
Sun et al. J Transl Med          (2019) 17:159  
https://doi.org/10.1186/s12967-019-1908-1

RESEARCH
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Abstract 

Background:  The tumor-associated microenvironment plays important roles in tumor progression and drug resist-
ance. However, systematic investigations of macrophage–tumor cell interactions to identify novel macrophage-
related gene signatures in gliomas for predicting patient prognoses and responses to targeted therapies are lacking.

Methods:  We developed a multicellular gene network approach to investigating the prognostic role of mac-
rophage–tumor cell interactions in tumor progression and drug resistance in gliomas. Multicellular gene networks 
connecting macrophages and tumor cells were constructed from re-grouped drug-sensitive and drug-resistant sam-
ples of RNA-seq data in mice gliomas treated with BLZ945 (a CSF1R inhibitor). Subsequently, a differential network-
based COX regression model was built to identify the risk signature using a cohort of 310 glioma samples from the 
Chinese Glioma Genome Atlas database. A large independent validation set of 690 glioma samples from The Cancer 
Genome Atlas database was used to test the prognostic significance and accuracy of the gene signature in predicting 
prognosis and targeted therapeutic response of glioma patients.

Results:  A macrophage-related gene signature was developed consisting of twelve genes (ANPEP, DPP4, PRRG1, 
GPNMB, TMEM26, PXDN, CDH6, SCN3A, SEMA6B, CCDC37, FANCA, NETO2), which was tested in the independent 
validation set to examine its prognostic significance and accuracy. The generation of 1000 random gene signatures by 
a bootstrapping scheme justified the non-random nature of the macrophage-related gene signature. Moreover, the 
discovered gene signature was verified to be predictive of the sensitivity or resistance of glioma patients to molecu-
larly targeted therapeutics and outperformed other existing gene signatures. Additionally, the macrophage-related 
gene signature was an independent and the strongest prognostic factor when adjusted for clinicopathologic risk 
factors and other existing gene signatures.

Conclusion:  The multicellular gene network approach developed herein indicates profound roles of the mac-
rophage-mediated tumor microenvironment in the progression and drug resistance of gliomas. The identified 
macrophage-related gene signature has good prognostic value for predicting resistance to targeted therapeutics 
and survival of glioma patients, implying that combining current targeted therapies with new macrophage-targeted 
therapy may be beneficial for the long-term treatment outcomes of glioma patients.
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Background
Gliomas are among the most malignant cancers, com-
monly inducing profound and progressive disability and 
causing death in most cases [1]. Although many cancer 
cell-targeted therapeutic agents have been developed, 
intrinsic or acquired resistance to such therapies often 
emerges during long-term treatment [2]. Therefore, the 
preexisting or newly developed tolerance of cancer cells 
to molecularly targeted therapeutic drugs is a main 
cause of the eventual failure of most existing targeted 
therapies.

Several forms of cancer cell-intrinsic mechanisms of 
drug resistance have been revealed, including genetic/
epigenetic mechanisms [3], posttranslational mecha-
nisms [4–6], cellular mechanisms [7, 8], and meta-
bolic mechanisms [9]. Recently, an increasing number 
of experiments indicated that the tumor microenvi-
ronment may play important roles in cancer progres-
sion and drug resistance [10]. Therefore, uncovering 
the intercellular interactions between cancer cells and 
microenvironmental cells is crucial for identifying 
effective biomarkers for predicting drug resistance and 
cancer progression, as well as understanding the mech-
anisms of acquired resistance and prioritizing potential 
drug targets. Importantly, therapies targeting the tumor 
microenvironment have been proposed as a promising 
approach for treating cancers, including gliomas [11, 
12]. Several macrophage-targeted therapies for glio-
mas have been developed [10], further highlighting the 
importance of tumor–microenvironment interactions 
in determining glioma outcome.

Systems biology approaches are powerful for quan-
titatively studying various forms of drug resistance at 
multiple scales, which can provide insights into under-
lying mechanisms and experimentally testable predic-
tions [13]. Computational methods have also been used 
to identify prognostic biomarkers and predict drug 
resistance. However, conventional methods for glioma 
biomarker identification often focus on individual cell 
types or molecules rather than on the interactions 
between different cell types and molecules. Exploring 
the interactions between tumor cells and microenvi-
ronmental cells, such as macrophages, from a network 
view can more insightfully help understand the mecha-
nisms that underlie cancer progression and drug resist-
ance and discover more robust and accurate biomarkers 
[14].

In this study, we developed a multicellular gene net-
work-based approach to investigating intercellular gene 

associations between tumor cells (TCs) and tumor-
associated macrophages (TAMs) and to identify bio-
markers of prognosis and drug resistance in gliomas. 
We used RNA-seq data from mice bearing gliomas 
treated with BLZ945 to construct drug-sensitive and 
drug-resistant multicellular gene networks. Based on 
the differential network, a macrophage-related gene 
signature was discovered using a dataset of glioma 
patients from the Chinese Glioma Genome Atlas 
(CGGA) database. An independent dataset from The 
Cancer Genome Atlas (TCGA) database was used for 
validation. Time-dependent receiver operator charac-
teristics (ROC) analysis was used to assess the prog-
nostic significance and accuracy of the gene signature 
for predicting survival of glioma patients. Moreover, 
the macrophage-related gene signature was found to be 
predictive of the targeted therapy outcome in glioma 
patients and outperformed existing gene signatures 
including conventional EGFR signature [15, 16] and an 
immune-related gene signature [17], which were veri-
fied using the validation dataset. Moreover, we showed 
that the network perturbation analysis improved the 
model-building process beyond the conventional meth-
ods of identifying signature genes based on differential 
expression.

