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Abstract: R-loop, a three-stranded RNA/DNA structure, plays important roles in modulating genome
stability and gene expression, but the molecular mechanism of R-loops in cell reprogramming remains
elusive. Here, we comprehensively profiled the genome-wide landscape of R-loops during cell
reprogramming. The results showed that the R-loop formation on most different types of repetitive
elements is stage-specific in cell reprogramming. We unveiled that the cumulative deposition
of an R-loop subset is positively correlated with gene expression during reprogramming. More
importantly, the dynamic turnover of this R-loop subset is accompanied by the activation of the
pluripotent transcriptional regulatory network (TRN). Moreover, the large accumulation of the active
histone marker H3K4me3 and the reduction in H3K27me3 were also observed in these R-loop regions.
Finally, we characterized the dynamic network of R-loops that facilitates cell fate transitions in
reprogramming. Together, our study provides a new clue for deciphering the interplay mechanism
between R-loops and HMs to control cell reprogramming.

Keywords: R-loops; histone modifications; transcription regulation network; somatic cell reprogramming;
cell fate transitions

1. Introduction

R-loop is a special three-stranded nucleic acid structure composed of a DNA:RNA
hybrid double helix and a single-stranded DNA (ssDNA) molecule, which is ubiquitous
in the whole organism. R-loops normally form during transcription [1], and were first
found in the F1 phage in 1967 [2], and were subsequently characterized in Escherichia coli [3].
In mammals, the predominant R-loop formation shows a strong sequence preference,
which usually occurs at multiple loci with high guanine–cytosine (GC) content, including
the unmethylated CpG island [4] and strong G/C skew [calculated as (G − C)/(G + C)]
promoters [5]. The formation events of R-loops also occur in conserved regions that
are associated with specific epigenetic modification marks [6,7]. Several studies have
revealed that R-loops play a part in many biological processes, such as DNA replication [8],
chromatin modification [9], DNA damage response [10], and genomic stability [11–14]. The
R-loops also play essential roles in transcriptional regulation [1,15], in which R-loops are
inclined to co-localize with open chromatin and recruit transcription activation factor [16].
However, the role of R-loops in biological processes such as cell fate transition has not been
fully studied.

Differentiated somatic cells can be reprogramed into induced pluripotent stem cells (iP-
SCs) by forced expression of Yamanaka factors Oct4, Sox2, Klf4, and c-Myc (OSKM) [17,18].
Due to the molecular features of iPSCs being similar to those of embryonic stem cells
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(ESCs) [19], the generation of iPSCs has a huge impact both on basic research and clin-
ical applications [20,21]. Somatic cell reprogramming is a multilayered regulation pro-
cess, in which key histone modifications (HMs) play a very important role for transcrip-
tional regulation [22,23]. Extensive studies have shown that the activation of early tran-
scriptional events in reprogramming are associated with extensive loss of histone H3
lysine 27 trimethylation (H3K27me3), which represents a general opening of the chromatin
state [24]. Moreover, the deposition of the active histone marker H3 lysine 4 trimethylation
(H3K4me3) enables a permissive chromatin environment for facilitating gene
transcription [25,26]. Furthermore, a recent study revealed that R-loops act as epigenetic
markers and coordinate with SOX2 in regulating reprogramming to pluripotency [27].
Moreover, R-loops have also been proven to be able to coordinate with other epige-
netic marks, which not only contribute to the maintenance of pluripotency in human
embryonic stem cells (hESCs), but also influence cell fate transition during multilineage
differentiation [28].

Despite the fact that the important role of R-loops in gene regulation has been eluci-
dated in detail, there is still a lack of general understanding about the formation dynamics
of R-loops during reprogramming. In particular, the underlying mechanisms of R-loops
driving cell fate transitions in reprogramming remain unexplored. In this study, we charac-
terized the genome-wide formation of R-loops and found that the dynamic transition of
R-loops was strongly linked to gene expression during the reprograming process. Moreover,
the activation of the pluripotent transcriptional regulatory network requires the interplay
between R-loops and histone modifications, in which the formation of R-loops is accom-
panied by the large accumulation of active histone marker H3K4me3, with a concomitant
reduction in H3K27me3. In brief, our results reveal that there is collaborative action between
R-loops and HMs for controlling cell fate transition during the reprogramming process.

