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ABSTRACT Four gene expression subtypes of high-grade serous ovarian cancer (HGSC) have been
previously described. In these early studies, a fraction of samples that did not fit well into the four subtype
classifications were excluded. Therefore, we sought to systematically determine the concordance of
transcriptomic HGSC subtypes across populations without removing any samples. We created a
bioinformatics pipeline to independently cluster the five largest mRNA expression datasets using k-means
and nonnegative matrix factorization (NMF). We summarized differential expression patterns to compare
clusters across studies. While previous studies reported four subtypes, our cross-population comparison
does not support four. Because these results contrast with previous reports, we attempted to reproduce
analyses performed in those studies. Our results suggest that early results favoring four subtypes may have
been driven by the inclusion of serous borderline tumors. In summary, our analysis suggests that either two
or three, but not four, gene expression subtypes are most consistent across datasets.
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Invasive ovarian cancer is a heterogeneous disease typically diagnosed
at a late stage, with high mortality (Kurman and Shih 2010). The most
aggressive and common histologic type is HGSC (Vang et al. 2009),
characterized by extensive copy number variation and TP53mutation
(Cancer Genome Atlas Research Network 2011). Given the genomic

complexity of these tumors, mRNA expression can be thought of as a
summary measurement of these genomic and epigenetic alterations, to
the extent that the alterations influence gene expression in either the
cancer or stroma.

Four gene expression subtypes with varying components of mesen-
chymal, proliferative, immunoreactive, and differentiated gene expres-
sion signatures have been reported in all studies of HGSC to date
(Bonome et al. 2008; Tothill et al. 2008; Cancer GenomeAtlas Research
Network 2011; Tan et al. 2013; Konecny et al. 2014). Two of these
studies also observed survival differences across subtypes (Tothill
et al. 2008; Konecny et al. 2014). Tothill et al. (2008) first identified
fourHGSC subtypes (as well as two other subtypes that largely included
low-grade serous and serous borderline tumors) in an Australian pop-
ulation using k-means clustering. Later, The Cancer Genome Atlas
(TCGA) used NMF and also reported four subtypes that were labeled
as: “mesenchymal,” “differentiated,” “proliferative,” and “immunoreac-
tive” (Cancer Genome Atlas Research Network 2011). The TCGA
group also applied NMF clustering to the Tothill data and observed
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similar subtypes (Cancer Genome Atlas Research Network 2011).
Konecny et al. (2014) applied NMF to cluster an independent set of
HGSC samples and reported four subtypes, which they labeled as C1–
C4 (Konecny et al. 2014). These subtypes were similar to those in the
TCGA, but a subtype classifier trained on these subtypes better differ-
entiated survival in their own data, data fromTCGA, and Bonome et al.
(2008).

Despite the extensive research in the area, work to date has several
limitations. In both the TCGA and Tothill studies,�8–15% of samples
were excluded from analyses. A reanalysis of the TCGA data showed
that over 80% of the samples could be assigned to more than one
subtype (Verhaak et al. 2012). In more recent TCGA analyses by the
Broad Institute Genome Data Analysis Center (GDAC) Firehose ini-
tiative, with the largest number of HGSC cases evaluated to date (n =
569), three subtypes fit the data better than four (Broad Institute TCGA
Genome Data Analysis Center 2016a,b). This uncertainty in HGSC
subtyping led us to determine if four homogeneous subtypes exist
across study populations.

Our goal is to rigorously assess the number of HGSC subtypes. We
reanalyze data from the five largest independent studies to date (and add
an analysis of our own collection of samples) using a standardized
bioinformatics pipeline. We apply k-means clustering as well as NMF
to each population and do not remove “hard-to-classify” samples, as was
done in previous studies (Tothill et al. 2008; Cancer Genome Atlas Re-
search Network 2011). We perform independent analyses within each
dataset and compare subtyping results across studies. We summarize
each subtype’s expression patterns using moderated t-score vectors and
comprehensively characterize correlations between subtypes across pop-
ulations. Thismethod contrasts with earlier reanalyses that pooledHGSC
datasets together to identify subtypes (Tan et al. 2013). We sidestep gene
expression platform or dataset biases, which could affect clustering if
under or overcorrected, by comparing dataset- and subtype-specific sum-
mary statistics instead of pooling raw gene expression data.