Methods
Preclinical RNA‑seq data analysis
RNA-seq data (FPKM) of TCs and TAMs in mice glio-
mas were downloaded from the Gene Expression Omni-
bus (GEO) website (https​://www.ncbi.nlm.nih.gov/geo/) 
under accession number GSE69104. The preclinical 
experiment [10] investigated the role of TAMs in glioma 
immunotherapy with BLZ945, a CSF1R inhibitor, where 
all TC-TAM paired samples were divided into 3 groups, 
i.e., Vehicle (Veh, 5 samples), Endpoint (EP, 6 samples, 
i.e., drug-sensitive), and Rebound (Reb, 4 samples, i.e., 
drug-resistant) tumors (Additional file 1: Table S1).

As described in detail in Additional file 1: Text S1, the 
expression level of each gene in the drug-resistant and 
drug-sensitive samples were normalized to their mean 
values in the vehicle samples. We selected significantly 
differentially expressed genes (DEGs) between the drug-
resistant samples (Reb) and the drug-sensitive samples 
(Ep) for both TCs and TAMs by calculating the fold 
changes (FCs) and false discovery rate (FDR)-adjusted p 
values using t test. A gene with |FC| > 1.5 and adjusted p 
value less than 0.05 was considered as a DEG, resulting in 
a list of 1141 DEGs.

Keywords:  Multicellular gene network, Macrophages, Prognostic signature, Drug resistance, Glioma, Biomarker
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Multicellular gene network construction and differential 
network analysis
The top 50 DEGs with the largest absolute fold change 
value in each type of cells were selected for gene net-
work construction. We built multicellular gene asso-
ciation networks between TAMs and TCs to investigate 
the changes between these cell types during the emer-
gence of drug resistance from a network perspective. We 
classified the above DEGs into TC-specific and TAM-
specific DEGs and computed the Pearson correlation 
coefficients (PCCs) for each pair of these DEGs. An edge 
is added to the TC-TAM gene network if the correspond-
ing |PCC| > 0.95 and p value < 0.05. In this way, we built 
two-types of edges, including ‘intracellular edges’ within 
TCs or TAMs and ‘intercellular edges’ between TCs and 
TAMs, to construct the multicellular gene network.

Based on the work of one of our authors [18], we devel-
oped a network perturbation analysis technique for mul-
ticellular gene networks. As described in detail in Text 
S1, first we used the reference samples (N = 6) in the Ep 
group to construct a sensitive network (Fig. 1a) for pairs 
of correlated DEGs in TCs and TAMs (|PCC| > 0.95 and 
p value < 0.05). We then added each single drug-resistant 
sample (Rebi, i = 1, 2, 3, 4) to the reference samples in the 
Ep group to construct 4 sets of sample-specific perturbed 
samples, respectively (Additional file  1: Table  S1). We 
used each set of perturbed samples (N = 7) to construct 
perturbation networks (Fig.  1b). The addition of each 
single Reb sample is the cause of differences between the 
sensitive and perturbation networks. If the gene expres-
sion profile in the added sample, Rebi, was similar to 
that in the Ep samples, the perturbation of the PCC was 
negligible. However, if some gene expression levels were 
remarkably different between the single Reb sample and 
the Ep samples, significant changes in the PCCs of cer-
tain gene pairs were induced upon the addition of Rebi to 
the reference samples.

Based on such network perturbation analysis (Fig. 1c), 
the robust significantly different PCCs (ΔPCC, see Text 
S1) of gene pairs were chosen to construct a differential 
network. Specifically, we selected significantly different 
edges, represented by ΔPCC, by setting a threshold of 
|ΔPCC| > 0.05 for each perturbation network versus the 
sensitive network. If a gene-pair was differentially corre-
lated in at least 3 perturbation networks compared to the 
sensitive network, this edge was selected as a robust dif-
ferential edge. We defined three types of edges in the dif-
ferential network: correlation-gained edges (ΔPCC > 0), 
correlation-lost edges (ΔPCC < 0), and correlation-invar-
iant edges (ΔPCC = 0). The differential network reflected 
the changes in both intracellular and intercellular edges 
in the multicellular gene networks of mice with distinct 
therapeutic responses to the CSF1R inhibition.

Functional enrichment analysis
The functional enrichment of genes in the differen-
tial network was analyzed using the newest version of 
Metascape (http://metas​cape.org), a gene annotation 
and enrichment analysis database that integrates ontol-
ogy sources, including the KEGG Pathway, GO Biological 
Processes, Reactome Gene Sets, Canonical Pathways and 
CORUM databases. The whole genome was used as the 
enrichment background. Terms of pathways or processes 
with a p value < 0.01 (accumulative hypergeometric test), 
a minimum of 3 genes, and an enrichment factor > 1.5 
were collected and grouped into clusters based on their 
membership similarities.

Prognostic signature identification and validation
The differential network might capture robust topologi-
cal differences between the CSF1R inhibitor-sensitive 
network and inhibitor-resistant networks and reflect 
potential changes in the gene interactions across TCs and 
TAMs during the acquisition and development of drug 
resistance. It is therefore reasonable to speculate that 
the genes in the differential network play critical roles in 
promoting tumor growth, even under drug pressure. We 
hypothesized that the expression levels of genes in the 
differential network are associated with the survival out-
comes of glioma patients. As such, we developed a dif-
ferential network-based signature identification method 
to select prognostic biomarkers for glioma patients. We 
collected the clinical information and RNA-seq gene 
expression data from glioma patients in the CGGA data-
base (http://www.cgga.org.cn/) and TCGA database 
(https​://cance​rgeno​me.nih.gov/). The names of genes in 
the differential network were mapped to those of genes in 
homo sapiens, resulting in a list of 29 candidate genes. By 
matching both patient sample IDs and gene names from 
the clinical information and the gene expression data, a 
learning set of 310 samples from CGGA dataset and an 
independent validation set of 690 samples from TCGA 
dataset were created for prognostic signature identi-
fication, validation and further analysis. The details of 
the sample information were listed in Additional file  2: 
Table S2.

