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Abstract

PURPOSE: The purposeof this studywas to develop computational algorithms to best determine tumor responses early

after the start of neoadjuvant chemotherapy, based on quantitative ultrasound (QUS) and textural analysis in patients

with locally advanced breast cancer (LABC). METHODS: A total of 100 LABC patients treated with neoadjuvant

chemotherapy were included in this study. Breast tumors were scanned with a clinical ultrasound system prior to

treatment, during the first, fourth and eighth weeks of treatment, and prior to surgery. QUS parameters were

calculated from ultrasound radio frequency data within tumor regions. Texture features were extracted from each

QUS parametric map. Patients were classified into two groups based on identified clinical/pathological response:

responders and non-responders. In order to differentiate treatment responders, three multi-feature response

classification algorithms, namely a linear discriminant, a k-nearest-neighbor and a nonlinear support vector machine

classifier were compared. RESULTS: All algorithms distinguished responders and non-responders with accuracies

ranging between 68% and 92%. In particular, support vector machine performed the best in differentiating

responders from non-responders with accuracies of 78%, 90% and 92% at weeks 1, 4 and 8 after the start of

treatment, respectively. The most relevant features in separating the two response groups at early stages (weeks

1and 4) were texture features and at a later stage (week 8) were mean QUS parameters, particularly ultrasound

backscatter intensity-based parameters. CONCLUSION: An early stage treatment response predictionmodel developed
© 2019 Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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by quantitative ultrasound and texture analysis combined with modern computational methods permits offering

effective alternatives to standard treatment for refractory patients.

Translational Oncology (2019) 12, 1271–1281
Introduction
Locally advanced breast cancer (LABC) is an aggressive form of breast
cancer that comprises a wide range of clinical presentations including
T3/T4 disease, tumor larger than 5 cm or extensive axillary lymph node
involvement. Due to rapid disease progression and a high risk for
metastatic spread, patients with LABC typically have a poorer long-term
survival rate compared to early stage breast cancer patients [1]. The
standard treatment for patients with LABC is neoadjuvant chemother-
apy (NAC), followed by surgery and, if required, radiation [2].
However, variable tumor responses have been observed in patients
receiving NAC with only up to 5e10% of patients achieving
pathological complete response to NAC. Evidence also suggests that
the pathological response of a tumor to NAC correlates to long-term
disease-free survival (DFS) and overall survival (OS) [3,4]. Measuring
tumor response at early stages of NAC may help guide treatments for
potentially improved DFS. LABC treatment response is typically
evaluated at the conclusion of treatment based on pathology, commonly
using a Miller-Payne (MP) score calculated from changes in tumor
cellularity comparing pre-treatment biopsy to post-treatment surgical
specimens. This is donemonths after treatment [5]. Therefore, the early
detection of treatment response of breast tumors is very important for
guiding cancer therapy decisions based on individual patient responses.

Functional imaging techniques that can detect changes in tumor
micro-structure and physiology in response to treatment could
provide early assessments of therapy response. In this context, a
number of imaging modalities, including positron emission tomo-
graphy (PET) and magnetic resonance imaging (MRI) have recently
been demonstrated capable of evaluating cancer treatment response
within weeks of treatment initiation. Specifically, [18F]fluorodeox-
yglucose PET has been demonstrated to detect the pathological
response of breast cancer as early as after the first cycle of neo-adjuvant
chemotherapy [6]. Several functional magnetic resonance imaging
techniques such as dynamic contrast-enhanced (DCI)-MRI, diffusion
weighted (DW)-MRI, blood oxygenation level-dependent
(BOLD)-MRI, and MR elastography have been used to characterize
breast cancer and its response to chemotherapy early or after a full
course of treatment based on changes in tumor microvasculature,
cellularity, hypoxia, metabolism, oxygenation and stiffness [7e11].
These modalities are often costly and require contrast agents to
monitor tumor response to treatment.