Our cross-population comparative analysis does not support the
conclusion that fourHGSCsubtypes exist; rather, thedatamore strongly
support an interpretation that there are either two or three subtypes.We
show that the support for four subtypes observed in TCGA’s reanalysis

of the Tothill data (Cancer Genome Atlas Research Network 2011)
is lost when serous borderline tumors, which have very different
genomic profiles and survival compared to HGSC (Bonome et al.
2005; Ouellet et al. 2005), are excluded before clustering. Our work
also highlights the impact that a single study can have on the
trajectory of subtyping research and suggests the importance of
periodic histopathologic review and rigorous reanalysis of existing
data for cross-study commonalities.

MATERIALS AND METHODS

Data inclusion
We applied inclusion criteria as described in detail in the supplemental
materials using data from the R package, curatedOvarianData
(Ganzfried et al. 2013), and our own dataset (“Mayo”). A subset of
these data has been published previously (GSE53963; Konecny et al.
2014), but the present dataset (GSE74357) contains 343 more samples
(SupplementalMaterial, Table S1). Briefly, these criteria selectedHGSC
samples from studies including at least 130 cases assayed on standard
microarrays. We included only HGSC and high-grade endometrioid
samples [which are molecularly similar to HGSC (Köbel et al. 2013)] as
identified by study-specific pathological review. Data from the new
Mayo HGSC samples, as well as other samples with mixed histologies
and grades, for a total of 528 additional ovarian tumor samples, were
deposited in NCBI’s Gene Expression Omnibus (GEO) (Edgar et al.
2002); these data can be accessed with the accession number GSE74357
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74357). All
study participants provided written informed consent, and this work
was approved by the Mayo Clinic and Dartmouth College Institutional
Review Boards.

After applying the unified inclusion criteria, our final analytic datasets
included: TCGA (n = 499) (Cancer Genome Atlas Research Network
2011; Broad Institute TCGA Genome Data Analysis Center 2016a);
Mayo (n = 379; GSE74357) (Konecny et al. 2014); Yoshihara (n = 256;
GSE32062.GPL6480) (Yoshihara et al. 2012); Tothill (n = 242; GSE9891)
(Tothill et al. 2008); and Bonome (n = 185; GSE26712) (Bonome et al.
2008) (Table 1). We restricted analyses to the 10,930 genes measured
successfully in all five populations (Figure S1).

n Table 1 Characteristics of the populations included in the five analytic datasets

TCGA Mayo Yoshihara Tothill Bonome

GEO GSE74357 GSE32062 GSE9891 GSE26712
Platform Affymetrix HGU1133 Agilent 4x44K Agilent 4x44K Affymetrix HGU1133 Affymetrix HGU1133
Population United States United States Japan Australia United States
Original sample size 578 528 260 285 195
Analytic sample sizea 499 379 256 242 185
Age [Mean (SD)] 60.0 (11.6) 62.9 (11.3) NR 60.3 (10.3) 61.5 (11.9)
Stage

I 10 (2%) 7 (3%) 0 (0%) 11 (5%) 0 (0%)
II 17 (4%) 11 (3%) 0 (0%) 8 (4%) 0 (0%)
III 351 (80%) 275 (73%) 202 (79%) 178 (83%) 146 (80%)
IV 63 (14%) 86 (23%) 54 (21%) 17 (8%) 36 (20%)

Grade
2 55 (12%) 3 (1%) 130 (51%) 80 (37%) NR
3 386 (88%)b 376 (99%) 126 (49%) 134 (63%) NR

Debulking
Optimal 325 (74%) 287 (76%) 101 (39%) 132 (62%) 89 (49%)
Suboptimal 116 (26%) 87 (23%) 155 (61%) 82 (38%) 93 (51%)

TCGA, The Cancer Genome Atlas; NR, data not reported.
a
Samples without survival data were excluded in survival analyses.

b
One sample was labeled as “Grade 4” in TCGA.
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Clustering
We performed independent clustering within each dataset to avoid
potential biases fromdifferentplatformsor studies.Asdetailed inFileS1,
we identified the 1500 genes with the highest variance from each dataset
and used the union of these genes (n = 3698) for clustering. We per-
formed clustering within each dataset using each potential k from 2 to
4 clusters. We performed k-means clustering in each population using
the R package “cluster” (version 2.0.1) (Maechler et al. 2014) with
20 initializations. We repeated these analyses using NMF in the R
package “NMF” (version 0.20.5) (Brunet et al. 2004) with 100 different
random initializations for each k. As done in prior studies, we calcu-
lated cophenetic correlation coefficients to select appropriate k for each
dataset after NMF clustering with 10 consensus runs. The cophenetic
correlation identifies appropriate solutions and tends to decrease with
increasing k unless a more accurate solution is observed at a larger k.