We used a multivariate COX proportional hazards 
(PH) model [19] and LASSO regression method [20] to 
select prognostic genes from the differential gene asso-
ciation network (see details in Text S1). A tenfold cross-
validation was performed to select the optimal values of 
the tuning parameter for minimizing the mean cross-val-
idation error.

The regression coefficients at the optimal tuning 
parameter were computed as risk coefficients, which 
were used to formularize a risk signature. The same risk 
signature was used to compute the risk scores (RSs) for 

http://metascape.org
http://www.cgga.org.cn/
https://cancergenome.nih.gov/
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patients in the independent validation set. The patients 
in each dataset were classified into a high-risk group and 
a low-risk group according to the optimal cutoff value 
using the ROC method. The Kaplan–Meier (K–M) curves 
for patients in the high- and low-risk groups were ana-
lyzed, and the statistical significance of the difference was 
assessed using the two-sided log-rank test. Time-depend-
ent ROC analysis [21] was further conducted to evaluate 
the prognostic accuracy of the above RSs with respect to 

the 3- and 5-year survival predictions of patients in both 
the learning and independent validation sets.

Prediction of response to targeted therapeutics
The survival and gene expression data from glioma 
patients who received targeted therapies in the independ-
ent set were extracted to evaluate the predictive effec-
tiveness of the macrophage-related gene signature for 
classifying patients into drug-sensitive and drug-resistant 
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Fig. 1  Schematic illustration of the multicellular gene network-based identification of risk signatures. a The correlation (e.g., PCCs) of each pair of 
differential genes in TAMs and TCs of the Endpoint samples were computed to construct a sensitive multicellular network. b Each single Rebound 
sample was added to the Endpoint samples to construct a sample-specific resistance multicellular network (Additional file 1: Fig S2–S6). c A 
robust differential network was constructed using the differences between correlation coefficients of gene pairs in the sensitive and perturbation 
networks. Topological analysis, signature gene analysis and gene enrichment analysis were used to analyze the networks. d Based on the differential 
network, we used the COX PH model and LASSO method to select prognostic genes and define a risk signature. The clinical information and 
RNA-seq expression data in the CGGA and TCGA databases were used as learning and validation sets, respectively
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groups. We used the observed 3- or 5-year survival sta-
tus to substitute for the latent drug-resistance status in 
these patients. Specifically, the 3- or 5-year survival sta-
tus (alive or dead) was defined as the outcome (sensitive 
or resistant) of targeted drug treatment. The above risk 
signature was used to classify each patient into a sensi-
tive group (i.e., low-risk group) or a resistant group (i.e., 
high-risk group) according to the optimal cutoff value of 
the RS using the ROC method. To further compare the 
powers of different gene signatures to predict responses 
to targeted therapy, we calculated the area under the 
curves (AUCs) of the time-dependent ROCs to assess 
their accuracies.

Comparison with other methods and other related 
signatures
We compared the macrophage-related gene signature 
produced from the above multicellular gene network per-
turbation method with other commonly used methods, 
including LASSO Cox regression model [22] and corre-
lation network-based biomarker identification method 
without network perturbation. First, a LASSO Cox signa-
ture was trained from the full list of 1141 DEGs based on 
the CGGA set. In addition, a weighted correlation net-
work (without perturbation) was constructed by calculat-
ing the pairwise Person correlation coefficients (PCCs) 
across all pairs of DEGs within both TCs and TAMs for 
the full set of Veh, Reb and Ep samples (30 samples). 
Based on the ranking of node strength score (defined as 
the sum of the absolute values of correlation coefficients 
of the node with other nodes), we selected the top ranked 
12 DEGs as a gene set for defining a prognostic signature 
using the CGGA dataset.

Moreover, to assess whether the macrophage-related 
gene signature was independently correlated with the 
prognosis of glioma patients, we conducted univari-
ate and multivariate COX regression analyses of clin-
icopathological factors and available gene signatures. 
Clinicopathological information, including age, gender 
and grade, was available for glioma patients in both the 
learning and validation sets. We also included the fol-
lowing gene signatures in the multivariate COX regres-
sion analyses: signature 1—the macrophage-related gene 
signature newly proposed in this study; signature 2—an 
EGFR gene signature studied by many groups [15, 16]; 
and an immune-related gene signature for predicting the 
prognosis of glioma patients, i.e., signature 3—the Cheng 
et al. signature [17].

The above risk factors were further extracted for con-
struction of a combined signature using the LASSO 
COX model [19, 20]. As a result, we defined the com-
bined signature as follows: CS =​ ​(0.​008​974621 ×​ Age) ​
+​ (1​.61​7859481 ×  Grade) +  (0.940077644 ×  Signa-

ture_1) + (0.006408624 × Signature_3). Here, Grade = 1 for 
lower grade glioma, and Grade = 2 for high grade glioma.

Robustness test
We tested the robustness of the macrophage-related gene 
signature obtained using the multicellular network per-
turbation analysis in comparison with LASSO Cox sig-
nature and correlation network-based signature using a 
bootstrapping approach. We generated 100 random data-
sets by randomly sampling 50% of the samples from the 
TCGA datasets (i.e., validation set). The AUC values of 
ROC with respect to overall survival, 3-year survival and 
5-year survival were computed. Wilcoxon rank sum test 
(one-tailed) p values were computed to assess the signifi-
cance of the difference between the probability distribu-
tions of AUC values of competing signature.