Previous studies have demonstrated the potential of quantitative
ultrasound (QUS) techniques to characterize various tissue types,
classify tissue abnormalities, and differentiate tumor types [12,13]. This
technique uses variation in the acoustic property within tissues to
characterize microstructural features. In preclinical studies, QUS
techniques have been used in the detection of tumor response to cancer
therapies such as chemotherapy, photodynamic therapy, X-ray radiation
therapy, and ultrasonically-stimulated, anti-vascular microbubble
treatments, or combinatorial treatments [14e17]. Similarly, in a pilot
clinical study with limited numbers of patients, QUS techniques were
used to differentiate pathological responders (n¼ 23) from non--
responders (n¼ 7) in an LABC population treated with NAC. The
sensitivity and specificity were 77% and 86%, respectively, at week 1
and 83% and 100% at week 4, respectively, after the start of treatment
[18,19]. In those studies, quantitative ultrasound parameters, mid-band
fit (MBF), spectral slope (SS) and 0-MHz intercept (SI), average
scatterer diameter (ASD), and average acoustic concentration (AAC)
exhibited a strong correlation with tumor response. These quantitative
ultrasound parameters reflect tissue micro-structural properties, such as
scatterer size, shape and organization in addition to elastic properties. A
recent study combining QUS parameter and texture features such as
contrast, correlation, energy and homogeneity has reported an
improvement in accuracy in differentiating responder and non-respon-
der groups [20]. The sensitivity and specificity were reported as high as
100% and 93%, respectively, 1 week after NAC initiation. These
texture parameters quantify the spatial relationship between neighbor-
ing regions with respect to acoustic properties. In those studies,
classification analysis was performed on estimated parameters using a
linear discriminant classifier.

In this study, we have explored the best classification methods for
discriminating responding patients from non-responding patients.
Specifically, we investigate three classification algorithms based on
changes in quantitative ultrasound and texture features early after
neoadjuvant chemotherapy using modern computational approaches.
Machine learning in biomedical imaging research is an emerging field
with algorithms facilitating the handling of large data sets, the
integration of multiple complex measurements, and the identification
of statistically significant data. Typically, these algorithms are
implemented in two stages, the first being the establishment of a
classification algorithm using training data and, the second being the
testing of the model with separate data. Finally, classification
algorithm accuracy, sensitivity and specificity are reported. As a
continuation of the previous work [20], in the work here, the patient
sample size was expanded to a larger cohort of 100 LABC patients. Six
quantitative ultrasound parameters as well as four texture features
were determined for each patient at multiple times during treatment
with chemotherapy. Three multi-feature classification algorithms for
response evaluation were developed using linear discriminant analysis,
k-nearest neighbor, and support vector machine classifiers in
conjunction with a sequential forward feature selection method and
a leave-one-patient-out scheme for cross-validation. The results of
these analytical methods were compared in terms of their capability to
best identify responding and non-responding patients at various times
during their treatments.

Materials and Methods

Study Design

This study was approved by the Sunnybrook Research Institute
research ethics board. One-hundred LABC patients with an eligible
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age range of 18e85 years were enrolled with informed consent in this
study. Before treatment, all patients were subjected to a core needle
biopsy to confirm a cancer diagnosis and to determine tumor
histological subtype and hormone receptor status (estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2)). Magnetic resonance images were acquired
as part of clinical care before treatment in order to determine initial
tumor size. Ultrasound data were collected from each patient at 5
specific times: before treatment, at weeks 1, 4, and 8 during treatment
and finally at 1 week before surgery.
After surgery, surgical specimens were prepared onto a 5}� 7}

whole-mount pathology slide and digitized using a confocal scanner
(TISSUEscope™, Huron Technologies, Waterloo, ON). A board--
certified pathologist examined the specimens and recorded the results
in the patient’s medical chart.
The clinical/pathological tumor response of each patient was

determined at the end of their treatment using a modified response
(MR) grading system. This system was based on RECIST criteria but
took into account further response characterization based on
pathology [MR Score 1: no diminishment in tumor size (cNR);
MR2: up to 30% diminishment in tumor size (cNR); MR 3: between
an estimated 30% and 90% reduction in tumor size (cPR); MR 4: a
diminishment of more than 90% in tumor size (almost pCR); MR 5:
no evident tumor and no malignant cells identifiable in sections from
the site of the tumor; only vascular fibroelastic stroma remains, often
containing macrophages; however, ductal carcinoma in situ may be
present (pCR)]. This avoids confounding factors and prevents
misclassification of response. For instance, scar tissue rarely results
in a persistent mass with no tumor cellularity, and is considered a
responder, when it would otherwise be classified as a non-responder.
A binary classification was investigated where a patient with an MR

score of 3e5 was deemed to be a responder (R) and a patient with an
MR score of 1e2 was deemed to be a non-responder (NR). All
patients received anthracycline/taxane-based treatment lasting several
months. Recurrence-free survival was determined based on a 6-year
follow up timeframe, free of any local or distant cancer recurrence.