Identification of analogous clusters within and
across studies
We performed significance analysis of microarray (SAM) (Tusher et al.
2001; Schwender et al. 2006) analysis on all clusters from each study
using all 10,930 genes. This resulted in a cluster-specific moderated
t statistic for each of the input genes (Schwender 2012). To summarize
the expression patterns of all 10,930 genes for a specific cluster in a
specific population, we combined gene-wise moderated t statistics into
a vector of length 10,930. We repeated the SAM analysis using only the
MAD subset genes and the results were similar. The TCGA subtype
labels have become widely used in the field. To generate comparable
labels across k and across studies, we mapped our TCGA subtype
assignments back to the original TCGA labels to define reference clus-
ters at k = 4 (that is, mesenchymal-like, proliferative-like, etc.). Clusters
in other populations that were most strongly correlated with the TCGA
clusters were assigned the same label.

Clustering analysis of randomized data
Any clustering procedure is expected to induce strong correlational
structure across clusters within a dataset, even if there is no true
underlying structure. However, if there is no true underlying structure,
clusters across datasets are not expected to be correlated. To assess this,
we used the same datasets but shuffled each gene’s expression vector to
disrupt the correlative structure. We performed within- and cross-
study analyses of cluster identification using this set of data that were
parallel to those performed using the nonrandomized data.

Assessing the reproducibility of single-
population studies
We compared our sample assignments at k = 2–4 to the four subtypes
reported in the Tothill, TCGA, and Konecny publications (Tothill et al.
2008; Cancer Genome Atlas Research Network 2011; Konecny et al.

2014). Because the labels that were assigned in TCGA’s reanalysis of the
Tothill data were not available, we performed NMF consensus cluster-
ing of Tothill’s data without removing low malignant potential (LMP)
samples in order to generate labels for comparison.

Data availability
We provide software under a permissive open source license to down-
load the required data and reproduce our analyses (Way et al. 2015).
Analyses were run in a Docker container, allowing the computing
environment to be recreated (Boettiger 2015). Our Docker image can
be pulled from: https://hub.docker.com/r/gregway/hgsc_subtypes/.
This allows interested users to freely download the software, reproduce
the analyses, and then build on this work. All data used in this analysis
is publicly available including data we generated (accessible under GEO
accession GSE74357).

RESULTS

Clustering
To visually inspect the consistency and distinctness of clusters, we
compared sample-by-sample correlation heatmaps. For k = 2–4 within
each study, we observed high sample-by-sample correlations within
clusters and relatively low sample-by-sample correlations across clus-
ters (Figure S2). Clustering results using NMF were similar to kmeans
results (Figure S3).

Correlation of cluster-specific expression patterns
Across datasets, we observed strong positive correlations of moderated
t score vectors between analogous clusters in TCGA, Tothill, Mayo, and
Yoshihara (Figure 1 and Table 2). However, clustering of the Bonome
data did not correlate strongly with clusters identified in the other
datasets (Table 2). We believe that we were unable to assign parallel
subtypes in Bonome because of either RNA contamination or inappro-
priate grading assignments. However, more work is required in order
to identify exactly why we were unable to classify. In contrast to our
analyses, which independently cluster data from each study, Konecny
et al. (2014) assigned subtypes to the Bonome data by applying a Pre-
dictive Analysis of Microarray (PAM) (Tibshirani et al. 2002) to their
own subtypes to define reduced, subtype-specific predictive gene lists.
They then assigned Bonome samples based on the highest Spearman
correlation against subtype centroids (Konecny et al. 2014).