Results
Construction and analysis of multicellular gene networks
The heatmaps of DEGs in TAMs (Additional file  1: Fig 
S1A) and TCs (Additional file 1: Fig S1B) across all sam-
ples demonstrated that the gene expression profile of the 
Reb samples was significantly different from that of Ep 
samples. The constructed sensitive network and sample-
specific perturbation networks along with their topologi-
cal attributes are shown in Additional file  1: Fig S2 and 
Fig S3–S6, respectively. A significant difference in the 
number of nodes and edges was observed between the 
sensitive and perturbation networks (Additional file  1: 
Fig S7). Other network topological attributes, including 
the network diameter, network centralization, and aver-
age number of neighbors, of the perturbation networks 
(Additional file  1: Fig S3–S6) were mainly higher than 
those of the sensitive network (Additional file 1: Fig S2). 
These results suggest that the perturbation networks 
had more complexity and that network rewiring might 
emerge during the acquisition and development of resist-
ance to CSF1R inhibition.

A robust differential network (Fig.  2a) containing 42 
nodes and 30 edges was thus constructed. The genes in 
the differential network are listed in Additional file  1: 
Table  S3. Interestingly, all edges in the differential net-
work were correlation-gained edges, indicating that the 
addition of Reb samples improved the correlation coef-
ficients, which is in accordance with the above results 
(Additional file 1: Fig S2–S7).

Functional enrichment analysis of genes in the differen-
tial network revealed that some pathways, including the 
chemokine-mediated signaling and receptor-type tyros-
ine-protein phosphatase pathways as well as the cell-
cell adhesion via plasma membrane adhesion molecule 
pathway, were significantly enriched during the acquired 
resistance to CSF1R inhibition treatment (Fig.  2b). This 
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result suggests that cell–cell interactions between TCs 
and TAMs might contribute to the resistance of glioma 
to CSF1R inhibition, which was supported by the previ-
ous experimental results [10, 23–25].

Identification of the macrophage‑related gene signature
We selected prognostic genes from the differential net-
work using the LASSO regression method (see “Meth-
ods” section and Text S1). Figure 3a shows the selection 
of optimal tuning parameter (λ) of LASSO regression 
based on tenfold cross-validation of the learning set. 
Figure  3b shows the LASSO coefficient profiles of the 
29 genes in the differential network. Each curve corre-
sponds to evolution of the coefficient of each gene with 
respect to the change of the tuning parameters during the 
LASSO regression. Figure  3c lists the 12 genes selected 
under the optimal tuning parameter of LASSO. Five 
genes were located in macrophages (MФ) (i.e., ANPEP, 
DPP4, PRRG1, GPNMB, TMEM26), and 7 genes were 
located in TCs (i.e., PXDN, CDH6, SCN3A, SEMA6B, 
CCDC37, FANCA, NETO2). The coefficients of each 
gene in the COX PH model and the corresponding haz-
ard ratios (HRs) were also listed and used to define a 
macrophage-related gene signature for predicting the 
prognosis of glioma patients. Accordingly, we formulated 
the following RS for each patient based on the expression 
levels of the selected genes: RS = (0.001695826 × ANPEP
) + (0.001351164 × DPP4) + (0.828492221 × PRRG1) + (0
.002693736 × GPNMB) + (0.572250065 × TMEM26) + (0

.011112329 × PXDN) + (0.000861924 × CDH6) − (0.8772
96902 × SCN3A) − (0.042307865 × SEMA6B) + (0.01967
3956 × CCDC37) + (1.184362541 × FANCA) + (0.101032
334 × NETO2). Furthermore, the univariate COX regres-
sion analysis (Additional file  1: Table  S4) demonstrated 
that each signature gene was significantly associated with 
the survival of glioma patients.

Validation of prognostic significance and accuracy 
of the macrophage‑related gene signature
We then investigated the prognostic significance and 
accuracy of the macrophage-related gene signature in 
both the learning and independent validation sets. Fig-
ure  4a shows the K–M curves for high-risk (blue) and 
low-risk (red) glioma patients in the learning set; signifi-
cant differences were assessed with the log-rank test (p 
value less than 0.0001). The high-risk group of glioma 
patients tended to have a shorter survival time than the 
low-risk group. Figure 4b shows the prognostic accuracy 
of the risk signature evaluated by the AUCs of the time-
dependent ROCs with respect to the 3- and 5-year sur-
vival rates of glioma patients in the learning set (AUC at 
3 year: 0.92; AUC at 5 years: 0.891).

Moreover, we tested the prognostic significance of the 
macrophage-related gene signature using the independ-
ent validation set (Fig.  4c). The K–M curves demon-
strated a significant difference between the survival rates 
of high- and low-risk patients (log-rank test p value less 
than 0.0001). Figure  4d shows the prognostic accuracy 

Fig. 2  Differential network between drug-sensitive and drug-resistant multicellular gene networks and functional enrichment analysis. a A robust 
differential gene association network underlying glioma resistance to CSF1R inhibition. The node label represents the gene name. The size of the 
node represents its connectivity. The orange and blue nodes represent the genes in TAMs and TCs, respectively. b Pathway enrichment of the genes 
in the differential network
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of the macrophage-related gene signature validated by 
the AUCs of the time-dependent ROCs with respect to 
3- and 5-year survival rates of glioma patients in the vali-
dation set (AUC at 3 years: 0.818; AUC at 5 years: 0.836). 

These results demonstrated good prognostic value of the 
macrophage-related gene signature in glioma patients.

