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Abstract 

This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human 
health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environ
ment on phenotypes, emphasizing the variance attributable to shared and nonshared environmental factors, underscoring the 
complexity of quantifying the exposome’s influence on health outcomes. Secondly, we introduce the importance of advanced data- 
driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study 
(ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying 
significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term “exposome- 
wide association study, ExWAS,” to facilitate clear communication and literature retrieval in this field. The paper aims to guide fu
ture health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as 
FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic re
search. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the 
exposome and its significant implications for human health.

Keywords: exposome; Exposome-Wide Association Study (ExWAS); phenotype; data science; false discovery rate; epidemiology.

Introduction 
The exposome encompasses an individual’s life-course environ
mental exposures.1,2 The original context focused on studying 
the environment with objective and higher precision methodol
ogy such as using exposure biomarkers. As the concept spans 
across multiple disciplines in medicine, sciences, and public 
health, it was later elaborated by others from different perspec
tives.3-6 Nevertheless, the ultimate goal remains the same: to 
quantitatively characterize the phenomenon of multiple 

exposures in humans, and ultimately how the totality of human 

exposure influences phenotypic traits, and it is necessary for 

investigators to understand two fundamental concepts that can 

be used to guide research and development in exposomics.

Concept 1: The contribution of genetics and 
the environment to phenotype
With few exceptions, most human diseases have numerous con

tributing factors, which can be broadly classified as genetic 
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variation and environmental exposure. The fundamental con
cept includes that the relationship between these entities can be 
conceptualized as: 

Phenotype ðPÞ ¼ Genotype ðGÞ þ Environmental Exposures ðEÞ
þ Interactions ðGxEÞ

(1) 

Environmental exposures are nongenetic factors that include ra
diation, chemicals, socioeconomic entities, and climatic manifes
tations.1 In data science terms, the exposome attempts to relate 
all environmental exposures to estimate the total contribution to 
phenotype. It defines how exposures are classified, for example, 
what domains do each exposure belong to (heavy metals, geospa
tial air pollution, etc.), how to “name” them (based on chemical 
structure or origin), and the units of measure (concentration in 
tissue or other matrices). Researchers have been estimating the 
total contribution of both the genome and the exposome in hu
man phenotype by writing down the equation above in terms of 
their variance components7-9: 

VarðPÞ ¼ VarðGÞ þ VarðE sharedÞ þ VarðE nonsharedÞ

þVarðInteractions½GxE�Þ þ VarðInteractions½GxG�Þ þ � � � þ error
(2) 

where var represents the variance of the corresponding charac
teristic; E_shared represents the shared environmental factors 
across members; E_nonshared represents the nonshared environ
ment across members. Under this model and assuming indepen
dence between factors, the heritability is the variation explained 
by genetics over the total variation in the disease of interest (var 
(G)/var(P)). In the past, family-based (eg, twin) studies were used 
to estimate heritability while more recently, genome-wide associa
tion studies (GWAS) are used. In the language of data science, a 
GWAS can be thought of as a type of feature selection method, 
where the features are the genetic variants and the response var
iable is the phenotype (a trait or a disease of interest). The goal of 
GWAS is to identify the subset of genetic variants that is most 
strongly associated with the human trait of interest. 
Investigators test individual single nucleotide polymorphisms 
(SNPs) for association with the phenotype or disease, and then 
correcting for multiple comparisons to control for the risk of false 
positives (ie, associations that are observed by chance). The next 
step is to estimate the total variance explained (R2) of the identi
fied genotypes. This quantity is known as var(G from GWAS)/var 
(P). The greater the heritability of a phenotype, the more the vari
ation in the trait can be explained by genetics. Can the same be 
achieved for environmental exposures of the exposome?

Critically, the variation of the exposome is written down as 
the contribution of the shared and nonshared environment. 
Examples of the shared environment include exposures that are 
shared in a household or postal Code, such as outdoor air pollu
tion while nonshared exposures are those that individuals en
counter specific to their own experiences. These quantities can 
be written down as: 

c2 ¼ VarðE sharedÞ=VarðPÞ (3) 

e2 ¼ VarðE nonsharedÞ=VarðPÞ (4) 

and are analogous to the coefficient of determination, or the total 
variance explained in a model.

To ascertain both the total contribution of the environment, 
and to attribute specific factors of the environment to this contri
bution, it is essential to account for time-varying, repeated and 
mixture exposures in the analysis to explain differences in phe
notype not currently explained by candidate environmental fac
tors and genetic factors and to solve Equations (1) and (2). From 
twin-based and genome-wide investigations, the total contribu
tion of genetics is anywhere from 30%–50%,9,10 and shared expo
some is 10%,9 leaving a large amount to be described by the 
nonshared exposome.

Concept 2: Enhancing exposomic 
measurement at an epidemiological scale 
through cohort studies
No single universal method and approach is known that can cap
ture a representative landscape of the totality of exposures, and 
exposomics studies typically require a combination of multiple 
methods for such a purpose.11-13 The increasing use of large and 
complex observational studies such as the National Health and 
Nutrition Examination Survey (NHANES) and the UK Biobank— 
with comprehensive measurement of both genes and expo
sures—are becoming increasingly prevalent in health studies. 
New analytical skills are essential to perform data-driven re
search to understand the contribution of genetics and exposures 
as well as complex gene and environment interactions to pheno
typic outcomes to address Equations (1) and (2). Apart from basic 
statistical inference of the associations between exposures and 
diseases, disentangling and identifying important exposures and 
building predictive models are also becoming routine analyti
cal procedures.

This essay aims to describe the above concepts from a data 
science perspective, providing a guide for the next generation 
health researchers to eventually examine and appraise exposo
mic studies (Figure 1). Finally, we share our view on potential 
topics that could have major influences concerning the develop
ment and practice of exposomics in the coming decades. We will 
discuss exposome-driven analysis as an extension of an observa
tional epidemiological study, where the exposome and phenome are 
measured in human samples, in contrast to experimental studies 
where the investigator can assign individual subjects to different 
predefined exposure groups.