Quantitative Ultrasound and Texture Parameter Estimation
Ultrasound data were collected from tumor regions using a Sonix

RP clinical research system (Analogic Medical Corp., Vancouver,
Canada) equipped with a L14e5/60 transducer with a central
frequency of 6.5 MHz and bandwidth of 3e8 MHz. Data were
digitally collected with a sampling frequency of 40 MHz. From each
breast tumor, frames were collected with intervals of 1 cm across the
breast, with the transducer focus at the center of the tumor. The
sector size for each image frame was 6 cm along the lateral direction
and 4e6 cm along the axial direction.
From each ultrasound frame, MBF (mid-band fit), SS (spectral

slope), SI (spectral intercept), ACE (attenuation co-efficient estimate),
SAS (spacing among scatterers), ASD (acoustic scatterer diameter) and
AAC (average acoustic-scatterer concentration) were determined using
quantitative ultrasound methods. In this technique, tumor regions of
interest were selected. Each region of interest was divided into window
blocks of size 10l x 10l, where l represents that ultrasoundwavelength,
with a 94% overlap in the axial and lateral directions. Tumor
attenuation (ACE) was determined using a spectral difference method.
In previous work, for more complex transducers, such as arrays, a
reference phantom method was proposed to remove system dependent
effects in backscatter property estimation [21]. This reference phantom
method was used here to remove any clinical system dependences in
quantitative ultrasound parameters. The reference phantom used in this
study consisted of glass beads (5e30 mm) embedded in a homogeneous
background of microscopic oil droplets in gelatin. The attenuation
coefficient and speed of sound of the reference phantomwere 0.786 dB/
MHz/cm and 1540 m/s, respectively. The MBF, SS and SI were
calculated using linear regression analysis of the normalized backscatter
power spectrum over the �6 dB bandwidth of the transducer [22].
Spacing among scatterers (SAS) was determined using an autoregressive
spectral analysis method by modeling the tumor echo signal as an
autoregressive signal [23]. The ASD and AAC parameters were derived
from the backscatter coefficient by comparing measured data with a
theoretically derived backscatter coefficient using a spherical Gaussian
scatterer model (SGM) [24]. Finally, color-coded parametric maps for
each estimated quantitative ultrasound parameter were constructed by
generating a spatial map of the parameter values computed over all
window blocks. The mean values of quantitative ultrasound parameters
were determined by averaging QUS parametric map values.

In addition to the mean values of QUS parameters, spatial
distributions of QUS parameters in parametric maps were evaluated
using a gray-level co-occurrence matrix (GLCM) [25] method. The
GLCM represents the angular relationships and distances between
neighboring pixels in parametric maps. Using GLCM methods, four
texture features including contrast (CON), correlation (COR),
homogeneity (HOM), and energy (ENE) were derived from each
QUS parametric map. Here, the contrast feature represents location--
dependent gray level variation of an image. The energy feature measures
textural uniformity. The homogeneity featuremeasures the incidence of
pixel pairs of different intensities. The correlation feature measures the
linear dependency between neighboring pixels. In short, a total of 24
textural features (four texture features from each of the MBF, SS, SI,
SAS, ASD and AAC parametric maps) were computed. The changes in
mean of QUS parameters and texture features for each patient during
the course of treatment were calculated using the corresponding
parameters acquired at pre-treatment as the baseline. The algorithms to
detect treatment response groups were developed by performing
classification analysis on these 31 features (7 changes in mean of QUS
parameters after treatment, and 24 changes in texture features after
treatment).

Classification Model Algorithms
In order to differentiate treatment responders from non-respon-

ders, three multi-feature response classification algorithms, namely a
linear discriminant analysis (LDA), a k-nearest-neighbor classifier
(KNN), and a radial-basis-function support vector machine classifier
(SVM-RBF) were compared. Linear discriminant analysis is a
standard approach to classification problems. LDA assumes that
each class probability density function is a normal density function
with the same covariance for all classes. Then, a new data point is
classified by determining a probability density function whose value is
larger than the others.

A KNN classifier is based on comparing a given test sample with
training samples that are similar to it. The training samples are described
by n features in an n-dimensional feature space. Given an unknown
sample, a k-nearest neighbor (KNN) classifier searches a feature space
for the k training samples that are closest to the unknown sample. These
k training samples are the k-nearest neighbors of the unknown sample.
Closeness is defined in terms of distance metrics, such as Euclidean
distance. In a two-class case, the number of nearest-neighbor, k, is set to



Figure 1. Flow diagram of computational algorithm training and testing process. The group imbalance problem was addressed
through a resampling step, which entailed down sampling the majority group (responders) followed by algorithm training. This
process was repeated over 11 iterations and the algorithm predicted tumor response bymajority voting over 11 iterations or subset
models. A leave-one-out cross-validation approach was used to separate algorithm training and testing data.
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an odd number to avoid tied classes. The optimal k value is tuned to
obtain the best classification result.