Furthermore, we tested the significance of prognos-
tic accuracy of the macrophage-related gene signature 

Fig. 3  Macrophage-related gene signature identification from the differential network using LASSO regression. a tenfold cross-validation for 
tuning the parameter selection in the LASSO regression. The solid vertical lines represent the partial likelihood deviance with standard error. The 
dotted vertical lines denote the optimal values of the tuning parameter (λ) by minimum criteria, i.e., λ = 0.06226413 with ln(λ) = − 2.77637. b LASSO 
coefficient profiles of the 29 genes in the differential network. Each curve corresponds to evolution of the coefficient of each gene with respect to 
the ln(λ) during the LASSO regression. The dotted vertical lines denote the selected variables under the optimal tuning parameter. c The 12 genes 
selected by LASSO regression. The table lists each gene’s symbol, description, cell type (i.e., macrophages (MФ) or tumor cells (TCs)) in the differential 
network, coefficient in the COX PH model and corresponding hazard ratio (HR)
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evaluated using a bootstrapping approach. We ran-
domly selected 12-gene sets from the whole transcrip-
tome for 1000 times and compared their prognostic 

accuracy with that of the macrophage-related gene sig-
nature. CGGA dataset was used for training and TCGA 
dataset for validation. Figure  5a shows ROC curve of 

Learning set Learning set

Validation set Validation set

a b

c d

Fig. 4  Prognostic significance of the macrophage-related gene signature in the learning and validation sets. a K–M survival analysis of glioma 
patients in the learning set. A risk score was formulated from the COX PH model based on the gene expression levels of the 12 selected genes. 
The patients were divided into the high-risk group (blue) and low-risk group (red). The statistical significance of the difference between two K–M 
survival curves was assessed using the log-rank test, with p values less than 0.0001. b Prognostic accuracy of the signature evaluated by the AUCs 
of the time-dependent ROCs with respect to the 3- and 5-year survival rates of glioma patients in the learning set. c Prognostic significance of the 
macrophage-related gene signature validated by the independent validation set. p values were less than 0.0001, as assessed by the log-rank test. 
d Prognostic accuracy of the macrophage-related gene signature validated by the AUCs of the time-dependent ROCs with respect to the 3- and 
5-year survival rates of glioma patients in the independent validation set
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the macrophage-related gene signature (red) against 
ROC curves of bootstrapped 12-gene signatures (blue, 
only 100 curves were randomly shown). Figure  5b 
shows the probability distributions of the AUC values 

of 1000 sets of random 12-gene signatures. The p value 
(0.001) from the permutation test justified the statisti-
cal significance of the prognostic accuracy of the mac-
rophage-related gene signature.

Fig. 5  Evaluating statistical significance of prognostic accuracy in overall survival of the macrophage-related gene signature and competitors using 
a bootstrapping approach. a, b We randomly selected 12-gene sets from the whole transcriptome for 1000 times and compared their prognostic 
accuracy with that of the macrophage-related gene signature. a ROC curves of bootstrapped 12-gene signatures (blue, only 100 curves were 
shown) and macrophage-related gene signature (red), with respect to the overall survival of glioma patients in the validation set. b Probability 
distributions of the AUC values of the ROCs of random 12-gene signatures. The AUC of macrophage-related gene signature (red line, auc = 0.777) 
was shown for comparison. Probability P(AUC > 0.777) = 0.001. c, d We randomly selected 12-gene sets from the full list of DEGs for 1000 times and 
compared their prognostic accuracy with that of the macrophage-related gene signature. c ROC curves of bootstrapped 12-gene signatures (blue, 
only 100 curves were shown) and macrophage-related gene signature (red), with respect to the overall survival of glioma patients in the validation 
set. d Probability distributions of the AUC values of the ROCs of random 12-gene signatures. The AUC of macrophage-related gene signature (red 
line, auc = 0.777) was shown for comparison. Probability P(AUC > 0.777) = 0.06
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For comparison, we also generated gene signatures 
using LASSO Cox regression model and correlation 
network-based method (see Method section). Additional 
file 1: Fig S8 shows the prognostic accuracies of LASSO 
Cox signature and correlation network-based signa-
ture with respect to 3-year and 5-year survival predic-
tion. Although these two signatures performed well on 
the learning set, their predictive accuracies on the test 
sets were less than the macrophage-related gene signa-
ture from the network perturbation analysis. We further 
employed a bootstrapping approach to test and compare 
the robustness of these gene signatures derived from dif-
ferent methods. Figure 6 shows the AUC values of ROCs 
of these signatures with respect to overall survival, 3-year 
survival and 5-year survival. The macrophage-related 

gene signature exhibited better accuracy and robustness 
than the LASSO Cox signature and the correlation-net-
work-based signature.

The macrophage‑related gene signature is predictive 
of the responses of gliomas to targeted therapeutics
Considering the important roles of macrophages in 
glioma progression and drug resistance [10–12, 26], a 
subset of TCGA patients who received targeted ther-
apy were used to test the predictive power of the above 
macrophage-related gene signature for predicting drug 
sensitivity or resistance in glioma patients. The drug-
resistance status of these patients was latent, we thus 
used the associated survival profiles as surrogate. The 
3- or 5-year survival status (alive or dead) of each patient 

Fig. 6  Robustness tests of the macrophage-related gene signature compared with signatures identified by LASSO Cox regression model (a–c) 
and correlation-network-based method (d–e). We generated 100 random datasets by randomly taking 60% of the samples from the validation 
set. The AUC values of ROC with respect to overall survival (a, d), 3-year survival (b, e) and 5-year survival (c, f) were computed. Wilcoxon rank sum 
test (one-tailed) p values were computed to assess the significance of the difference between the probability distributions of AUC values of the 
macrophage-related gene signature and the LASSO Cox signature or correlation-network-based signature. The macrophage-related gene signature 
showed good robustness and better accuracy than the LASSO Cox signature or correlation-network-based signature



Page 11 of 20Sun et al. J Transl Med          (2019) 17:159 

after the targeted therapy was used to evaluate the treat-
ment outcome of the molecularly targeted therapeutics 
(sensitive or resistant). Each patient was predicted to be 
drug-sensitive (i.e., low-risk) or drug-resistant (i.e., high-
risk) according to the optimal cutoff value of the RS using 
the time-dependent ROC method evaluated at 3-year or 
5-year. Figure 7a, b shows the K–M survival curves of the 
predicted drug-sensitive patients (blue) and drug-resist-
ant patients (red) as evaluated by 3-year survival ROC 
(Fig. 7a) or 5-year survival ROC (Fig. 7b), verifying dis-
tinct survival profiles between the two predicted groups 
of patients (log-rank test p values less than 0.0001).