To assess our analytical approach, we performed an analysis using
randomized data. This showed that within-population correlation
structure was induced by clustering, but structure between populations
was not (Figure S4). The off-diagonals in this figure are close to, but not
exactly, zero. Permutation induces more independent features than in
real gene expression data and therefore may produce much lower
correlations if structure is present in real data. Comparing Figure 1

Figure 1 Significance analysis of microarray
(SAM) moderated t score Pearson correlation
heatmaps reveal consistency across datasets.
(A) Correlations across datasets for k means
k = 2. (B) Correlations across datasets for
k means k = 3. (C) Correlations across datasets
for k means k = 4. TCGA, The Cancer Genome
Atlas.
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with Figure S4, we observed much higher correlation across datasets
(Figure 1), which was lost after randomization (Figure S4). For exam-
ple, for k = 2, the TCGA and Mayo cluster correlations for analogous
clusters was high (top left panel in Figure 1). Conversely, the same
relationship in randomized data (second row, first column panel in
Figure S4) showed correlations near zero. This indicates that the high
correlations observed across datasets in Figure 1 are induced by similar
underlying structure in the data.

Across studies, positive correlations between analogous clusters and
negative correlations between nonanalogous clusters were stronger for
clusters identified when k = 2 and k = 3 than when k = 4 (Figure 1), with
comparable statistical precision (Table S2). These cross-population com-
parisons suggested that two and three subtypes fit HGSC gene expression
data more consistently than the four widely accepted subtypes.

Within each population, clusters identified by NMF were similar to
those identified using k-means clustering (Figure 2), suggesting that these
results were independent of clustering algorithm. With NMF, both pos-
itive and negative correlations were stronger for k = 2 and k = 3 than for
k= 4. Across k= 3 and k= 4, correlationswere strongest for clusters 1 and
2. Sample cluster assignments for both k-means and NMF clusters are
provided in Table S3.

Comparison with previously-identified HGSC clusters
Our clustering results for the Tothill, TCGA, and Mayo datasets were
highly concordant with the clustering described in the original publica-
tions (Tothill et al. 2008; Cancer Genome Atlas Research Network 2011;
Konecny et al. 2014), as evidenced by the high degree of consistent
overlap in sample assignments to thepreviously-defined clusters (Table 3).
Our cross-study cluster 1 was mostly mapped to the “Mesenchymal”
label from TCGA, “C1” from Tothill, and “C4” from Mayo. This cluster
was themost stable in our analysis within all datasets, across k = 2, 3, and
4, and across clustering algorithms. Cross-study cluster 2, which was also
observed consistently, was most similar to the “Proliferative” label from
TCGA, “C5” fromTothill, and “C3” fromMayo. Cross-study cluster 3 for
k = 3 was associated with both the “Immunoreactive” and “Differenti-
ated” TCGA labels, “C2” and “C4” in Tothill, and “C1” and “C2” in
Mayo. For analyses where k = 4, the third cluster was associated with
“Immunoreactive,” “C2,” and “C1,” while the fourth cluster was associ-
ated with “Differentiated,” “C4,” and “C2” for TCGA, Tothill, andMayo,
respectively. For additional comparisons see the Supplementary Mate-
rials (File S1), which includes survival analyses (Table S4, Figure S9),
cluster specific genes (Table S5), and pathway analyses (Table S6).

Meta-research into previous HGSC subtyping studies
Each of the publications that only considered high-grade samples
(Cancer Genome Atlas Research Network 2011; Konecny et al. 2014)

found clustering coefficients consistent with k = 2, k = 3, and k = 4.
Nevertheless, each publication concludes the existence of four subtypes,
while our cross-population analysis suggested that two or three clusters
fit HGSC data better than four clusters.

To compare with previous results, we evaluated the number of
subtypes thatfit thedatabestwithin eachstudybycalculating cophenetic
correlation coefficients at k = 2 through k = 8 clusters inclusively.While
cophenetic correlations typically decrease with increasing k, if substruc-
ture is present in the data, we would expect there to be higher values for
the most appropriate number of subtypes. We observed a similar pat-
tern in each population (Figure 3A, Figure S5, Figure S6, and Figure S7)
in which the highest cophenetic correlation was reached for two clus-
ters and, based on the heatmaps, appeared to have the highest consen-
sus (also see Figure S8). In every dataset, four clusters were not observed
to represent the data better than two or three. The only results in pre-
vious studies that contradicted this work were from TCGA’s reanalysis
of the Tothill data. According to Figure S6.2 in the TCGA paper, the
reanalysis included serous borderline tumors (i.e., tumors with low
malignant potential) (n = 18). The inclusion of these tumors in the
TCGA HGSC reanalyses was done even though, in the original Tothill
paper, the serous borderline tumors had a unique gene expression
pattern and clustered entirely in a group labeled “C3.”