2. Results
2.1. Stage-Specific R-loop Formation during the Reprograming Process

Based on the single-stranded DNA:RNA immunoprecipitation sequencing (ssDRIP-
seq) data, we aimed to elucidate the characteristics of global R-loop formation in the process
of mouse embryonic fibroblast (MEF, D0) reprogramming to iPSC, and found that R-loops
showed a significant dynamic pattern during the reprogramming process. Stage-specific
R-loop signals on genes were observed at each reprogramming stage (Figure 1A and
Supplementary Table S1). By calculating the number of R-loop peaks and their covered
genes in each indicated reprogramming point, we found that R-loop peaks were rapidly
formed at the initial (D1) stage, and underwent extensive erasure in the D5 stage. Then,
the R-loop peaks were gradually remodeled at the genome-wide regions until the iPSC
stage reached more than 2.7 million peaks (Figure 1B). The same dynamic pattern was also
observed in the number of target genes of the R-loop (Figure 1C). Next, we comparatively
observed the formation preference of R-loops on different chromosomes; the results display
that R-loop formation is a common event, and that their formation appears to be stabilized
on different chromosomes (Figure 1D). By systematically analyzing the genome-wide R-
loops in the process of reprogramming, we found that about 95% of the R-loops were mainly
formed in promoter, gene body and intergenic regions. In the gene bodies in particular
(including exon and intron regions), about 45% of R-loops were observed (Figure 1E),
showing that R-loop formation in gene bodies is prevalent [6]. Furthermore, we observed
that R-loop peaks have higher signals (FPKM, fragments per kb per million uniquely
mapped reads) in the upstream regions of gene transcription start sites (TSS) and the
downstream regions of transcription termination sites (TTS) (Figure 1F and Supplementary
Table S2); this is consistent with the fact that R-loops play a role in all stages of gene
expression, from transcription initiation to its termination [28].

Moreover, R-loops tend to occur on repetitive elements of the whole genome, and ap-
proximately 75% of R-loop peaks occupy repetitive elements during the whole reprogram-
ming process (Figure 1G). Among them, the long-terminal repeat (LTR), long interspersed
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nuclear elements (LINE), short interspersed nuclear elements (SINE) and simple repeat are
given priority by R-loops at each reprogramming stage. Notably, the R-loop formation on
most different types of repetitive elements is stage-specific.
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Figure 1. Genome-wide identification of R-loops during reprogramming: (A) heatmap displaying the
global R-loop signals (FPKM) on genes at different reprogramming stages; (B) the number of R-loop
peaks at different reprogramming stages; (C) the target genes’ number of R-loop peaks at different
reprogramming stages; (D) Circos plot showing the R-loop signals across all the chromosomes in
reprogramming; (E) the distribution of R-loop peaks on different genomic features; (F) the average
distribution of R-loop signals at 3 kb region flanking of TSS and transcription termination sites (TTS)
during reprogramming progress; (G) pie plot showing the distribution of R-loop peaks in various
types of repetitive elements.

To comprehensively explore whether the formation of R-loop has transcription factor
(TF) family specificity (Supplementary Figure S1A), we counted the R-loop peaks observed
in different TF families during the whole reprogramming process. It was found that R-loops
were more inclined to appear in the nuclear receptor (NR) family than in the C2H2 family
in reprogramming. Interestingly, about 60% of E-twenty six (ETS) family members may be
regulated by R-loops in the iPSC stage, but the influence of R-loops on these TF families
needs further exploration.