To further assess the accuracy of different gene sig-
natures for predicting the sensitivity or resistance to 
the targeted therapies, we compared 3 risk signatures 
that were designed for glioma patients: signature 1—the 
macrophage-related gene signature newly proposed in 
this study; signature 2—a conventional EGFR gene sig-
nature studied by many groups [15, 16]; signature 3—an 
immune-related gene signature, i.e., the Cheng et  al. 
signature (FOXO3, IL6, IL10, ZBTB16, CCL18, AIMP1, 
FCGR2B, and MMP9) [17]; Signature 4—a gene signa-
ture based on IGF1/IGF1R-mediated pathways between 
macrophages and glioma cells (Quail et al. [10]), includ-
ing several gene families in these pathways (PIK3R1, 
PIK3R2, PIK3R3, PIK3R4, PIK3R5, PIK3R6, PIK3AP1, 
AKT1, AKT2, AKT3, IGF1, IGF1R, IL4, IL4R, NFATC1, 
NFATC2, NFATC3, NFATC4, NFAT5, STAT6, CSF1 and 
CSF1R). We calculated the AUCs of the ROCs of these 
signatures to quantitatively assess and compare the accu-
racies of different gene signatures. Figure  7c shows the 
AUCs of the ROCs of these signatures for predicting drug 
sensitivity as evaluated by the 3-year survival outcomes 
(AUC of signature 1: 0.8295; AUC of signature 2: 0.6475; 
AUC of signature 3: 0.7155; AUC of signature 4: 0.5802). 
Figure  7d shows the AUCs of the ROCs of these signa-
tures for predicting drug sensitivity as evaluated by the 
5-year survival outcomes (AUC of signature 1: 0.7973; 
AUC of signature 2: 0.6462; AUC of signature 3: 0.6718; 
AUC of signature 4: 0.5877). Small p values computed 
using a bootstrap method [27] further demonstrated a 
superior predictive power of the macrophage-related 
gene signature compared with that of other signatures.

The macrophage‑related gene signature is an independent 
prognostic signature
The univariate and multivariate COX regression anal-
yses for both the learning and validation datasets 
revealed that the macrophage-related gene signature 
retained prognostic significance for glioma patients 
when adjusted for both clinicopathologic risk factors 
(age, gender, grade) and other existing gene signatures 

(EGFR gene signature, Cheng et al. signature and IGF1/
IGF1R pathways signature) (Table  1). These results 
indicated that the macrophage-related gene signature 
was independently correlated with the overall and 
5-year survival of glioma patients.

To further explore the prognostic value of the mac-
rophage-related gene signature in stratified cohorts, 
patients were first classified by 2 important clinico-
pathological factors, age and grade, that significantly 
correlated with the prognosis of glioma patients 
(Table  1). Figure  8a–d shows the prognostic signifi-
cance of the macrophage-related gene signature in 
different glioma cohorts stratified by age (Fig.  8a, b) 
or grade (Fig.  8c, d). In all of these cohorts, patients 
were classified as high- versus low-risk groups using 
cut point from ROCs, and the high-risk patients had 
a significantly shorter overall survival than low-risk 
patients. Subsequently, patients who received phar-
maceutical therapy and radiotherapy were utilized to 
validate the prognostic significance of the macrophage-
related gene signature. Figure  8e–h demonstrates that 
the macrophage-related gene signature retained prog-
nostic significance for glioma patients treated with 
or without pharmaceutical therapy (Fig.  8e, f ) and 
radiotherapy (Fig.  8g, h). These results indicated that 
the macrophage-related gene signature could accu-
rately identify patients with an unfavorable prognosis 
regardless of their clinicopathological and treatment 
characteristics.

We further examined whether combining the mac-
rophage-related gene signature with clinicopathologi-
cal risk factors and other existing gene signatures could 
significantly improve the prognostic accuracy of the 
risk signature. The time-dependent ROC curves (Fig. 9) 
compared the prognostic accuracy by age, grade, sig-
nature 1 (i.e., macrophage-related gene signature), 
signature 3 (i.e., Cheng et  al. signature) and the com-
bined signature (see the definition in the Methods sec-
tion). The AUCs of ROC curves in both the learning 
dataset (Fig.  9a, b) and the validation dataset (Fig.  9c, 
d) showed that the combined signature outperformed 
other risk signatures except the macrophage-related 
gene signature for predicting the 3- and 5-year sur-
vival rates of glioma patients. Noticeably, the AUC of 
the ROC of the macrophage-related gene signature was 
rather close to that of the combined signature in the 
learning dataset (Fig. 9a, b), or even higher in the vali-
dation dataset (Fig. 9c, d). These results indicated that 
the macrophage-related gene signature is an independ-
ent prognostic signature and possessed convincingly 
strong and robust prognostic power in comparison to 
the clinicopathological factors and other existing risk 
signatures.
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Fig. 7  The macrophage-related gene signature was predictive of drug sensitivity/resistance to the targeted therapy. a, b Patients who received 
targeted therapy in the independent validation set were predicted to be drug-sensitive or drug-resistant based on the risk score calculated from 
the macrophage-related gene signature using optimal cutoff values according to the 3-year survival (a) or 5-year survival (b) outcomes after the 
molecularly targeted therapy. K–M survival curves of the patients predicted to be sensitive (blue) and resistant (red) were plotted, and the statistical 
significance was assessed using the log-rank test. All p values were less than 0.0001. c, d Accuracy of the macrophage-related gene signature 
for predicting drug sensitivity to the targeted therapy in glioma patients in comparison with other signatures. Signature 1: macrophage-related 
gene signature. Signature 2: EGFR gene signature. Signature 3: Cheng et al. signature. Signature 4: IGF1/IGF1R-mediated pathways signature. The 
prediction accuracies of these signatures evaluated by the 3-year survival (c) or 5-year survival (d) outcomes were assessed by the AUCs of the ROC 
curves based on the validation set. AUC values of each signature were shown, and p values were computed to assess the statistical significance of 
superior predictive power of the signature 1 against the other two signatures
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Discussion
Several studies have reported that the tumor microen-
vironment plays important roles in glioma progression 
and therapeutic response [10–12, 28–31]. TAMs, a type 
of immune cell, account for the majority of nonneoplas-
tic cells in the glioma microenvironment [26]. However, 
limited studies have investigated macrophage-based 
molecular biomarkers for glioma prognostication and 
therapeutic response prediction. In this study, we first 
identified and validated a macrophage-related gene 
signature that has a strong prognostic significance and 
accuracy for glioma patients.