A kernel-based support vector machine is an algorithm that uses
nonlinear mapping to transfer the original training data to a
higher-dimensional feature space where it searches for a linear,
optimal hyperplane that has a maximum margin in separating two
classes [26]. In this study, a support vector machine with a
radial-basis-function kernel (SVM-RBF) was used to separate the
two response groups. In the SVM-RBF algorithm, two classifier
parameters are tuned (with C, the penalty for misclassification, and g,
the width of a radial basis function). C is important for good
generalization performance as it controls regularization, which
counteracts overfitting of the training data. In the work here, the
optimal C and g were selected by a grid search in the ranges of C¼ 21

to 215 and g¼ 2�15 to 25, respectively, using the LIBSVM-3.22
package for SVM analyses [27].

The work here had a larger number of samples in one class (e.g.
responders) than in the other class (e.g. non-responders). This class
imbalance problem was circumvented by subsampling the original data
into 11 subsets, such that each subset had an equal number of R andNR
populationmembers. This also ensured that all patients in the responder
group were selected at least once over all subsets. The feature selection
was performed based on a sequential-forward selection (SFS) method
that learns which features are most informative at each time, choosing
the next features based on already selected features and the internal belief
of the classifier. In this study, a leave-one-out cross validation approach
was used. It involves training the computational algorithm with all
subjects except one while the ‘left-out’ subject is used for algorithm
testing. This interactive process is repeated until all subjects are left out
for algorithm testing at least once (Figure 1). Cross-validation was used
to establish the generalization ability of an algorithm to new or
previously unseen subjects. The validity of the algorithm in predicting
treatment response group was evaluated using prediction accuracy.
Receiver operating characteristic curves (ROC) and the corresponding
area under curve were (AUC) computed.

Statistical Analysis
Statistical tests were used to compare response groups in terms of

mean QUS and texture-based parameters. To determine the type of
statistical test to use to compare the groups, a ShapiroeWilk
normality test was performed on each feature data set to determine
whether it followed a normal distribution. An unpaired t-test was
completed for the data that passed the normality test, otherwise, a
ManneWhitney unpaired test was used. Recurrence-free survivals for
the two response populations were created by the KaplaneMeier
method to clarify the time-dependent cumulative survival rate, and
the curves were compared using a log-rank test. A value of P< .05 was
considered to determine statistical significance.

SVM-RBF Classification Model Validation
In order to test the robustness of the best performing classification

algorithm, the SVM-RBF model was validated using a new patient
data set acquired with two different clinical ultrasound systems: (i)
Ultrasonix - RP (L14e5/60, Analogic Medical Corp., Vancouver,
Canada) equipped with L14e5/60 linear array transducer with a
central frequency of 6.5 MHz and bandwidth of 3e8 MHz, and (ii)
GE e LOGIQ E9 (GE Healthcare, Milwaukee, Wisconsin, USA)
with 9 L-D linear array transducers, with a center frequency of 6
MHz and bandwidth of 3e8.5 MHz. Twenty-four LABC patients
were included in the model validation study. Out of 24 patients, 20
were clinical-pathological responders and 4 were non-responders.
Their mean age was 52± 11 years, and the mean tumor sizes before
and after treatment were 5.7± 2.6 and 2.8± 3.6 cm, respectively.
Among the 24 patients, 88% had invasive ductal carcinoma.
Ultrasound data were collected from these patients before treatment
and at weeks 1, 4, and 8 during treatment. Quantitative ultrasound
parameters and texture parameters were determined from the
ultrasound data as above.

Results

LABC Patient Characteristics
The clinical and pathological characteristics of the study patients
are summarized in Table 1. The average age of patients was 49± 11
years (range: 29e82 years). The average tumor size along the longest
axis before treatment was 5.9± 2.8 cm (range: 1.6e14 cm). Among
patients, 90% had invasive ductal carcinoma and 5% had lobular
carcinoma. Seven had grade I tumors, 46 had grade II tumors, and 20
had grade III tumors. Also, 37% of patients were triple negative in
terms of molecular subtypes (ER/PR/Her2). Almost all patients
(88%) received combined anthracycline-taxane neoadjuvant treat-
ment plans. Out of 100 patients, 81 were responders and 19 were
non-responders based on the modified response score. The average



Table 1. Clinical and pathologic characteristics of LABC patients receiving neo-adjuvant
chemotherapy

Characteristics R (N¼ 81) NR (N¼ 19) All (N¼ 100)

Age (year) 50± 10 49± 11 49 ± 11
Menopause
Postmenopausal (%) 32.1 31.5 32
Premenopausal (%) 56.8 63.2 58
Perimenopausal (%) 6.2 0 5
Unknown (%) 4.9 5.3 5