Data science and exposome research
To establish the exposomic concept as a research paradigm, com
monly investigated environmental factors in human observational 
investigation can be classified into three domains—general exter
nal, specific external, and internal,1 or alternatively, four catego
ries that include ecosystems, physical/chemical, lifestyle, and 
social.4 These schemas encourage the adoption of a cross- 
disciplinary perspective on mixture of exposures when answering 
a broad research question on the role of the exposome in health 
outcomes. Specifically, the shared and nonshared environment 
contributions introduced in Concept 1 consist of both general ex
ternal and specific internal factors. On the other hand, the internal 
exposome can be thought of as phenotypic changes that are in
duced when exposed to the external exposome,14 therefore, en
abling more in depth analysis of the relationships between 
exposures and outcomes such as “mediation analysis.”15

To effectively communicate exposome research, it is essential 
to convey key data science concepts that complement introduc
tory public health courses and are extensible to research areas 
more specific to traditional disciplines such as air pollution, 
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chemical mixtures, and climate change. We begin with the expo
some-wide association study (ExWAS), as it is instrumental in how 
to estimate the quantities and factors introduced in Concept 1 
and 2.

Overview of exposome-wide association 
studies (ExWASs)
ExWAS is a data-driven analytical approach for conducting large- 
scale exploratory studies in exposomics, inspired by the GWAS 
paradigm in human genetics. It is robust as it works across differ
ent study designs, including but not limited to: cross-sectional, 
cohort, longitudinal, and (nested) case-control investigations. It 
is also highly interpretable as it can be driven by a variety of 
methods based on regression and other techniques. 
Fundamentally, ExWAS attempts to systematically model all the 
pairwise relationships between a single phenotype and multiple 
exposures, with a goal to identify statistically significant associa
tions while controlling for the effects of multiple comparisons. 
For example, ExWAS was used to study the association of 266 en
vironmental factors with type 2 diabetes and both risk (eg, hepta
chlor epoxide) and protective factors (eg, b-carotenes) were 
identified.16

In a typical ExWAS, the aim is to identify analytically impor
tant exposure-outcome pairs across all measured exposures. The 
choice of regression method, whether it is a basic linear regres
sion or its extension, depends largely on the study design.17-19

Statistical significance, or signal to noise, is estimated through 
the p value associated with the beta coefficients of the corre
sponding predictors. In a traditional hypothesis-driven study, the 

threshold for type I error rate is set to 5%. Simply put, it means 
that if a null hypothesis is repeated 100 times, then five of them 
could be statistically significant, ie, false positives. The phenome
non of inflated significant findings by conducting many statisti
cal tests is a version of data dredging.20 In ExWAS, spurious 
associations due to multiple comparisons are controlled, for ex
ample, using false discovery rate (FDR),21 which is an expected 
ratio of false positive to total positive findings in a study. 
Similarly, a Manhattan plot showing −log10 p values enables 
quick visual inspection of all the associations (Figure 2).

Since ExWAS is a discovery-based approach, confirmation of 
statistically significant results is essential. In the simplest form, 
samples in a study could be split into two parts—one for discov
ery and one for validation, whereby the investigator seeks 
concordance of association statistics (eg, association size or 
beta-coefficient) in more than one sample of the study, such as a 
held-out sample, an independent survey cycle, or entirely new 
cohort.13,16 Replicability can be assessed through an independent 
set of data.22 To assist in conducting and interpreting results 
from ExWAS, we have also tabulated key resources, from identi
fying datasets to locating R statistical packages for analysis, 
in Table 1.

It can be useful to teach ExWAS via GWAS, which is a 
hypothesis-free approach, like ExWAS, to identify genetic factors 
associated with outcomes23 (eg, G-P correlations), or high- 
throughput inference. They both use regression methods to 
identify factors associated with outcome. They both use similar 
summary statistics (eg, odds ratios, correlations) to convey the 
relationship between the G-P or E-P. Finally, the exposome or ge
nome as a whole can be related to phenotype via predictive 

Exposome-Wide Association
Study (ExWAS)

• Multi-Modality of Exposure Data
• Correlations Between Exposures
and Phenotypes
• Sparsity and Missingness of
Exposure Data
• Assembling the Cohort for Analysis
• Data Cleaning
• Transforming Variables

and Odds Ratios
• Inference Versus Prediction
• Sample Versus Variable Size

Variable Selection

• Ridge
• LASSO
• Elastic Net

CorrelatedObservations

• Mixed Model
• Cox Model

Mixture Analysis

• Weighted Quantile Sum
• Polyexposure Score
• Bayesian Kernel Machine

EmergingTopics

• RealWorld Data
• Function Exposomics Data

Sampling

• Survey

Key Considerations

• FAIR Data Principles

Figure 1. Key considerations for Exposome-Wide Association Studies.
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approaches, where the summary statistics include total variance 
explained or area under a receiver operating characteristic curve 
(AUC). Connection between aggregate summary statistics, AUC, 
and attributable fraction in genetics research are possible. In ge
netics research, the aggregate risk, or “architecture” (the total 
spectrum of disease risk along the genome) are described in 
terms of “frequency of genetic variant” and effect size (eg, odds 
ratio), so investigators can visualize the risk of disease relative to 
how frequent a risk factor is.