To assess the extent to which serous borderline tumors inclusion
drove the TCGA reanalysis results, we reproducedTCGA’s reanalysis of
the Tothill dataset, including the serous borderline tumors (n = 18); we
indeed observed that the cophenetic correlation is higher for k = 4 than
k = 3 (Figure 3A). However, when we appropriately removed these
serous borderline tumors, we observed an increase in the k = 3 cophe-
netic correlation (Figure 3B). The results that support four subtypes
were generated during clustering of HGSC and serous borderline tu-
mors combined. Subtyping analyses of HGSC alone reveal less than
four subtypes.

DISCUSSION
Although prior studies have reported the existence of four molecular
subtypes of HGSC ovarian cancer (Cancer Genome Atlas Research
Network 2011; Tothill et al. 2008; Konecny et al. 2014; Broad Institute
TCGA Genome Data Analysis Center 2016a), our analysis suggests the
existence of only two or three subtypes. This conclusion is based on our
observation that concordance of analogous subtypes across study pop-
ulations was stronger for two or three clusters as opposed to four.
Previous studies used either k-means or NMF clustering, and because
our results contradicted prior work, we performed analyses using both
of these methods. Results for each population were similar for the k
means and NMF clustering algorithms, suggesting that the clustering
algorithm did not drive the observed differences.

Because cross-population comparisons suggest that two and three
clusters show more consistency than four, we explored within-study
heuristics (cophenetic correlation coefficients) that suggested four sub-
types in previous research. The cophenetic coefficient measures how
precisely a dendrogram retains sample-by-sample pairwise distances
and can be used to compare clustering accuracy (Sokal and Rohlf 1962).
While both the Konecny and TCGA studies reported four subtypes, in
both analyses, k = 2 and k = 3 resulted in higher cophenetic coefficients
than k = 4 [Figure 2A inKonecny et al. (2014) and Figure S6.1 in TCGA
(Cancer Genome Atlas Research Network 2011)]. We observed the
same patterns in our own reanalysis of TCGA and analysis of the
expanded Mayo cohort (Figure S5 and Figure S6). Yoshihara and
Tothill did not report cophenetic coefficients, but our analysis of each
revealed similar patterns to TCGA and Konecny (Figure 3A, Figure
S7, Figure S8, and Figure S9).

n Table 2 SAM moderated t score vector Pearson correlations
between analogous clusters across populations

Cluster 1a Cluster 2 Cluster 3 Cluster 4

k = 2a 0.62–0.81 0.62–0.81 NR NR
k = 3a 0.77–0.85 0.80–0.90 0.65–0.77 NR
k = 4a 0.77–0.85 0.83–0.89 0.51–0.76 0.61–0.75
Bonome k = 2b 20.08–0.24 20.08–0.24 NR NR
Bonome k = 3b 0.45–0.46 20.02–0.12 0.22–0.42 NR
Bonome k = 4b 0.50–0.57 20.04–0.04 0.13–0.29 0.26–0.43

TCGA, The Cancer Genome Atlas; NR, data not reported.
a
Correlation ranges for TCGA, Mayo, Yoshihara, and Tothill.

b
Bonome is removed from gene set analyses because of low correlating
clusters.
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In the previous literature, the only report that suggested four sub-
types represented the data better than three was TCGA’s reanalysis
of the Tothill data (Figure S6.2 in their publication); the cophenetic
coefficient dropped dramatically at k = 3 before recovering at k = 4
(Cancer Genome Atlas Research Network 2011). Notably, TCGA’s
figure legend for this supplemental result indicates that they did not
remove serous borderline tumors from the Tothill data. Our analysis of
the Tothill data differed from TCGA’s in that we excluded serous
borderline tumors, and instead supports the existence of two or three
subtypes. To evaluate the influence of these serous borderline tumors in
the Tothill data, we repeated our analyses including serous borderline
tumors, and observed a drop in the cophenetic coefficient for k =
3 relative to k = 4 (Figure 3). This suggests that the four subtypes
observed in TCGA’s analysis of the Tothill data may be due, in part,
to the inclusion of serous borderline tumors.