Initial tumor size (cm) 5.7± 2.7 6.5± 3.4 5.9 ± 2.8
Histology
IDC (%) 91.4 84.2 90
ILC (%) 3.7 10.5 5
IMC (%) 4.9 5.3 5

Grade
I (%) 7.4 5.3 7
II (%) 44.4 52.6 46
III (%) 16.1 36.8 20
Unknown (%) 32.1 5.3 27

ER/PR/Her2
Triple negative (%) 25.9 31.6 37
Non-triple negative (%) 74.1 68.4 63

Treatment
ACT (%) 59.3 63.2 60
FECD (%) 28.4 26.3 28
Others (%) 12.3 10.5 12

Residual tumor size (cm) 2.1± 2.7 7.4± 5.5 3.1 ± 3.9

Abbreviations: NAC, neoadjuvant chemotherapy; R, responder; NR, non-responder; IDC, invasive
ductal carcinoma; IMC, invasive mammary carcinoma; ILC, invasive lobular carcinoma; ER,
estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2;
ACT, adriamycin, cytoxan, and paclitaxel; FECD, 5-fluourouracil, epirubicin, cyclophosphamide
and docetaxel.
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tumor sizes of responders and non-responders after treatment were
2.1± 2.7 and 7.4± 5.5 cm, respectively.
Quantitative Ultrasound and Texture Parameters
Parameters determined from ultrasound radio frequency signals

were MBF, SS, SI, ACE, SAS, ASD and AAC. Representative
ultrasound B-mode images and MBF parametric images correspond-
ing to responding and non-responding patients acquired prior to
chemotherapy treatment, and after 4 weeks of treatment, are
displayed in Figure 2 along with high magnification H&E images
of corresponding histopathology. MBF parametric images demon-
strated increases in the ultrasound backscatter power and changes in
associated textural patterns within the tumor region for treatment
responding patients after the start of treatment by weeks 1e4. In
contrast, non-responder MBF parametric images exhibited no
significant changes in their mean value and textural patterns.
Histopathology analysis revealed no residual disease, with apparent
degradation of tumor cells in responding patients. In contrast, there
were large deposits of residual disease and viable-appearing cells in
non-responders. These changes in tumor macro- and microstructure
were reflected in estimated ultrasound parameters. Statistical analysis
using unpaired t-tests was performed in order to compare changes in
mean QUS values and texture parameters between responders and
non-responders acquired at weeks 1, 4, and 8 during treatment. None
of the changes in mean QUS and texture parameters alone
demonstrated significant differences between R and NR groups at
weeks 1 and 4. During treatment at week 8, the parameter values of
DMBF (P ¼ .0004), DSI (P ¼ .001), DAAC (P ¼ .0004),
DMBF-ENE (P¼ .007), DMBF-HOM (P¼ .008), DASD-CON
(P¼ .031) and DAAC-CON (P¼ .015) were significantly different
between R and NR.
Comparison of Classification Algorithms
First, correlation between estimated 31 features (7 changes in mean

of QUS parameters after treatment, and 24 changes in texture features
after treatment) were investigated. None of the two features were
highly (R2 � 0.9) correlated to each other. In order to differentiate
responder and non-responder patient groups, a multi-feature
classification analysis was performed on changes in mean quantitative
ultrasound and texture parameters using LDA, KNN and SVM-RBF
classifiers. Classification performance between classifiers was com-
pared using paired t-tests. First, the average classification accuracy for
each sample across cross-validation folds was computed. Those
sample-specific average performances using the different classification
algorithms were then statistically compared. The classification results
obtained using LDA, KNN and SVM-RBF algorithms, and where
there were statistically significant differences in performance, are
displayed in Figure 3. The associated receiver-operating-characteristic
(ROC) curve and area under curve values are presented in Figure 4.
All algorithms differentiated responder and non-responders with
prediction accuracy ranges of 63e80%, 68e90%, and 88e92%, at
weeks 1, 4, and 8 after the start of therapy, respectively. In particular,
at week 1, both KNN and SVM-RBF algorithms identified response
groups correctly with accuracies of 79% and 77%, respectively.
Performance improved at later times. At week 4, the SVM-RBF
algorithm performed very well in predicting the two response groups
with sensitivity, specificity, and accuracy of 90%, 89% and 90%,
respectively. At week 8, all classifiers demonstrated a sensitivity range
of 84e90%, a specificity range of 85e95%, and an accuracy range of
88e92%.