How would one articulate the “architecture” of exposome- 
phenotype associations? As of this writing, the architecture of 
the exposome is articulated in terms of effect size versus signal 
to noise, or p value of single associations. Furthermore, genetic 
variants and exposures differ, in its dynamism and modality24: 
environmental exposures can change over time and space, which 
could depend on many factors including an individual's behavior 
and lifestyle. Therefore, the “architecture” as ever-changing 
through the life course. Genetic variants, in contrast, are static, 
as they are inherited at conception and remain relatively con
stant throughout an individual’s life. Their architecture may 
change in the presence of environmental factors. In GWAS, ge
netic variants can be measured with high accuracy using well- 
established genotyping technologies,25 whereas the technologies 
to measure the chemical exposome, such as organic chemicals 

(DDT, PCBs, and PBDEs et cetera) and metals (Pb, Cd, and Cr et ce

tera), are generally involved using targeted methods with mass 

spectrometry. Until recently, targeted and untargeted mass spec

trometry have been evaluated for measuring the exposome.

Study designs for exposomics research
There are a number of study designs to elucidate the role of an 

exposure to a phenotype (Table 2). In region-wide or nationwide 

scale biobanks, subsamples can be extracted based on these ba

sic designs to answer the research question. Since 2010, more 

than 60 studies applying the ExWAS approach have been pub

lished. These studies were designed to identify exposures associ

ated with chronic diseases such as childhood obesity,26

dementia,17 coronary heart disease,27 and autism.28,29 It is also 

used to study exposures related to other outcomes such as men

tal well-being,18 depression,30 coffee consumption,31 COVID- 

19,32,33 and child behavior34 (Table 3). Across these studies, single 

cohort, integrated cohorts, surveys, and biobank samples were 

used and sample sizes were between �1000 to �500 000. 

Typically, the number of external exposures under investigations 

was between 50 to 200 (in 1 case >900), and exposures were often 

classified into different categories to aid interpretation. Some 

studies assessed all the available environmental factors in the 

Figure 2. A Manhattan plot illustrating the findings of an ExWAS for type 2 diabetes. The X-axis represents the exposures, while the Y-axis shows the 
corresponding probability values. Each point in the plot signifies the association test for a single exposure. The red horizontal line indicates the 
threshold for statistical significance. Reproduced from Patel et al.,16 used under Creative Commons Attribution License.
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Table 1. Epidemiological data science resources for ExWAS analyses and interpretation

Type Name Description

Epidemiological data source
Data portals

The Trans-Omics for 
Precision Medicine 
(TOPMed): https:// 
topmed.nhlbi.nih.gov/

The TOPMed program consists of �180k participants from 
more than 85 different studies. It consists of ancestrally 
and ethnically diverse sets of participants, focusing on 
phenotypes of heart, lung, blood, and sleep disorders 
with multi-omic data such as whole-genome sequencing 
(WGS) data and other omics (eg, transcriptomics, epige
nomics, metabolomics and proteomics) data integrated 
with molecular, behavioral, imaging, environmental, 
and clinical data.

Database of Genotypes 
and Phenotypes 
(dbGaP): https://www. 
ncbi.nlm.nih.gov/gap/

dbGAP is a NIH-maintained database that archives the 
data and results from genotype-phenotype studies in 
humans. It contains both open access and controlled ac
cess data. Data is organized as studies with phenotype 
data and genotype data such as SNP assays, methylation 
data, CNVs, genomic sequencing, exome data, expres
sion arrays, RNA-Seq data, etc.

Environmental influen
ces on Child Health 
Outcomes: https:// 
echochildren.org

The “ECHO Cohort” integrates numerous child cohorts and 
cover 5 outcomes, including obesity, pre-, peri-, and 
postnatal outcomes, upper/lower respiratory disease, 
wellness, and neurodevelopment totallying over 
16k children.

Human Health Exposure 
Analysis Resource 
(HHEAR): https://hhear 
program.org/

The HHEAR is a centralized network of exposure analysis 
services and expertise available to eligible researchers 
who want to include or broaden exposure analysis to 
their human health studies. The HHEAR Data Center 
maintains a repository for HHEAR data including epide
miologic, biomarker and environmental exposure data, 
and associated data science tools.

Cohorts
The All of Us Research 

Program: https://allo 
fus.nih.gov/

The All of Us Research Program aims to collect health data 
from >1 million participants in the USA with a focus on 
involving previously underrepresented populations. The 
cohort consists of �429 k participants with electronic 
health records, survey data, genomic data, labs and 
physical measurements and biospecimens. The surveys 
include questions on overall health, lifestyle, medical 
history, and social determinants of health.

The UK Biobank: https:// 
www.ukbiobank. 
ac.uk/

The UK Biobank is a large-scale biomedical database con
sisting of �500 k participants from the UK with genetic, 
health and survey data. It is a longitudinal study with 
health and lifestyle survey data, physical measure
ments, biospecimens, imaging, electronic health 
records, biomarkers, wearables and multi-omic data 
(genotyping, whole genome sequencing and whole 
exome sequencing).

The Million Veteran 
Program (MVP): 
https://www.research. 
va.gov/mvp/

The MVP investigates the roles of genetics, lifestyle, expo
sures and military experiences on the health and well
ness of Veterans in the USA. The MVP cohort consists of 
�930 k participants with electronic health records, self- 
reported surveys and genotype data. The surveys com
prise of information on health, lifestyle, military experi
ences and exposure, medical history and diet.

The Nurses' Health 
Study (NHS): https:// 
nurseshealthstudy. 
org/

The NHS consists of three prospective cohorts with �275 k 
nurses, primarily female, with questionnaire data and 
biospecimens. Questionnaires are administered bienni
ally and include questions on health, medical history, 
lifestyle, diet, behavior, environment and nursing occu
pational exposures. Biospecimens such as blood, urine, 
buccal DNA and toenail samples are available for a sub
set of participants.

The Health Professionals 
Follow-up Study 
(HFPS): https://www. 
hsph.harvard. 
edu/hpfs/

The HFPS is an all-male study designed to be the comple
ment to the primarily female Nurses Health Study. This 
study is comprised of �22 k males in health professions 
such as dentists, pharmacists, optometrists, podiatrists, 
osteopaths, veterinarians, etc. Questionnaires are ad
ministered biennially and include questions about dis
eases such as cancer, heart disease and other vascular 
diseases, and health-related topics like smoking, physi
cal activity, lifestyle, diet and medications.