2.2. The Cumulative Effect of R-loops on Gene Expression Regulation in Reprogramming

More and more evidence reveal that R-loops are widespread in prokaryotic and eukary-
otic organisms [1], and play an important role in many key biological processes [1,9,15,29].
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However, whether the R-loop formation could affect the gene expression dynamics during
reprogramming remains unclear. To address this, we collected the transcriptome data
during the reprogramming process, and hierarchical clustering analysis showed that there
was a high correlation between the duplicate samples. Principal-component analysis (PCA)
of gene expression profiles allowed us to outline a “reprogramming pseudo time”, which
can clearly distinguish the reprogramming process into the MEF stage (D0), early repro-
gramming process (D1-D7) and iPSC phase (iPSC) (Figures 2A and S1B). By comparing the
dynamic patterns of R-loop and gene expression during reprogramming, we found that the
R-loop formation during reprogramming was more stage-specific than the gene expression
pattern (Figure 2A), suggesting that R-loop levels and gene expression are not completely
coupled in the process of reprogramming. Unlike R-loop dynamics, the genome-wide
H3K4me3 and H3K27me3 signals shifted continuously during reprogramming until the
specific pattern of iPSCs was formed (Supplementary Figure S1C,D). Moreover, we also
noted that R-loops preferentially occurred within the upstream region of the transcrip-
tion start site (TSS) compared with the other two histone modifications (H3K4me3 and
H3K27me3) in this process, supporting previous observations [30] (Figure 2B).

In accordance with the above results, we next explored the relationship between R-
loops and differential expression genes (DEGs) in the adjacent stages of reprogramming.
The results revealed that the dynamic change pattern of R-loops within the genes was
intense throughout the whole reprogramming process, whereas the prominent change
wave of gene expression pattern only emerged between the iPSC and D7 (Figure 2C,D).
These results suggest that the formation of R-loops may have a cumulative effect on gene
expression. Among them, 58% (3689/6404) of genes including Nanog, Dppa4 and Jarid2
were up-regulated in the adjacent reprogramming stages, which was consistent with the up-
regulated R-loop levels (Figures 2E and S2A), and 49% (3290/6668) down-regulated genes
in the adjacent stages also had down-regulated R-loop signals (Figure 2F). Notably, these
up-regulated genes (3689) with high R-loop levels were mainly characterized by signal path-
ways such as cell cycle, RNA transport and Stem cell pluripotency regulation, etc. (Supple-
mentary Figure S2B), which coincided with the early event of mesenchymal epithelial tran-
sition (MET) in reprogramming. In contrast, the other down-regulated genes (3290) were
mainly involved in Rap1, c-AMP and MAPK signal pathways, indicating that these genes
play a part in the suppression of the lineage specific program (Supplementary Figure S2C).

During the whole process of MEF reprogramming to iPSC, the R-loop formation within
gene regions was markedly different, and most of the formation events of R-loops had
obvious stage-specific selection (Figure 2G). For example, 2% of the R-loop formation events
only occurred in the MEF stage (D0) and 41% of the events had induced pluripotent stem
cell (iPSC) specificity, which also explained why the kinetic pattern of R-loops was more
intense in the adjacent reprogramming stages. Intriguingly, the related genes occupied by
these stage-specific R-loops did not show obvious stage-specific expression in the whole
reprogramming process, indicating that, in addition to R-loop formation, the expression
of these stage-specific genes was also synergistically regulated by other epigenetic mod-
ifications (Figure 2G). Moreover, obvious stage-specific R-loop events were observed on
these stage-specific expression genes, indicating that the expression of these genes is closely
related to the stage-specific formation of R-loops (Figure 2H). Hence, the above results
reveal that gene expression is related to the formation of R-loops to a certain extent, while
the gene transcription process is the result of multilayered collaborative regulation.
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Figure 2. Reprogramming stage-specific R-loop modification and gene expression: (A) correlation
heatmaps of different reprogramming stages according to R-loop signals (blue—top heatmap) and
gene expression levels (red—bottom heatmap). Color scales represent Pearson correlation coeffi-
cients (PCC) between different stages; (B) heatmaps displaying the signals of R-loop, H3K4me3 and
H3K27me3 in flanking TSSs at different reprogramming stages. In each panel, each row represents
a 3 kb region flanking TSS; (C) analysis of differential R-loop signals in adjacent stages of reprogram-
ming; (D) analysis of differential gene expression in adjacent stages of reprogramming; (E) Venn
diagram revealing the overlap between genes with up-regulated R-loop signals (as shown in upper
bar of (C)) and up-regulated genes (as shown in upper bar of (D)) between adjacent reprogram-
ming stages; (F) Venn diagram showing the overlap between genes with down-regulated R-loop
signals (as shown in lower bar of (C)) and down-regulated genes (as shown in lower bar of (D))
between adjacent reprogramming stages; (G) heatmaps showing the genes marked by R-loop peaks
(left) during reprogramming progress, part of genes marked by R-loop peaks with reprogramming
stage-specificity (middle) and the expression levels corresponding to these genes (right), respectively.
Red—R-loop peaks; gray—no R-loop peaks; (H) heatmaps showing the dynamic expression pro-
files (left) of genes during reprogramming progress, part of gene expression with reprogramming
stage-specificity (middle) and the R-loop signals corresponding to these genes (right), respectively.
Blue—expression levels > 0; gray—no expression.
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2.3. The Relationship between R-loop Dynamics and Gene Expression