Overall, the SVM-RBF algorithm performed very well in
differentiating responder and non-responder patients at all times.
The accuracies in separating the two response groups using the
SVM-RBF-based algorithms were 78%, 90%, and 92%, at week 1, 4,
and 8, respectively. The most relevant features in separating the two
response groups were changes in texture features at early stages (week
1 and 4) and change in mean quantitative ultrasound parameters,
particularly ultrasound backscatter intensity-related parameters, at a
later stage (week 8) (Table 2). Hyperplanes of decision-making,
defined by the SVM-RBF kernel using one of the week 1, 4, and 8
subsets in three-dimensional feature space, are displayed in Figure 5.
Visual representation of the data indicates visible separability of the
response groups.

Figure 6 displays results of recurrence-free survival (RFS) analyses
using QUS-based predictions of outcome early during treatment. The
plots present the 6-year survival curves calculated for responding and
non-responding patients classified using the SVM-RBF model based
on changes in mean QUS and texture parameters at weeks 1, 4 and 8
after the start of treatment, compared to those at post-treatment based
on a modified response score. A statistically significant difference
between response groups was identified between the survival curves
generated from the patients’ pathological response (P< .0001).
Similarly, a statistically significant difference was observed between
the survival curves predicted using the SVM-RBF model based on
optimal feature sets at week 1 (P¼ .026), week 4 (P¼ .0004) and
week 8 (P¼ .0158) of treatment.
SVM-RBF Classification Model Validation
In order to test the robustness of the best performing classification

algorithm, the SVM-RBF model was tested with an independent data



Figure 2. Representative B-mode and mid-band fit parametric images from a responder and non-responder before the start of NAC
(Pre-Tx) and after 4 weeks of treatment (top). Representative high magnification light microscope images of whole mount
histopathology from responder and non-responder patient samples after treatment completion (bottom). The scale bar in the
ultrasound images represents 5mm. The color bar represents the scale for themid-band fit parameter of�16 to 18 dB (left to right).
The scale bar in the histology images represents 200 microns. Pre-Tx indicates prior to treatment; week 4 indicates images
obtained from 4 weeks after the start of treatment with chemotherapy.
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set of patients acquired using two different clinical ultrasound systems.
The SVM-RBF algorithm predicted treatment responses from
independent patients’ data acquired on the Ultrasonix system (used
above) with accuracies of 82% (sensitivity: 87% and specificity: 50%),
78% (sensitivity: 80% and specificity: 67%), and 88% (sensitivity: 87%
and specificity: 100%) at weeks 1, 4, and 8, respectively. For data
acquired using the GE clinical system (GE Healthcare, Milwaukee,
Wisconsin, USA), the accuracies were 72% (sensitivity: 73% and
specificity: 50%), 81% (sensitivity: 84% and specificity: 67%), and
93% (sensitivity: 93% and specificity: 100%) at weeks 1, 4, and 8,
respectively. The McNemar test was performed to compare misclassi-
fied patients from the Ultrasonix and GE data sets. The p-values
obtained from the McNemar test (0.62, 0.75, and 0.97 at week 1, 4,
and 8, respectively) revealed no significant differences between the
classification results obtained from the two clinical systems.
Discussion and Conclusion
In this study, we present the result of a clinical investigation of 100
locally advanced breast cancer patients receiving NAC, whose tumor
responses were monitored using quantitative ultrasound and texture
analysis techniques with advanced computational algorithms. All
algorithms evaluated in this study achieved greater than 60% accuracy
in distinguishing non-responding from responding patients. Specifi-
cally, the SVM-RBF algorithm achieved the best prediction accuracy at
all scan times. The prediction accuracy, sensitivity and specificity of the
algorithm in characterizing tumor response were determined through a
robust cross-validation approach and the results tested using an
independent set of patient data. Previous preclinical studies demon-
strated that the pathological changes (nuclear aggregation, fragmenta-
tion, and condensation) that occur with the cell death process can
modify ultrasonic backscatter properties of tissue at both low and high
ultrasound frequency [14,17,28]. This has been further evaluated in this
study, in which ultrasound backscatter characteristics were quantified
using QUS parameters including MBF, SI, ASD and AAC.