(continued) 
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Table 1. (continued) 

Type Name Description

The National Health and 
Nutrition Examination 
Survey (NHANES): 
https://www.cdc.gov/ 
nchs/nhanes/in 
dex.htm

The National Health and Nutrition Examination Survey 
(NHANES) is a vital program conducted by the CDC in 
the USA, designed to assess the health and nutritional 
status of the US population through interviews and 
physical examinations. NHANES uses a complex, multi
stage probability design to ensure its sample is represen
tative of the US civilian noninstitutionalized population. 
NHANES plays a crucial role in exposomic sciences by 
providing extensive data on environmental exposures, 
such as various toxins, and contributing to biomonitor
ing efforts. The data gathered are pivotal for epidemio
logical studies exploring the relationship between 
environmental factors and health outcomes.

The Personalized 
Environment and 
Genes Study (PEGS): 
https://www.niehs. 
nih.gov/research/clini 
cal/studies/pegs/

PEGS integrates genetic and environmental data for �10 k 
racially and ethnically diverse participants and includes 
multi-dimensional data consisting of phenotypic data, 
genomic data, and extensive questionnaire-based and 
geospatial estimates of exposome-wide environmental 
exposures. The surveys include questions on health, 
lifestyle, medical history and various exposures such as 
residential and occupational environmental exposures, 
medication use, physical activity, stress, sleep, diet and 
reproductive history.

Human Early Life 
Exposome (HELIX) 
project: https://helixo 
mics.isglobal.org/

The HELIX project is a resource of multi-omics and expo
some data for 1301 mother-child pairs from six 
European cohorts. The ExWAS (Exposome-wide associa
tion analyses) catalog can be used to query and down
load findings from the HELIX ExWAS. Summarized 
results for other omic analyses are also available 
for download.

Location-based exposure sources
The Center for Air, 

Climate, and Energy 
Solutions (CACES): 
https://www.caces.us

The CACES land-use regression (LUR) models provide esti
mates of outdoor concentrations for multiple pollutants 
by census tract. The CACES reduced complexity models 
(RCMs) estimate the impact of the emissions of multiple 
pollutants on human health.

NASA Earthdata 
Collection: https:// 
www.earthdata. 
nasa.gov/

The Earthdata collection includes measurements of the 
Earth’s atmosphere, land, ocean, and cryosphere from a 
variety of sources, including sensor data from satellites 
and aircraft platforms, in situ measurements, field cam
paigns, and model estimates. These measurements can 
aid in the understanding of climate change, extreme 
weather patterns, hazards and disasters, air quality and 
water resources levels.

CDC/ATSDR Social 
Vulnerability Index 
(SVI): https://www. 
atsdr.cdc.gov/pla 
ceandhealth/svi/

The SVI uses US Census data to calculate the social vul
nerability at the census tract level (subdivisions of coun
ties for which the Census collects statistical data). Each 
census tract receives an SVI rank based on 16 social fac
tors which are also grouped into four related themes— 
socioeconomic status, household characteristics, racial 
and ethnic minority status, and housing type and 
transportation.

ATSDR Environmental 
Justice Index: https:// 
www.atsdr.cdc.gov/pla 
ceandhealth/eji/

The EJI ranks the overall effects of environmental injustice 
on health for each census tract. It ranks each census 
tract on 36 environmental, social, and health factors 
and groups them into ten domains and three overarch
ing modules—the environmental burden, social vulner
ability and health vulnerability modules.

Statistical analysis
rexposome: https:// 

www.bioconductor. 
org/packages/release/ 
bioc/html/rexpo 
some.html

An R package for the analysis of exposome data. Offers a 
set of functions to incorporate exposome data into the R 
framework and a series of tools to analyze expo
some data.

omicRexposome: https:// 
bioconductor.org/pack 
ages/release/bioc/ 
html/ 
omicRexposome.html

omicRexposome uses MultiDataSet for coordinated data 
management, rexposome for defining exposome data, 
and limma for association testing to facilitate the study 
of associations between exposures and omic data.

MR-Base: https://www. 
mrbase.org/

Platform for Mendelian Randomization using published 
GWAS summary statistics

(continued) 
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datasets, while others only selected a subset of the exposures, for 
instance, dietary exposures and/or other modifying factors.

Characteristics of ExWAS
Multi-modality of exposure data
One of the key characteristics of exposomics data is “multi- 
modality” of measurement, meaning that it encompassess multi
ple types and contexts of information.35,36 Examples of these 
measurements include light and temperature (sub-molecular), 
biomarkers of chemicals (molecular), dietary intake and physical 
activity (lifestyle), income and education (socioeconomic sta
tus).37,38 Large nationwide studies of the external exposures usu
ally require integration through ZIP Code Tabulation Areas (areal 
representations of postal ZIP Codes), while the analysis of the in
ternal exposome in the context of precision medicine involves 
multi-omics data such as genomics, transcriptomics, proteomics, 
and metabolomics.39

How large is the exposome? The “dimensionality,” or how many 
exposome variables are included in an ExWAS has analytic impli
cations, such as signal-to-noise and false positive rates. Currently, 
the largest chemical database has over 275 million substances40

but only make up a tiny fraction of the theoretical range (millions 
of billions).4 Exposure information is commonly obtained through 

geospatial modeling, laboratory measurement, questionnaire, or 
administrative records. Nevertheless, from a data analytical per
spective, these diverse factors are viewed as one of the following 
types: categorical variables with nominal and ordinal subtypes, or 
numeric variables with interval and ratio subtypes. Raw data cap
tured in numeric format can be encoded as it is, or recoded into 
categorical variables. For instance, one may record the number of 
cigarettes smoked per week and recode it into a variable with three 
categories: heavy, medium, and light smokers. While the best 
encoding choice depends on the context of the study, it is generally 
recommended to record data in the native format to avoid loss of 
information and biases.41-43 The types of outcome variables can af
fect the choice of regression model. A logistic regression model and 
a linear regression model are used to analyze binary and continu
ous outcomes respectively. Similarly, the types of predictor varia
bles can affect the interpretation of the beta coefficients—whether 
it is an increase in outcome per unit change of a continuous predic
tor, or a change in outcome relative to the reference group of a cat
egorical variable.