To investigate the relationship between R-loop dynamics and associated gene acti-
vation during the acquisition of pluripotency, we integrally analyzed the relevant tran-
scriptome and R-loop data of cell fate transition during reprogramming. Based on the
differential R-loops analysis in iPSC compared with D0 (Figure 3A), 7084 genes with dif-
ferential R-loop signals in iPSC were identified, in which, 92% genes had up-regulated
R-loop signals (6497/7084). Moreover, 7845 differential expression genes (DEGs) were
found in iPSC, including 3767 up-regulated and 4078 down-regulated genes (Figure 3B).
Correspondingly, 2886 of these DEGs were directly related to R-loops (Figure 3C), in which
the strength of the gene expression (n = 1430) correlated positively with the R-loop levels
(Supplementary Table S3). In particular, 1271 up-regulated genes with high R-loop signals
were identified. Functional analysis of these genes showed that they were mainly involved
in stem cell pluripotency regulation and transcription-related signaling pathways, which
were essential for iPSC pluripotency regulation and establishment (Figure 3C,D). Addition-
ally, the down-regulated genes (n = 159) with low R-loop signals were highly enriched in
MAPK, Hippo, RAS and other signaling pathways (Figure 3C,E). These results indicate that
the dynamics of R-loops are closely correlated with gene expression, and play a regulatory
role in the reprogramming of MEF to iPSC.

Fibroblast reprogramming to the pluripotent state is governed by multiple epigenetic
marks, whereby active epigenetic modifications direct cell identity away from the fibroblast,
and repressive epigenetic marks are inherited from the fibroblasts [31]. In order to further
explore the influence of different histone modifications on these genes regulated by R-loops,
we also calculated the signal intensities (Figure 3F) of active histone marker (H3K4me3) and
inhibitory histone marker (H3K27me3) around the TSSs (TSS ± 2 kb) of DEGs associated
with the R-loops. As expected, the average H3K27me3 signals decreased within the 2 kb of
TSSs of these up-regulated genes with high R-loop signals. Likewise, the TSSs of down-
regulated genes associated with low R-loop levels were accompanied by lower H3K4me3
signals and higher H3K27me3 signals. In conclusion, these results suggest that promoter
R-loop formation is accompanied by the enhanced recruitment or depletion of unique
epigenomic signatures, which is crucial for regulating the differential expression of genes
in reprogramming.

2.4. Sequential Activation of Pluripotency Genes Linked to R-loops during Reprogramming

To gain insight into the mechanisms underlying the dynamic activation of the DEGs
observed in iPSC compared to fibroblasts (D0), we profiled the sequential expression
pattern of these genes. Based on the fuzzy C-means (FCM) clustering analysis, these
genes can be categorized into six distinct clusters, labeled as Clusters 1 to 6 (C1–C6)
(Figure 4A). These clusters can be further assigned to five main categories of different
dynamic patterns. The genes in C1 (n = 1817) showed a transient increase at the iPSC
stage, suggesting their key roles in pluripotency regulation. Alternatively, C3 (n = 1619)
had an instantaneous decrease at the D0 stage, indicating that these genes are related
to differentiation. Furthermore, the dynamic expression pattern of C2 (n = 1220) had an
overall decreasing trend over the reprogramming process, while C4 (n = 838) had a dramatic
increasing trend during reprogramming. Interestingly, the genes in C5 (n = 1070) and C6
(n = 1069) had specific expression patterns with different intermediate reprogramming
stages. Then, the corresponding differential R-loops of these six clusters were identified;
parts of the genes in each cluster had differential R-loop signals, so these clusters were
labeled as R1—R6 (Figure 4B,C). This result further implies that the sequential activation of
these genes is also regulated by other epigenetic modifications besides R-loops.

