. 

cerevisiae detoxifies the inhibitors present in lignocellulosic 
hydrolysates. All these changes in the composition of the 
media caused by compounds that are not analyzed can be 
summarized under the commonly used term matrix effects. 
Ideally, a data-driven algorithm, trained to monitor fermen-
tation processes, should measure the concentration changes 
of the analytes of interest (e.g., glucose, xylose and etha-
nol for the case of cellulosic fermentations) independently 
from concentration changes in other compounds or from 
matrix effects. Per se, purely data-driven models (such as 
PLS regression) do not explicitly account for the dynam-
ics of the fermentation, meaning that they will not be able 
to differentiate the effect of two analytes with correlated 
dynamics independently. This situation raises a challenge 
due to the high correlation between the dynamics of many 
compounds in fermentation processes. That is, in the case 
of cellulose-to-ethanol fermentations, the uptake of glucose 
or xylose is linearly correlated to the production of ethanol. 
This situation is exemplified in Fig. 11a–d for a typical cellu-
lose-to-ethanol fermentation. Decoupling such correlations 
during the calibration (or training) of such models is cru-
cial to reach reliable predictions even when the dynamics of 
the fermentation change. A common and efficient approach 
consists of taking samples at different times during the fer-
mentation, and spiking them with different amounts of the 
analytes of interest to attain partially uncorrelated samples 
[114] (Fig. 11e–h).

Systematic approaches to plan the calibration sets based 
on design of experiments (DoE) can successfully be imple-
mented in systems where the fermentation matrix can be 
isolated from the rest of the analytes [115]. This allows to 
completely decouple the concentrations of the different ana-
lytes and to distribute the samples evenly along the design 
space.

While PLS models allow estimating the concentrations 
of glucose, xylose and ethanol at each time point they have 
limited forecasting power and cannot be used to predict the 
evolution of the fermentation. However, this information is 
very valuable to determine the end-point of the fermenta-
tion and to schedule the downstream operations. Cabaneros 
et al. [115] used a hybrid framework to incorporate the PLS 
predictions of glucose into a mechanistic model of the fer-
mentation to obtain high fidelity predictions of the progress 
of the fermentation.

Closing the loop: feedback control of cellulose‑to‑ethanol 
fermentations

The objective of feed rate control in cellulose-to-ethanol 
fermentations is to keep the concentration of inhibitors or 
glucose at a certain set point to avoid inhibitions or catabo-
lite repression. In a feedback control scheme the measured 
variable (e.g., the concentration of inhibitors or substrate 
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predicted using data-driven models) serves as input to a 
controller (such as a PID controller) to generate a signal 
back to the manipulated variable (e.g., the controlled pump) 

to adjust the feed rate (Fig. 12). To implement robust real-
time monitoring schemes for fermentation processes, it is 
fundamental to thoroughly understand the behavior of the 
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monitoring method and the dynamics of the fermentation or 
in any other unit operation as illustrated in [116, 117].

Perspectives and barriers to implementation

The following perspectives and barriers to implementa-
tion are identified after analyzing in detail the case studies 
presented together with the current state-of-the-art in bio-
process monitoring and operations.

Sensing technologies

The key to transitioning the current bio-based production 
processes into data-driven operations is the ability to gather 
information-rich production data in real-time. This is the 
primary objective of all three of the case studies presented 
and the focus of current efforts of the whole community. 
Such efforts aim at the development of sensing technologies 
and capabilities that go beyond the traditional temperature, 
pressure and flow rate measurements, as they provide infor-
mation-rich process data that facilitate the data-driven oper-
ations of the future. However, these sensing technologies 
(including the ones that are mentioned in the case studies) 
require further development for them to be ready for long 
term use in industrial operations. Although the technologies 
have been proven on industrial trials and operations, their 
technology readiness level (TRL) and maturity require fur-
ther improvement before being robust for long term opera-
tions in an industrial setting. In addition, peripheral support-
ing technologies are also under development that enable the 
use of these emerging technologies in an industrial bio-based 
production environment. These range from chemometrics 
and ML algorithms to GMP approved sampling ports and 
sample transfer systems.

Human element and organizational readiness

In comparison to the chemical industries, operators in the 
biomanufacturing industry carry out a significant number 
of complex time critical tasks. If data-driven concepts are 
to improve these operations in the future, careful considera-
tions must be given to the development of human machine 
interfaces (HMI’s) that effectively communicate the out-
comes of these data-driven methods. In addition, such meth-
ods must pay heed to the human limitations when suggesting 
operational actions. For example, if a continuous addition to 
a process over an extended period is considered optimal, this 
turns out to be an infeasible task for an operator. Rather, this 
operational action might need to be modified to one addition 
to the process at an optimal time period.

From an organizational point of view, the operators and 
chemists are familiar with operating complex bio-based 

processes based on off-line sampling and fixed process reci-
pes. These operational procedures, in many instances, ensure 
that the products meet quality specifications but pay no atten-
tion to product and efficiency losses. The introduction of data-
driven operations will require that the operators and chemists 
adopt to dynamic schedules and on-line sampling methods, 
while embracing concepts, such as “real-time” product release, 
which are enabled by data-driven operations. This requires 
trust in data-driven operations by the operators, chemists and 
technical managers, and careful management of its imple-
mentation. The level of trust can be increased by improving 
the transparency of the data-driven operations and explicitly 
disclosing the underlying assumptions and algorithms used.

Value proposition

With the current Industry 4.0 push that has been felt by the 
management level, there is increased demand for technolo-
gies that fit these criteria. But, to achieve truly smart (bio)
manufacturing, noticeable fund allocations will be required 
from the corporate management that are more used to invest-
ing in “steel” for increased capacity (e.g. new equipment 
and/or new plants). These funds need to transition the cur-
rent technologies in sensing, process monitoring and closed 
loop control to methods and technologies that are sufficiently 
robust for industrial operations. This also requires that the 
management organization at all levels is committed to make 
such investments. This further implies that the development 
and implementation cost of all these technologies must be 
outweighed by the benefits in terms of efficiency, throughput 
and quality, as well as the environmental footprint.

Regulation

There are strict regulatory hurdles for the implementa-
tion of new technologies in the bio-pharmaceutical and 
food ingredients industries which compose a significant 
part of the biomanufacturing industry. The current regula-
tions require operations to follow a strict recipe, whereas 
the value proposition for these technologies is that they are 
to adapt the recipes based on “real time” information so 
as to allow for improved operations (throughout, quality, 
efficiency, resource usage). This warrants a change in regu-
lations following a QbD approach which has already been 
proposed, where a “region” of process operations is allowed 
as opposed to strict recipes.

Conclusion

The promise of improved efficiency brought by smart 
biomanufacturing has sparked the interest of both aca-
demia and industry towards the development of smart 
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technologies. However, the actual implementation of these 
technologies in an industrial setting will require significant 
further efforts. As illustrated by the first two case stud-
ies, there are still major technical challenges that must be 
overcome to ensure that sufficiently large data sets can be 
collected. These two case studies also highlight the ability 
to adopt already developed ML algorithms so as to accel-
erate the implementation of specific process monitoring 
needs. The last case study demonstrates how fully auto-
mated closed loop control can be achieved in a fermenta-
tion operation by leveraging large amounts of information-
rich process data. As detailed in the perspectives section, 
there are significant barriers that must also be addressed 
alongside the development of the core sensing, monitoring 
and control technologies. All in all, this manuscript illus-
trates that there are exciting ongoing developments in the 
sensor area for monitoring and control of bio-based pro-
cesses that hold the promise of moving the whole industry 
towards smart biomanufacturing in the future.
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