Correlations between exposures and phenotypes
Environmental exposures are known to be densely corre
lated.24,44,45 Correlation patterns depend highly on the context of 

Table 1. (continued) 

Type Name Description

Chemical Information & Interpretation
Exposome-Explorer: 

http://exposome-ex 
plorer.iarc.fr/

The Exposome-Explorer is a database of biomarkers of ex
posure to environmental risk factors for diseases. It con
tains information on known biomarkers of exposure to 
dietary factors, pollutants, and contaminants measured 
in population studies.

The Blood Exposome 
Database: https:// 
bloodexposome.org/

Collated chemical lists from metabolomics, systems biol
ogy, environmental epidemiology, occupation, toxicol
ogy and nutrition curated from automated text mining 
from PubMed and PubChem databases.

The Toxic Exposome 
Database (T3DB): 
http://www.t3db.ca/

The database currently houses 3678 toxins described by 
41 602 synonyms, including pollutants, pesticides, 
drugs, and food toxins, which are linked to 2,073 corre
sponding toxin target records. Altogether there are 
42 374 toxin, toxin target associations. Each toxin record 
(ToxCard) contains over 90 data fields and holds infor
mation such as chemical properties and descriptors, 
toxicity values, molecular and cellular interactions, and 
medical information.

CompTox Chemicals 
Dashboard: https:// 
comptox.epa. 
gov/dashboard/

The Dashboard contains chemistry, toxicity and exposure 
information for over one million chemicals, with over 
420 chemical lists based on structure or category. It also 
enables access to the information in ExpoCast and 
ToxCast. Notably, one can also get access to EPA's 
Distributed Structure-Searchable Toxicity (DSSTox) 
Database, which contains accurate mapping of bioassay 
and physiochemical data on chemical substances to 
their chemical structure.

PubChem: https://pub 
chem.ncbi.nlm. 
nih.gov/

Open chemistry database of the National Institutes of 
Health (NIH) since 2004. Small and large molecules with 
data on structure, identifiers, physiochemical proper
ties, biological activity, as well as health, safety and tox
icity data. Currently, it has over 115M compounds. 
Contributed to by academics, government agencies, 
chemical vendors and journal publishers.

Chemical Entities of 
Biological Interest 
(ChEBI): https://www. 
ebi.ac.uk/chebi/

ChEBI is a dictionary of molecular entities. It focuses pri
marily on small chemical compounds that intervene in 
the biological processes of living organisms. Currently, it 
has over 60 000 annotated compounds.

Tox21: https://ntp.niehs. 
nih.gov/what 
westudy/tox21/

Testing of commercial chemicals and pesticides, food 
additives and chemical compounds in hundreds of cel
lular based assays and transcriptomic assays with dose- 
response characterization.
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the analysis. Chemicals released to the environment from a sin
gle source or generated from the same biochemical processes 
(eg, diesel combustion) are correlated and often detected as a 
cluster, and have been used as the footprint to identify sources of 
exposures.46,47 Organic chemicals tend to have higher correlation 
than water-soluble compounds due to their lipophilicity and ac
cumulation in organisms. Correlation of exposures are also 
higher between unit members in a shared environment, and this 
correlation increases further with longer duration of resi
dence.48,49 One of the methods to intuitively visualize the corre
lation structure is correlation globe,50 which can be further 
developed to show differences between and within sex groups51

(Figure 3). In longitudinal studies, the within-person correlation 
of repeated measurements of the same exposures is generally 
higher than the between-person correlations; however, other fac
tors, such as the solubility and exposure trends of the chemicals, 
could play an important role for this observation.52,53 The conse
quence is that it is difficult to identify the true contributor(s) for 
a given outcome in a statistical model. It also causes instability 
to model parameters and their precision (standard errors) from 
tiny changes in the input data due to multicollinearity.54 In 
ExWAS and exposome research, it is essential to check model 
assumptions, potentially across multiple exposures. Further, 

correlation decreases the effective sample size and statistical 
power of an analysis.

The list of potential confounding variables is elusive and 
may need to be considered in a domain-specific manner
As above, the exposome is densely correlated. A related issue, 
confounding, is common in exposomic observational studies. 
Confounding in the context of the exposome refers to a situation 
where the observed association between an environmental expo
sure (the exposome factor) and a health outcome is distorted by 
the presence of another variable, which is related to both the ex
posure and the outcome but is not an intermediate step in the 
causal pathway.

Potential confounders can influence both the exposure and 
the outcome variables and cause spurious associations in analy
sis, which can be controlled by including them in a regression 
model, or by stratifying among the hypothetical confounding var
iables. Nonetheless, a database of confounders is not available 
for ExWAS associations. There are several reasons for this, possi
bly. First, the phenomenon of confounding may differ from 
domain-to-domain, requiring analytic specifications to change 
for each association. Second, since the exposome is time-varying, 
there could be many types of sources of confounding, many of 

Table 2. Common epidemiological study designs and their advantages and disadvantages for exposomic studies

Study design Description Advantages Disadvantages

Cross sectional For this design, data on the expo
some and health outcomes are 
collected at a single point in 
time. It can provide a snapshot 
of the relationship between 
exposomic factors and health 
outcomes in a spe
cific population.

Suitable for routine data collec
tion and able to estimate pop
ulation features such as 
prevalence of a disease.