As mentioned above, we further characterized the detailed dynamics of different
HMs patterns (H3K4me3, H3K27me3, Bivalent and other) on these gene clusters associated
with R-loops (Figures 4D and S3A). Different HMs were classified into “H3K4me3-only”
(H3K4me3), “H3K27me3-only” (H3K27me3), “both H3K4me3/H3K27me3” (Bivalent) and
“no H3K4me3 or H3K4me3” (Other) categories based on the H3K4me3 and H3K27me3
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modification signals detected on the promoter region of each gene. Interestingly, these genes
are more and more modified by H3K4me3 and bivalent during reprogramming (Figure 4D).
In particular, the genes in R1 and R4 were preferentially modified by H3K4me3 rather than
H3K27me3, while bivalent histone modifications were more likely to be co-occupied in
R2 and R3 (Supplementary Figure S3A). The results display that there may be a varying
degree of interdependency between HMs and R-loops in regulating genes transcription.
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Figure 3. The dynamic effect of R-loops on gene expression in reprogramming: (A) analysis of
differential R-loop signals in iPSC vs. D0; (B) analysis of differential gene expression in iPSC
vs. D0; (C) scatterplots showing the relationship between R-loops and gene expression during
reprogramming process. Red dots are the genes whose expression levels and R-loop signals are
up-regulated in iPSC compared to D0. Purple dots are the genes whose expression levels and R-loop
signals are down-regulated in iPSC; (D,E) KEGG pathway analysis of up-regulated genes with higher
R-loop signals (n = 1271) and down-regulated genes with lower R-loop signals (n = 159); (F) the read
density profiles of R-loops, H3K4me3 and H3K27me3 at the 2 kb flanking TSSs of the up-regulated
genes (n = 1271, upper three panels) and down-regulated genes (n = 159, lower three panels).
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(FCM) clustering analysis according to the expression profiles of DEGs. Average scaled FPKM values
are represented by each line. Colors indicate the membership value of each gene in the current
cluster; (B) the radar chart displaying the overlap of genes with differential R-loop signals and
six different clusters; (C) the percentage of DEGs with differential R-loop signals in each cluster
is indicated. These clusters have differential R-loop signals, labeled as R1-R6; (D) proportion of
co-differential genes (the genes involved in R1-R6) bound by “H3K4me3-only” (H3K4me3—blue),
“H3K27me3-only” (H3K27me3—green), “both H3K4me3/H3K27me3” (Bivalent—orange) and “no
H3K4me3 or H3K4me3” (Other—grey) modification; (E) integrated analysis of DEGs and differential
R-loop signals in R1—R4. Word clouds represent the key genes (0.7 < |PCC| < 1; |Log2(FC)| > 2) in
each group, both size and color of the word are proportional to the membership value of each gene.
Y-axis of the scatter plot indicates the correlation between expression levels and R-loop signals, X-axis
indicates logarithmic transformation of the fold change (FC) of the expression level (iPSC vs. D0);
(F) dynamic changes of gene expression levels and R-loop signals of representative genes in each
cluster. The dot sizes indicate expression levels and colors display R-loop signals.