There are several limitations to note in the HGSC data we analyzed.
Given the intratumor heterogeneity that is likely to exist (Blagden2015),

our approach would be strengthened by having data on multiple areas
of the tumors. Additionally, since histology and grade classification
have changed over time (Silverberg 2000; Soslow 2008), it is unclear
whether the populations we studied used comparable guidelines to
determine histology and grade. We attempted to exclude all low-grade
serous and low-grade endometrioid samples because they often have
very different gene expression patterns and more favorable survival
compared to their higher-grade counterparts (Vang et al. 2009). It is
unclear why the Bonome clusters did not correspond to the clusters
observed in other populations. Lack of consistency could result from
unreported biological differences.

In summary, our study demonstrates that two clusters of HGSC,
“mesenchymal-like” and “proliferative-like,” are clearly and consis-
tently identified within and between populations. This suggests that
there are two reproducible HGSC subtypes that are either etiologically
distinct, or acquire phenotypically determinant alterations through
their development. Our study also suggests that the previously

Figure 2 Significance analysis of microarray (SAM) moderated t score Pearson correlation heatmaps of clusters formed by k means clustering and
NMF clustering reveals consistency across clustering methods. Within dataset results are shown for both methods when setting each algorithm to
find 2, 3, and 4 clusters. NMF, nonnegative matrix factorization; TCGA, The Cancer Genome Atlas.

n Table 3 Distributions of sample membership in the clusters identified in our study by the original cluster assignments in the TCGA,
Tothill, and Konecny studies

TCGA Tothill Konecny

Mes Pro Imm Dif NC C1 C2 C3 C4 C5 C6 NC C1 C2 C3 C4 NA

k = 2
Cluster 1 98 7 93 68 21 78 39 1 0 0 0 11 36 21 2 26 114
Cluster 2 1 127 2 60 22 0 5 5 44 35 2 22 6 39 41 0 94

k = 3
Cluster 1 98 2 20 11 6 77 22 0 0 0 0 6 16 13 2 26 82
Cluster 2 1 111 0 11 16 1 0 0 3 35 2 5 0 16 36 0 56
Cluster 3 0 21 75 106 21 0 22 6 41 0 0 22 26 31 5 0 70

k = 4
Cluster 1 97 4 12 12 5 74 0 0 0 0 0 0 7 12 3 25 62
Cluster 2 1 85 0 0 13 1 0 0 1 34 2 5 0 9 31 0 41
Cluster 3 0 5 80 3 12 3 42 0 1 1 0 14 29 6 0 1 57
Cluster 4 1 40 3 113 13 0 2 6 42 0 0 14 6 33 9 0 48

Clusters identified in our study using k-means clustering with k = 2, k = 3, and k = 4. The corresponding labels for the generally similar HGSC gene expression
subtypes observed in the TCGA, Tothill, and Konecny studies are, respectively: mesenchymal/C1/C4, proliferative/C5/C3, immunoreactive/C2/C1, and differentia-
ted/C4/C2). TCGA, The Cancer Genome Atlas; Mes, mesenchymal; Pro, proliferative; Imm, immunoreactive; Dif, differentiated; NC = samples not clustered in original
publication; NA = samples not assessed at the time of the original publication.
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described “immunoreactive-like” and “differentiated-like” subtypes ap-
pear to be more variable across populations, and tend to be collapsed
into a single category when three subtypes are specified. These may
represent, for example, steps along an immunoreactive continuum or
could represent the basis of a third, but more variable, subtype. Un-
derstanding the underlying biology of the robust, well-defined “mes-
enchymal-like” and “proliferative-like” subtypes universally observed
across populations could lead to targeted treatments that might influ-
ence survival. More work needs to be done to determine whether the
heterogeneous samples that do not fall into one of these clear groups
can be classified into homogeneous subtypes using other characteristics
such as methylation markers or a combination of genomic measures.
Our analysis reveals the importance of critically reassessing molecular
subtypes across multiple large study populations using parallel analyses
and consistent inclusion criteria. New systematic approaches hold
promise for the implementation of such analyses (Celik et al. 2016;
Planey and Gevaert 2016). Our results underscore the importance of

ovarian cancer histopathology, contradict the four HGSC subtype hy-
pothesis, and suggest that there may be fewer HGSC molecular sub-
types with variable immunoreactivity and stromal infiltration.
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