Reverse causality: exposome fac
tors coming before the out
come. Confounding: the 
observed association between 
an environmental exposure 
(the exposome factor) and a 
health outcome is distorted by 
the presence of another vari
able. In exposomic research, 
confounding can be particu
larly challenging due to the 
complex and multifaceted na
ture of environmen
tal exposures.

Case control It involves comparing the expo
sure history of individuals 
with a specific disease or 
health outcome (cases) to 
those without the outcome 
(controls). Cases are enrolled 
first and controls with similar 
demographic and other key 
characteristics as the cases 
are collected in the 
same population.

Relative simple and inexpensive 
to collect samples and able to 
conduct analysis to identify 
exposures associated with the 
disease. It is an efficient design 
for studying rare diseases.

Confounding by unknown fac
tors (see above).

Cohort In cohort studies, a group of indi
viduals (cohort) is followed 
over time to assess the rela
tionship between exposures 
and health outcomes. These 
studies can be prospective (fol
lowing individuals forward in 
time) or retrospective (using 
existing data to follow individ
uals backward in time).

Particularly useful for studying 
the effects of long-term and 
multiple exposures, as well as 
investigating the role of criti
cal periods and windows of 
susceptibility in life-course 
epidemiology.

Can be time-consuming, expen
sive, and may be affected by 
attribution bias. Confounding 
also remains an issue

Nested case-control This design is a hybrid of cohort 
and case-control designs, 
where cases and controls are 
identified from within an 
existing cohort study.

Has the advantages of case-con
trol design and lower cost of 
exposure measurement due to 
a reduced sample size.

May induce inefficiency when 
matching cases. When multi
ple outcomes are investigated, 
a new set of controls is re
quired for each disease.
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which have not been identified. The exposome includes a vast ar
ray of factors across domains. This contrasts with GWAS, where 
“one” central confounder has been identified, known as population 
stratification, which describes how genetic variant frequency 
relates to ancestry. Untangling ancestry versus variant specific 
effects is achieved by stratifying GWAS analysis by ancestral 
groups, or accounting for ancestry in the regression model, and 
this adjustment does not need to change per genetic factor.

We give an example: suppose a ExWAS discovers a correlation 
between a certain environmental chemical and increased rates 
of a health condition. However, if individuals with the exposure 
also share a common lifestyle factor (like smoking), which inde
pendently increases the risk of the health condition, smoking 
becomes a confounding variable. It’s challenging to determine 
whether the health condition is due to the chemical, the smok
ing, or a combination of both. To partially address confounding 
in exposomic studies, comprehensive data collection is vital. This 
includes detailed information on a wide range of potential envi
ronmental exposures, as well as other demographic, genetic, and 
lifestyle factors that could influence health outcomes.

Sparsity and missingness of exposure data
The size of the chemical space (possible chemical species in the 
environment) is increasing.55 However, individuals are typically 

exposed to a small subset of this universe. If we measure the 
chemicals in human fluid or environmental samples and tabu
late the results, low dose exposures will be the majority and 
many of the values in the data table for a specific chemical will 
be “missing” from a subset of samples, and have no values.56-58

The sparsity could be caused by a lack of exposure or concentra
tion that is too low to be detected, that is left censored data. For 
chronic diseases, it is often assumed that the individual effects of 
many exposures are marginal and impacts are attributed to the 
collective actions of a mixture57,59,60; however, deployment of 
modern machine learning techniques to analyze mixtures is im
possible with non-random patterns of missingness. Left- 
censoring is one of the examples of missing not at random and is 
characterized by missing values that are below the limitation of 
detection of the measurement. An imputation method, Quantile 
Regression Imputation of Left-Censored data (QRILC), has been 
developed to impute unknown values.61 The method works by 
sampling randomly from a truncated distribution of values pre
dicted via quantile regression.

Data processing
Careful data preprocessing is essential given multi-modality is 
critical in an exposome study. Pre-processing refers to the vari
ous addition, removal, and transformation actions taken to make 

Figure 3. A correlation globe showing the associations among chemical biomarkers for females, males, and couples. The right half of the globe 
represents female biomarkers, while the left half represents male biomarkers. Only correlations greater than 0.25 or smaller than −0.25 are displayed 
as connections. A red line signifies a positive correlation, whereas a dark green line represents a negative correlation. Both color intensity and line 
width correspond to the magnitude of the correlation. Reproduced from Chung et al.,51 used under CC-BY-NC-ND 4.0 license.
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raw data ready for statistical analysis and influences the inter
pretation and robustness of ExWAS outputs.

Assembling the cohort for analysis
Data for a study are collected as specified by research protocols. 
Additional filtering steps to select eligible subjects into an analy
sis are common for large, general purpose observational studies 
or repurposing real-world data (eg, administrative healthcare 
records). If the analysis requires the integration of multiple inde
pendent datasets, variable harmonization is needed to increase 
comparability and interpretability of results.62-64 Approach for 
harmonization generally involves assessing data dictionaries to 
identify common variables that have different recording formats. 
Then new variables are created through standardizing the mea
surement units and redefining levels in categorical variables. For 
instance, in one study, “ethnicity” is a categorical variable with 
levels “white,” “black,” “Hispanic,” and “others.” While in another 
study, the same variable contains “white,” “black,” “Hispanic,” 
“Asian,” and “others.” For compatibility, some investigators may 
merge “asian” into “others” for the new “ethnicity” variable and 
document how inconsistency is handled in the data dictionary.