By investigating the influence of R-loops on the dynamic expression patterns of these
genes (Figures 4E and S3B and Supplementary Table S4), we found that the expression of
most of these genes was positively correlated with R-loop signals, whether in transiently up-
regulated gene cluster (R1) at the iPSC stage or in the gene cluster which have a continuous
up-regulated trend during reprogramming (R4). For instance, the expression of most
pluripotent genes (such as Dppa2, Dppa3, Sall4, etc.) in R1 is directly related to the regulation
of R-loops, and the PCC can reach 0.7 (Figures 4E and S3B). Nevertheless, in the other
clusters, the effect of R-loops on the expression of these genes did not show a positive
or negative regulatory preference, further suggesting that the R-loops had a selective
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preference for gene expression regulation (Supplementary Figure S3B and Supplementary
Table S4). Then we selected some representative genes from R1-R4 and found that the
presence of R-loops was indeed related to the expression of genes (Figure 4F). In R1, with
the instantaneous up-regulation of pluripotency genes in the iPSC stage, the R-loop signals
also present a transient up-regulation pattern. All in all, these results demonstrate that
there is a subset of R-loops which plays an important role in the sequential activation of
pluripotency genes in reprogramming.

2.5. The Collaborative Regulation of R-loops and HMs Facilitates the Pluripotency Network
Activation during Reprogramming

To investigate how the expression dynamics of these gene clusters are reflected in
HM changes, we tracked the binding abilities of H3K4me3 (activating) and H3K27me3
(repressing) on these clusters at D0 and iPSC, respectively (Figure 5A). Interestingly, the
genes in R1 and R4 enriched higher H3K4me3 and lower H3K27me3 signals in iPSC than
in D0, which is in accordance with the higher expression level of these genes in iPSC,
suggesting that H3K4me3 and H3K27me3 keep their antagonistic relationship in regulating
gene expression during the reprogramming process. At the same time, compared with D0,
we observed lower H3K4me3 levels and higher levels H3K27me3 in R2 and R3 at the iPSC
stage, which coincides with the fact that these genes were inhibited in iPSC. Additionally,
in the remaining two gene clusters (R5 and R6), the H3K27me3 level at D0 was higher than
that in iPSC, while H3K4me3 levels showed no significant difference in D0 and iPSC. These
results indicate that these gene clusters exhibit different dynamic expression patterns under
the collaborative regulation of H3K4me3 (activating) and H3K27me3 (repressing).

Next, we attempted to explore the relationship between different HM patterns and
R-loops on gene expression in R1 and R3 (Figure 5B). The result showed that these genes,
highly expressed in iPSC (R1) or in D0 (R3), were attributed to the positive regulation of
H3K4me3 and bivalent histone modifications. On the contrary, the decreased expression of
these genes in D0 or iPSC was associated with the H3K27me3 epigenetic mark (Figure 5B,
right). Interestingly, different HM patterns do not directly affect the R-loop modification
signals on gene clusters (Figure 5B, left). To verify this hypothesis that the deposition of
these histone markers may be related to the formation of R-loops, we further explored
the modification differences between H3K4me3 and H3K27me3 in the formation region
of R-loops in different gene clusters (R1 and R3) (Figure 5C). It was found that the gene
activation in iPSC (R1) was consistent with the deposition of H3K4me3 in the R-loop
formation regions, accompanied by the decrease in H3K27me3 signals. In agreement, the
inhibition of genes (R3) at the iPSC stage is related to the decrease in H3K4me3 and the
high H3K27me3 levels in the R-loop formation region. Finally, we mapped the dynamic
transformation of the regulatory networks of pluripotent genes associated with R-loops
during reprogramming, to determine whether the R-loop transition and network activation
simply followed the same dynamic pattern (Figure 5D,E). The results showed that the
activation of pluripotent transcriptional regulatory networks (TRNs), including Dppa2,
Dppa3 and Zscan4b, was accompanied by the dynamic transformation of R-loops. Together,
the above results indicate that collaborative interactions between R-loops and HMs can
facilitate the activation of the pluripotency regulation network, thereby driving cell fate
transformation during reprogramming.
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Figure 5. Dynamic transition of TRNs related to R-loops and HMs in reprogramming: (A) boxplot
showing H3K4me3 and H3K27me3 binding signals (FPKM) on genes associated with bivalent histone
modifications in D0 and iPSC; (B) the density distribution of R-loop signals (FPKM) and expression
levels for genes (involved in R1 and R3, respectively) bound by H3K4me3, H3K27me3 and bivalent
histone modifications; (C) average H3K4me3, H3K27me3 signals in 1 kb flanking R-loop regions for
R1 (n = 681) and R3 genes (n = 651) at D0 and iPSC stages. These R-loops were located in promoter
regions of genes; (D,E) dynamic transition of transcriptional networks from MEF (D0) to iPSC in
R1. Color indicates R-loop signals and box size indicates gene expression levels. Genes symbols as
shown in (D).