In order to understand the relationship between QUS-derived
indicators of tumor microstructure and treatment response, the
correlation of change in estimated QUS and texture features with
treatment response was investigated. Statistical tests revealed no
significant differences between the QUS and texture parameters
estimated from responders and non-responders during treatment at
weeks 1 and 4 on a single parameter basis. The smallest statistically
significant p-values observed were with the DSS-COR (P¼ .0711)
and DASD-COR (P¼ .087) parameters at weeks 1 and 4,
respectively. The range of scatterer sizes estimated from tumor
ultrasound data for the frequency bandwidth of 4e9 MHz was
80e160 mm and those values were comparable with lobule diameters
observed from histopathology images. At week 8 after the start of
treatment, statistically significant differences were observed mostly in
change in backscatter intensity-related parameters such as MBF, SI
and AAC and their corresponding texture parameters. These
backscatter intensity parameters are strongly related to scatterer
number density and scatterer elastic properties. The results indicate
that changes in the texture features of QUS parametric maps become
apparent at early stages (weeks 1 and 4) after the start of treatment,



Figure 3. Average classification sensitivity, specificity and accuracy percentages over 11 iterations for LDA, KNN, and SVM-RBF
classifiers in differentiating responders and non-responders at weeks 1, 4, and 8 after treatment. Leave-one-subject-out analysis
was used for classification. The horizontal connection lines above the bars indicate significant differences between classifiers
(P< .05) using a paired t-test.
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and subsequently result later in dominant changes in the mean values
of these QUS parametric maps.
Three multi-feature discriminant algorithms were developed using

LDA, KNN, and SVM-RBF classifiers based on changes in QUS and
texture features in order to improve the accuracy of response-related
group classification. A sequential feature selection method was
applied to balanced subsets of training data to obtain optimal feature
sets for tumor response classification. Three to four features for each
time and method were selected (Table 2). The features selected to
differentiate two response classes at weeks 1 and 4 were all texture
features, and those selected at week 8 were all mean QUS values,
Figure 4. Receiver operator characteristic curves for early tumo
obtained by averaging over 11 iterations. Overall, the SVM-RBF a
especially ultrasound backscatter intensity parameters. Using an
SVM-RBF classifier with a small number of features, the patient
responses were classified with cross-validated accuracies of 78%, 90%,
and 92% at weeks 1, 4, and 8, respectively. This finding suggests that
the development of responses in tumor cells to neoadjuvant
chemotherapy is a gradual process. As a working model, at an early
response stage (week 1 and 4), tumor microstructure arrangements
such as the spacing between lobules can be affected heterogeneously.
At a later stage (week 8), in addition to tumor microstructural
arrangements, macrostructures such as lobule size, shape and their
elastic properties can be affected, and finally, replaced with collagen
r response prediction models using LDA, KNN and SVM-RBF
lgorithm performed best as compared to LDA and KNN.



Table 2. Optimal features selected for tumor response classification using a LDA, KNN and
SVM-RBF classifier over 11 iterations at week 1, 4 and 8

Classifier Week 1 Week 4 Week 8

LDA D MBF-COR D SI D MBF
D MBF-ENE D SS-ENE D ACE

D SS-HOM
D ASD-COR

KNN D SS-HOM D ASD-ENE D AAC
D SI

SVM-RBF D SS-COR D SS-CON D MBF
D MBF-ENE D ASD-COR D SAS
D SAS-HOM D SI-HOM D SI

D SI-ENE
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and fibrotic deposition. These findings, and the link to the long-term
clinical outcome of these patients suggests that the QUS parameters
and texture features investigated in this study have potential for the
early prediction of treatment response and long-term survival of
patients undergoing neoadjuvant chemotherapy.

Previous studies confirm that pathological response is a prognostic
indicator for long-term, disease-free and overall survival [3,4]. This was
confirmed in this current study. Quantitative ultrasound biomarkers
Figure 5. Hyperplanes of decision defined by an SVM-RBF classifie
feature space. Responders and non-responders are represented b
develop a tumor response prediction model from the week 4 data
this plot.
acquired from cancer patients after the start of treatment indicated links
to patient outcomes in terms of progression-free survival. The
classification models developed based on combined quantitative
ultrasound and texture parameters obtained during weeks 1, 4, and 8
after the start of treatment could differentiate between patient outcomes
with good agreement with those based on histopathology, obtained
months later after surgery. Such an early insight into patient outcomes
could facilitate the decision of changing ineffective therapy to a more
effective therapy for treatment-refractory patients or even an earlier shift
to salvage therapy, before missing the “therapeutic window” for benefit.
Several previous studies have demonstrated significant differences in
chemotherapy response rates and survivals of patients with breast
cancers of different molecular subtypes including HER2þ, triple
negative, and ER and/or PRþ with HER2- status [4,29,30]. A six-year
disease-free survival rate was calculated for patients with these molecular
subtypes of breast cancer and was found to be 0.92, 0.82 and 0.84,
respectively. However, there was no statistical difference detected
between subtypes (P¼ .233). Most likely, a larger cohort of patients
with a high enough number of cases for each subtype is required for such
a multi-class classification study to achieve a more accurate cross--
validated evaluation.
r using one of the week 1, 4 and 8 subsets in three-dimensional
y blue and red dots, respectively. Four features were selected to
set. For display purposes, the three best features were used in