The conventional node biomarker method identi-
fies biomarkers using a set of single genes or molecules 
and does not consider interactions between these 
genes [32–38]. In recent years, a network biomarker 
method has been proposed to identify biomarkers 
of cancers or drug resistance using a network-based 
analysis approach, which takes into account gene inter-
actions and uses aggregates of genes/proteins in net-
works for prediction [39–41]. However, these previous 
network-based approaches mainly focused on intracel-
lular gene networks within TCs and did not explicitly 
or systematically consider intercellular interactions, 

Table 1  Multivariate COX regression analysis of clinicopathologic factors and four gene signatures for predicting overall 
survival and 5-year survival in the validation set

Signature 1: macrophage-related gene signature. Signature 2: EGFR gene signature. Signature 3: Cheng et al. signature. Signature 4: IGF1/IGF1R pathways signature. 
The macrophage-related gene signature retained prognostic significance for both the overall survival and 5-year survival of glioma patients, indicating that the 
macrophage-related gene signature is an independent risk factor for glioma patients

Variable Univariate COX Multivariate COX

p value HR (95% CI) p value HR (95% CI)

Overall survival

Age

 ≥ 60 versus < 60 < 2e−16 4.8152 (3.687–6.288) 3.65e−5 1.900 (1.410–2.577)

Gender

 Male versus Female 0.111 1.2243 (0.954–1.571) 0.7084 1.051 (0.808–1.368)

Grade

 High- versus low-grade < 2e−16 9.4994 (7.212–12.51) 2.05e−5 2.583 (1.6691–3.997)

Signature 1

 High- versus low-risk < 2e−16 1.322 (1.276–1.369) 1.74e−10 1.191 (1.129–1.257)

Signature 2

 High- versus low-risk 6.11e−6 2.718 (1.762–4.193) 0.2901 1.223 (0.842–1.777)

Signature 3

 High- versus low-risk < 2e−16 1.559 (1.469–1.655) 0.0196 1.124 (1.019–1.241)

Signature 4

 High- versus low-risk 0.00258 1.022 (1.008–1.036) 0.2511 1.008 (0.994–1.022)

5-year survival

Age

 ≥ 60 versus < 60 < 2e−16 4.887 (3.737–6.392) 6.56e−5 1.868 (1.374–2.539)

Gender

 Male versus Female 0.07 1.279 (0.980–1.669) 0.7605 1.044 (0.790–1.381)

Grade

 High- versus low-grade < 2e−16 9.499 (7.212–12.51) 8.27e−5 2.418 (1.558–3.752)

Signature 1

 High- versus low-risk < 2e−16 1.380 (1.329–1.432) 1.46e−12 1.234 (1.164–1.308)

Signature 2

 High- versus low-risk 8e−06 2.775 (1.779–4.328) 0.4696 1.149 (0.789−1.672)

Signature 3

 High- versus low-risk <  2e−16 1.581 (1.488–1.679) 0.0283 1.121 (1.012–1.242)

Signature 4

 High- versus low-risk 0.00278 1.023 (1.008–1.038) 0.5823 1.004 (0.9901–1.018)
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particularly tumor–microenvironment interactions. In 
this study, we built multicellular gene networks con-
necting TAMs and TCs to identify gene signatures for 

predicting prognosis and drug resistance in glioma 
patients, which provided systems biology insights into 
tumor cell–microenvironment interactions in cancer 

a b

c d

Age≤60 Age>60

Low grade High grade

Fig. 8  Prognostic significance of the macrophage-related gene signature in the stratified cohorts. a–d Prognostic significance of the 
macrophage-related gene signature in different cohorts stratified by age (age ≤ 60 or age > 60, panels A and B, respectively) or grade (low grade 
and high grade, panels C and D, respectively). e–h The macrophage-related gene signature retained prognostic significance for glioma patients 
treated with or without pharmaceutical therapy (e and f) and radiotherapy (g and h). Optimal cutoff values were used to determine high- and 
low-risk groups in each stratified cohort, and the statistical significance of the difference between two K–M survival curves was assessed using the 
log-rank test
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progression and therapeutic resistance. Furthermore, a 
robust differential gene network was constructed using 
the network perturbation analysis method, which is 
suitable for small sample sizes. The resulting differen-
tial gene pairs (Fig. 2a) not only reflected the intracel-
lular gene coexpression patterns within TCs and TAMs 
but also revealed the intercellularly correlated genes 
between these cell types during the acquisition of drug 
resistance.

We compared the macrophage-related gene signa-
ture with other existing signatures, and our signature 
showed better accuracy for predicting the survival 
outcomes of glioma patients who received molecu-
larly targeted therapies (Fig.  7). We speculate that the 
superiority of our signature lies in the fact that it con-
sidered the interaction between TCs and the micro-
environment during tumor progression. Although we 
considered only TAMs, which constitute a fraction of 

e f

g h

Without pharmaceutical therapy With pharmaceutical therapy 

Without radiotherapy With radiotherapy 

Fig. 8  (continued)
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microenvironmental cell types, the identified TAM-
TC gene signature outperformed the existing sig-
natures that focused on TCs or immune genes only, 
which is an intriguing finding for investigating the 
prognostic significance of microenvironment-medi-
ated gene signatures. The multicellular gene network 
approach developed herein provides a promising 
strategy to systematically integrate genes in both TCs 

and microenvironmental cells and thus identify more 
robust and accurate signatures or biomarkers.