3. Discussion

The regulatory roles of R-loops in yeast, plants and animals have been extensively
investigated. However, the potential effect of R-loop dynamics on cell fate transition in
somatic cell reprogramming remains unclear. In this study, we profiled the genome-wide
formation of R-loops during the reprograming process and found that the formation of
R-loops mainly occurs in the promoter, gene body and intergenic regions. Importantly, the
formation events of R-loops mainly occur in repetitive elements and the R-loop formation
on these repetitive elements has stage-specificity in cell reprogramming. Additionally,
R-loop occupation also has TF family specificity, in which they prefer to appear in the
NR family than C2H2 family during the whole reprogramming process. However, the
regulatory mechanism of R-loops on this TF family needs to be further explored.

Previous studies have indicated that R-loops as new candidate regulators play impor-
tant roles in gene expression [15,27,28]. Consistently, we found that R-loop dynamics were
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also closely coupled with gene expression in reprogramming, and that the cumulative effect
of R-loops on gene expression is extremely significant in this process. This is most easily
interpreted to explain why the kinetic pattern of R-loops was intense for the entire duration
of reprogramming, whereas the genes were activated on a large scale in the last stage of
reprogramming. However, the gene transcription in the reprogramming process is the
result of multilayered collaborative regulation [32], in which the dynamics of R-loops were
accompanied by the enhanced recruitment of H3K4me3 and the depletion of H3K27me3
for regulating gene expression in this process. These results support the fact that R-loops
and HMs collaboratively shape cell fate transition in reprogramming. Furthermore, the
activation of pluripotent TRNs followed the same dynamic pattern with R-loop formation,
further displaying that R-loops indeed play an important regulatory role for accelerating
cell fate transition in reprogramming.

4. Materials and Methods
4.1. Dataset Collection

Both the single-stranded DNA:RNA immunoprecipitation sequencing (ssDRIP-seq)
dataset and RNA sequencing (RNA-seq) data of mouse embryonic fibroblast (MEF) re-
programming to the iPSC state were downloaded from the Gene Expression Omnibus
(GEO) database under accession number GSE125644 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE125644, accessed on 12 November 2020) [27], including six differ-
ent reprogramming stages: MEF/day 0, day 1, day 3, day 5, day 7, induced pluripotent
stem cells (D0, D1, D3, D5, D7, iPSC). For chromatin immunoprecipitation sequencing
(ChIP-seq) a dataset of six different reprogramming stages was also downloaded from GEO
database and GEO accession no. GSE67520 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE67520, accessed on 13 November 2020) [20], which included two histone
modifications of H3K4me3 and H3K27me3.

4.2. ssDRIP-seq Data Processing

The ssDRIP-seq raw reads were filtered by Cutadapt software (version 2.10, EMB-
net.journal, Uppsala, Sweden) [27,33] and reads less than 50 bases in length were dis-
carded. Trimmed reads were mapped to the mouse genome assembly mm10 by using
Bowtie2 (version 2.2.9, Nature Methods, New York, NY, USA) short read alignment soft-
ware with default parameters. Then, R-loop peak calling was performed using MACS2
(version 2.1.0) [34–36] using the following parameters: macs2 callpeak −t $treatmentsam
−c $controlsam −f SAM −keep−dup 1 −n $name −g 1.87e9 −B −q 0.01. Finally, R pack-
age ChIPseeker [37] was used to annotate with the position of the peaks in the genome, in
which −2 kb to 1 kb of gene transcription start site (TSS) were defined as gene promoter.
We also calculated the occupancy of each R-loop as FPKM (fragments per kb per million
uniquely mapped reads) for their signals. Genome-wide R-loop signals were calculated
from absolute mapped read density over 300 bp sliding windows using ‘ngs.plot.r’ from
ngsplot (version 2.63, BMC Genomics, Basingstoke, UK) [38].