Data cleaning
When the information is gathered into a structured, tabular for
mat, it is further processed to facilitate downstream statistical 
analysis. Variables (columns) with a high percentage of missing 
values, eg, >90%, could be removed to enhance reliability of 
analysis. For extreme values, data could be trimmed to remove a 
small percentage of subjects (rows) or replaced with a highest 
manually decided value for the variable, eg, age 99 can be 
substituted for age 137. However, trimming should be performed 
with caution to control for the level of biases introduced to the 
data.60,65 Datasets with missing values are common across differ
ent fields in exposomics and missingness is caused by various 
reasons, from dropout of subjects in longitudinal analysis to be
yond the reliable signal detection range in chemical measure
ment. Furthermore, when integrating data from different 
modalities (eg, different assays), often some assays will be mea
sured and not others for a subset of the participants. Different 
imputation methods are available and the choice is typically 
based on the investigator’s knowledge about the missing mecha
nism (eg, missing completely at random, missing at random, cen
sored), types of analysis and data, and imputation performance. 
In summary, data cleaning steps may include procedures such as 
handling missing values, detecting and managing outliers, re
moving duplicates, and binning variables. The aim is to enhance 
the quality of data, ensuring both internal validity (plausible val
ues and ranges) and external validity (comparable units). This, in 
turn, enhances the interpretability of downstream statisti
cal analyses.

Transforming variables
Often, data are transformed prior to analysis to adhere to model 
assumptions and to enhance result interpretation. It is particu
larly important in exposome analyses where different exposures 
will have different units of exposure and differing prevalence of 
exposure. In a linear model, predictor (X variable) can be log- 
transformed to reduce the influence of extremely large values 
without trimming or substitution, whereas the same transforma
tion is applied to log-normally distributed outcome (Y variable) 
as a simple way to fulfill the normality assumption of errors. A 
“fudge factor,” for example, þ1, is added to zero value when log 
transformation is required.29 For other non-normally distributed 

variables, Box-Cox transformation66,67 or an inverse normalized 
function68 are options. Since multimodal data could have varia
bles with different units and a large range of absolute magnitude, 
we can conduct z-score standardization69 to make comparisons 
possible (eg, each variable is in 1 SD unit of continuous exposure). 
In the machine learning context, categorical variables are often 
required to be one-hot encoded (ie, transforming the levels of a 
categorical variable into new individual variables) prior 
to modeling.

Other considerations
Analytic outputs: effect sizes, correlation, and odds ratios
In statistics, an effect size, or association size, quantitates the re
lationship between two variables. A simple example is correla
tion, which measures the relatedness between two variables, 
that is their tendency to vary together. Typical quantification 
metrics include Pearson’s product-moment coefficient (r) for lin
ear relationship and more generally Spearman’s rank correlation 
coefficient (rs) for any monotonic relationship. It is a unitless 
measure with a range of −1 to 1. A negative correlation suggests 
that variables are changing in opposite directions, and a zero cor
relation means there is no relationship. In ExWAS, absolute cor
relations are usually low, but heterogeneous, with values below 
0.25.50,51,70 When comparing the effect sizes of two events, we 
can use absolute measures including mean risk difference, or rel
ative terms such as relative risk and odds ratios. A magnitude 
equal to one for the relative measures indicates that the expo
sure does not affect the outcome, while a value smaller than one 
means a protective effect from the exposure, and a harmful ef
fect for a bigger than one value. In a linear regression model, a re
gression coefficient denotes the average change in dependent 
variable per unit change in the corresponding indepen
dent variable.

Inference versus prediction
A statistical model is built to describe the relationships between 
the variables of interest and can be used to draw inference or to 
make predictions. The majority of public health studies focus on 
collecting representative samples from a population and con
structing models in order to draw conclusions to support policy 
formulation. Conversely, in biomedical studies, models are often 
used to predict the outcomes of individuals through using their 
corresponding measurements as predictors. The predicted out
come can further aid in diagnosis and prognosis of diseases.

In order to build a regression model for inference in an ExWAS 
study, researchers first need to choose the right regression model 
to model a quantitative or binary outcome. Second, the analyst 
must decide if they want to transform the outcome variable so it 
adheres to the requirements of regression (eg, normally distrib
uted for continuous outcomes). Then, one needs to identify suit
able exposure and outcome variables for the study question, and 
include other potentially confounding variables based on domain 
knowledge to minimize distortion of the association between the 
variables of interest. For instance, secondhand smoke exposure 
was adjusted for the associations between short-term ozone ex
posure and platelet activation and blood pressure increases.71

Next, a model is chosen based on the nature of the data and the 
hypothesis. Before fitting the model, the data must be inspected 
and cleaned to ensure a valid interpretation of the modeling sta
tistics. The model is usually fitted using ordinary least squares or 
maximum likelihood estimation methods. Afterward, it is neces
sary to check model assumptions such as normality and 
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homoscedasticity through diagnostic tests and plots for every ex
posure phenotype association.

In predictive modeling, data are split into training and test 
sets with a ratio between 8:2 to 5:5. Using the training set, varia
bles that have strong influence on the outcome are selected as 
predictors, and fit statistics such as R2 is calculated to assess how 
well the model describes the data. Such a model can be opti
mized iteratively, and the performance of candidate models is of
ten evaluated through cross-validation, which is a resampling 
procedure utilizing different segments of the training dataset for 
testing and tuning a model across multiple iterations.72

Increasingly, many complex machine learning algorithms are 
available, and they are often treated as “black boxes” when com
pared with linear-based regression models. Most of the time, re
search questions involve binary classification and the prediction 
characteristics are visualized with a receiver operating character
istic (ROC) curve.73 Alternative models can be evaluated using 
performance indicators such as AUC. Model overfitting can occur 
and the generalizability of its predictive performance is assessed 
using the test dataset. The concept of bias-variance tradeoff 
emphasizes the importance of finding an optimal balance be
tween simplicity (to prevent overfitting) and accuracy (to effec
tively capture the underlying patterns in the data) in a machine 
learning model.74 No simple solution is known for this problem, 
but techniques such as cross-validation could help to detect it 
early in the model building process.