In addition, we assessed the association between the 
macrophage-related gene signature and frequent genetic 
and genomic alterations in gliomas by exploring other 
genomic characteristics that are available within the 
TCGA or CGGA databases. Figure 10 shows the distribu-
tion of the risk scores evaluated by macrophage-related 

a b

3-year survival

Learning set

Validation set Validation set

Learning set

5-year survival3-year survival

5-year survival

c d

Fig. 9  Time-dependent ROC curves comparing the prognostic accuracy of the macrophage-related gene signature with clinicopathological risk 
factors and other existing gene signatures or their combination. a, b Comparisons of the prognostic accuracy by age, grade (low grade or high 
grade), signature 1 (i.e., macrophage-related gene signature), signature 3 (i.e., Cheng et al. signature) and the combined signature using the learning 
set with respect to 3-year survival (a) or 5-year survival (b). c, d Comparisons of the prognostic accuracies with respect to 3-year survival (c) or 5-year 
survival (d) using the validation set
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Fig. 10  Distribution of the macrophage-related gene signature in patients stratified by IDH1 mutation status (a), CIMP status (b), EGFR status 
(c), PTEN status (d) and molecular subtypes (e). Wilcoxon rank sum test (two sided) p value was used to assess the statistical significance of the 
difference between each of the two comparison groups
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gene signature in patients from the TCGA set stratified 
by IDH1 mutation status (Fig.  10a) or methylator CIMP 
status (Fig. 10b), and in patients stratified by EGFR muta-
tion status (Fig. 10c) or PTEN mutation status (Fig. 10d) 
with the information available from the CGGA set. The 
signature value was different between cases stratified by 
IDH1 mutation status, CIMP status, EGFR mutation 
status and PTEN status. We also examined the distribu-
tion of the risk scores in patients stratified by molecular 
subtypes with the information available from the TCGA 
set (Fig.  10e). Significant differences of risk values were 
observed between several pairs of different subtypes (clas-
sical vs. neural, classical vs. proneural, mesenchymal vs. 
neural, and mesenchymal vs. proneural). These results 
suggested the associations of the macrophage-related 
gene signature with genetic and genomic alterations in 
gliomas and molecular subtypes. In future studies, we 
will develop an ensemble model that integrates multi-
ple gene signatures designed for different subgroups of 
glioma patients stratified by molecular subtypes or major 
genomic mutations in IDH1, CIMP, EGFR and PTEN in 
glioma cohorts to further improve the predictive accuracy.

The established macrophage-related gene signature 
includes both protective genes (SCN3A, SEMA6B) and 
risk-increasing genes (PXDN, CDH6, ANPEP, CCDC37, 
DPP4, GPNMB, FANCA, NETO2, PRRG1, TMEM26) for 
predicting the prognosis of glioma patients (Fig. 3). This 
signature could be regarded as a macrophage-related 
protective and risky pattern of TC–TAM interactions in 
gliomas, which is consistent with the balance between 
the antitumorigenic M1 phenotype and protumorigenic 
M2 phenotype of TAMs in gliomas.

Additional file  1: Table  S5 lists the experimental evi-
dences for functional roles of the five macrophage-
related genes in cancer progression and/or drug 
resistance. For instance, ANPEP was reportedly involved 
in cell migration and tumor metastasis [42–48]. ANPEP 
and TMEM26 were associated with drug response [49, 
50]. Remarkably, the important role of DPP4 in anti-
tumor immunity [51] has been revealed in many cancers 
including glioblastomas [52]. The inhibition of DPP4 was 
found to improve both naturally occurring tumor immu-
nity and immunotherapy by enhancing lymphocyte traf-
ficking [53]. Our results may therefore implicate new 
macrophage-targeting treatment strategies to improve 
clinical outcomes. The genes in the macrophage-related 
gene signature could be employed as stand-alone tar-
gets or in combination with the existing targeted thera-
pies, attributing to their prognostic significance and 
association with drug resistance. For example, GPNMB 
has been found to be highly upregulated in human gli-
oma-associated microglia/macrophages, which are the 
predominant source of GPNMB transcripts [54]. High 

GPNMB expression was found to be associated with 
poor prognosis in human glioblastoma. Furthermore, 
GPNMB has also been indicated as a potential molecular 
therapeutic target in patients with glioblastoma [55].

The advantages of our study originate from the use of 
a multicellular network-based gene screening approach, 
large population databases for learning and valida-
tion and robust risk signature identification methods. 
In future studies, we will investigate the functions and 
mechanisms of the 12 genes alone and in combination 
to verify their clinical applicability. The capability of the 
signature identified herein for predicting drug resist-
ance should be further validated by prospective studies 
in the future. We will also leverage single cell RNA-seq 
data to construct multilayer networks that connect 
tumor microenvironmental cells to tumor cells [56], 
which was anticipated to improve the biological inter-
pretation and predictive accuracy of the biomarkers for 
predicting prognosis and therapeutic response.

Conclusions
In summary, we developed a multicellular gene network 
approach to investigate the role of TC–TAM interactions 
in the progression and therapeutic responses of gliomas. 
The identified macrophage-related gene signature showed 
good accuracy for predicting the prognosis and targeted 
therapeutic responses of glioma patients. The multicellu-
lar gene network-based signature provided mechanistic 
insights into microenvironment-mediated drug resistance 
and implied that combining current targeted therapies 
with macrophage-targeted therapy might improve the 
long-term treatment outcomes of glioma patients.
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