4.3. ChIP-seq Data Processing

For ChIP-seq data processing, the original data were controlled by Cutadapt software
to remove low-quality reads. Next, the clean reads were aligned to mm10 by using Bowtie2
(version 2.2.9) with default parameters [39]. Then we used MACS2 (version 2.1.0, Current
Protocols in Bioinformatics, Hoboken, NJ, USA) (with the parameters setting: macs2
callpeak −t $treatmentsam −c $controlsam −f SAM −keep-dup 1 −n $name −g 1.87e9
−B −q 0.01) to call binding peaks [34,35]. The ChIP-seq coverage densities of H3K4me3
and H3K27me3 were plotted by mapping reads to regions that were 2-kb up/downstream
of the TSS for each gene, respectively. Each gene region was split into 300 equally sized
bins. The average ChIP-Seq density of H3K4me3 and H3K27me3 in the R-loop regions
were calculated using ngsplot (version 2.63) [38].

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125644
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125644
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67520
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67520
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4.4. RNA-seq Analysis

The pair-end raw RNA-seq reads were trimmed by the Trimmomatic (version 0.38,
Bioinformatics, Oxford, UK) [40] and mapped to mm10 reference genome using Hisat2
(version 2.1.0, Nature Protocols, New York, NY, USA) aligner with default parameters [41].
The retained reads were subsequently assembled by using Stringtie (version 1.3.5, Nature
Biotechnology, New York, NY, USA) [41,42]. To eliminate the effects of sequencing depth
and transcript length, normalized FPKM (fragments per kilobase of exon model per million
mapped reads) for each gene were conducted. Read counts for each gene were calculated
using HTseq (version 0.11.0, Bioinformatics, Oxford, UK) [43].

4.5. Identification of R-loop Peaks on Repetitive Elements and Transcription Factor (TF) Family

For alignments to repetitive regions in the genome, repeat annotations were downloaded
from the University of California at Santa Cruz (UCSC) browser (RepeatMasker, mm10) [44].
R-loop peaks were assigned to TF families according to the JASPAR database [45]. TF families
with fewer than two members were grouped under “Other.”

4.6. Differential Gene Expression Analysis

Differential expression analysis was performed by R package DEseq2 [46,47]. For each
comparison, genes with a Benjamini and Hochberg-adjusted p value (false discovery rate,
FDR) < 0.05 and the absolute of Log2(fold change, FC) > 1 were regarded as differential
expression genes (DEGs) [48–50].

4.7. Fuzzy C-Means (FCM) Clustering Analysis

Fuzzy cluster analysis was performed by using mFuzz [51] for cluster analysis of the
gene expression pattern, the normalized expression levels of all DEGs between iPSC and
D0 were analyzed.

4.8. Transcriptional Regulatory Networks Analysis

Transcriptional regulatory network (TRNs) analysis of representative genes asso-
ciated with R-loops (as shown in Figure 5D) were implemented by STRING database
(version 11.0) [52]. Then, the TRNs were visualized by Cytoscape (version 3.7.0, Genome
Research, New York, NY, USA) [53,54]. In TRNs, the color indicates R-loop signals and box
size indicates gene expression levels.

4.9. Functional Enrichment and Statistical Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
was performed based on the R package clusterProfiler (version 3.14.3, OMICS: A Journal
of Integrative Biology, New York, NY, USA) [55]. Statistical analyses were implemented
with R (version 3.6.0, http://www.r-project.org, accessed on 1 June 2020). Representative
KEGG pathways with p values < 0.05 were summarized in each gene cluster. The Pearson
correlation coefficients (PCC) between biological replicates were calculated using the ‘cor’
function with default parameters [56,57]. A Student’s t test was performed using the
‘t.test’ function with default parameters, and p values < 0.05 were considered statistically
significant [58,59].

5. Conclusions

Taken together, our results not only profiled the unique dynamic patterns of R-loops
in reprogramming, but also deciphered that a crosstalk exists between R-loops and HMs to
regulate cell fate transition during the reprogramming process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23031567/s1.

http://www.r-project.org
https://www.mdpi.com/article/10.3390/ijms23031567/s1
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