Figure 6. Recurrence-free survival curves for chemotherapy treatment responders and non-responders. Patients were
differentiated based on a RECIST score determined from clinical data with validation from histopathology images at
post-treatment, and also based on QUS and texture parameters at weeks 1, 4, and 8 using the SVM-RBF algorithm.
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Several other functional imaging modalities, including PET, and
MRI, are capable of evaluating cancer treatment response within
weeks of treatment initiation. These modalities are often costly and
require contrast agents to monitor tumor response to treatment. In
contrast, the QUS techniques used in this study depend on internal
contrast alterations caused by differential scattering due to changes in
the acoustic impedance of tumor cells when they respond to
treatment. Compared to previous QUS-based tumor response
monitoring studies [18e20], the number of patients used in this
study was relatively large and differences within tumor response group
sample sizes were balanced by randomly subsampling the total
population into several subsets before performing classification
analysis. To avoid the curse of dimensionality, the number of
selected features was less than the number of samples in the training
set divided by a factor of 10 based on rule of thumb [31]. Finally, the
discriminant model was cross-validated to avoid overfitting.
When comparing all types of classifiers, nonlinear classifiers, such

KNN and SVM-RBF performed better than the linear classifier LDA
method. This could mean that the true distributions, and consequently
the tumor response decision boundaries, were nonlinear or that the data
for each group were not easy to differentiate using a simple linear
classifier. The accuracy of differentiating binary response groups at a very
early stage (week 1)with theKNNclassifier was slightly higher thanwith
the SVM-RBF, but not significantly different. However, the overall
performance of the SVM-RBF algorithm was best in differentiating
response groups at all data acquisition times. This was confirmed in
independent testingwith an additional separate patient cohort and using
data obtained from two different ultrasound systems. One drawback of
the SVM-RBF classifier compared to other classifiers is that it requires a
more involved computational training process to select the best classifier
parameters C and g using a grid search. However, once a classification
model is developed with the SVM-RBF, it is easy to implement in
clinical systems. It does not require much space to store the model like a
KNN system, which requires an N-dimensional feature space derived
fromobserveddata todetect anunknown sample response. Additionally,
the SVM classifier is very robust and performs well with outliers since it
only uses themost relevant points to define a decision boundary between
two groups. Here, the robustness of a model developed by the SVM
classifier was demonstrated by comparing the classification results
obtained from two different clinical system data sets.

One important question is how this early response prediction tool
can be applied in a clinical setting in order to optimize individual
patient treatments. For example, it is possible that individual,
patient-based, early tumor response could be used to guide changes
from ineffective treatments to more effective treatments. For instance,
several studies have indicated that patients who do not respond to
initial chemotherapy may benefit from additional systemic che-
motherapy, preoperative radiation or surgery [32e34], in the case
where there is insufficient intra-treatment response. Specifically, in a
response-guided neoadjuvant chemotherapy study for breast cancer
[33], patients were treated with 2 cycles of docetaxel, doxorubicin,
and cyclophosphamide (TAC). The study randomly assigned early
non-responders to 4 cycles of TAC, or as an alternative, vinorelbine
and capecitabine (NX) before surgery. The results of that study
indicated that disease-free survival was greater in early non-responders
receiving TAC-NX than in those receiving 6 cycles of TAC. In the
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Aberdeen study [32], LABC patients underwent 4 cycles of CVAP
(cyclophosphamide / vincristine / doxorubicin / prednisone)
chemotherapy treatment. Early and complete responders were
randomly assigned to further 4 cycles of CVAP or 4 cycles of
docetaxel. In that study, it was reported that patients receiving
docetaxel had a significantly higher clinical response rate (94%) than
patients receiving CVAP (64%). These studies highlight the need to
develop novel tumor response detection algorithms, like the one
presented in this study, to facilitate clinical treatment changes.
Further work will focus on validating the algorithms presented here
with larger population cohorts from multiple different centers.

In conclusion, we report classification algorithms that can detect
early tumor response to neoadjuvant chemotherapy with high
accuracy, using quantitative ultrasound and texture analysis techni-
ques with advanced computational algorithms. The results were
validated in a second test sample set of patient data obtained from two
independent ultrasound systems. The results presented in this study
imply that these classification models, developed based on quantita-
tive ultrasound biomarkers as early survival-linked surrogates of
response to cancer-targeting therapies, could facilitate switching an
inefficient treatment regimen to a more effective one on an individual
patient-basis, early after starting treatment.
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