Variable selection, reproducibility, and 
mitigation of the exposome-wide false 
discovery rate
In exposome research and ExWAS, the analyst is attempting to 
relate a vast array of environmental factors with an outcome, 
known as variable selection. However, the more tests in ExWAS, 
the higher the chance that some of the findings (indicating a sig
nificant effect) are actually just due to random chance. This is 
known as a false positive or a false discovery. False positives are 
a threat to reproducibility of associations. Traditional high- 
throughput inference techniques include the Bonferroni correc
tion (simultaneous inference) or FDR control (inferring over the 
average of those that are selected). The prior adjusts the p value 
thresholds conservatively, attempting to reduce the probability 
of selecting one false positive. The former is more lenient, trying 
to ensure that the average of false discoveries among all variables 
selected is controlled.

Practically, these approaches address multiple hypothesis 
tests by correcting, or adjusting the significance threshold to ac
count for multiple testing; however these estimates make infer
ences without accounting for the other exposome variables that 
are associated with the outcome. For example, the Bonferroni 
correction, known as a “family-wide error” rate correction, simply 
corrects the pvalue threshold from the standard 0.05 to 0.05 di
vided by the number of tests, or the number of exposome varia
bles/factors that are being modeled. This leads to a challenging 
question: how many exposures can be analyzed in an ExWAS, 
and what would the denominator be?

False discovery rate estimation
The FDR method was introduced by Benjamini and col
leagues.21,75 The FDR is essentially the expected proportion of 
false discoveries among all the discoveries made. For instance, if 
you perform 100 tests and 10 of them show significant results, 
the FDR can help estimate how many of those 10 are likely to be 

false positives. The FDR allows researchers to control the rate of 
these false discoveries, reducing the likelihood of mistakenly 
identifying an environmental factor as influential when it's not. 
Exposome factors being tested are often not independent of each 
other. For example, exposure to one pollutant might be corre
lated with exposure to another. Traditional FDR methods assume 
each test is independent, but this assumption doesn't hold in 
many practical scenarios. Recognizing this, more advanced FDR 
methods have been developed that take into account the correla
tion between tests. These methods understand that finding a sig
nificant result in tests that are correlated is different from 
finding one in tests that are independent. By factoring in these 
correlations, these methods provide a more nuanced and accu
rate estimation of the FDR.

For instance, if several environmental factors are correlated, a 
discovery in one may increase the likelihood of a discovery in an
other. Advanced FDR methods may be able to consider the corre
lation (eg, the Benjamini-Yekuteli approach,76 or an empirical 
permutation-based approach77), ensuring that the overall rate of 
false discoveries remains controlled, even in the presence of 
these correlations.

The simplest approach to avoid false positives may be through 
validation in a held-out dataset, known as “sample splitting.”78 In 
this procedure, a large dataset is split into at least two sub- 
datasets. Then, all variable selection procedures are executed in 
one of the datasets, and inference takes place in the second data
set.79 Extensions of studies, such as “hierarchical” testing, for ex
ample, testing hypotheses at different levels of variables, may be 
especially appropriate in ExWAS, where exposure groups might 
be nested by behavior (eg, smoking behavior and biomarkers 
of smoking).

Variable selection during prediction
A common machine learning task includes combining a 
“variable selection” procedure to identify groups of variables 
that maximize predictive power as a collective. Although pre
dictive performance is generally correlated with the number of 
model variables, investigators should consider a balance be
tween interpretability (simpler models) and accuracy of the fi
nal predictive model. One popular procedure in ‘omics research 
includes shrinkage approaches80 (also known as regularization). 
The LASSO procedure (which stands for Least Absolute 
Shrinkage and Selection Operator)81,82 is an algorithm that 
“shrinks” or even sets some of the less important feature varia
bles to zero, essentially removing them from consideration. By 
focusing only on the most significant features and ignoring the 
less relevant ones, LASSO prevents our model from getting too 
attached to the noise or irrelevant details, or too many varia
bles, in the data. This approach helps reduce overfitting, ensur
ing our analysis or model is more robust and generalizes better 
to new, unseen data. Procedures similar to LASSO (‘1 penalty) 
include ridge (‘2 penalty) and elastic net83,84 regression (‘1 þ ‘2 

penalties). There are also other variants,85-87 such as Group 
LASSO88 (selecting groups of predictors rather than individual 
variables), Sparse LASSO (optimized to select a small number of 
critical variables in high-dimensional data), and Sparse Group 
LASSO (selecting important groups of variables and also vari
able within groups).

It is important to emphasize that the ExWAS study design, at 
best, yields exposures that are reliably correlated with, but not 
necessarily causal of, a phenotype of interest. Given the dense 
correlational relationships between exposure factors, pheno
types, as well as often pervasive biases in ascertainment, 
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sampling, and survey weighting, ExWASs are often just the first 

step in the process of winnowing a long list of exposures to then 

be analyzed for potential causal relationships with the pheno

type of interest. Typically, after important variables are identi

fied, one may conduct further studies to get better 

understanding between the selected variable and the outcome. 

These include but are not limited to: meta-analysis for reproduc

ibility of the finding, mediation analysis for mechanistic insights, 

Mendelian randomization analysis for causal inference, and even 

molecular experiment to demonstrate the effects of 

the variables.

Sample versus variable size
In omics studies, a very large number of variables (genes, pro

teins, and metabolites, etc.) are typically related to an outcome. 

Sample sizes range from hundreds to thousands; only recently 

have we seen large scale multi-omics in cohorts such as UK 

Biobank. In typical cohort scenarios, however, smaller sample 

sizes creates an analytics scenario known as “large p (number of 

variables), small n (sample size).” Statistical models built with 

data whose dimension is larger than the sample sizes are prone 

to overfitting (ie, fitting the noise rather than the underlying sig

nals). While the models can perform well with the training data, 

they have low generalizability and typically fail to reproduce the 

performance when fed with new data. Other issues include the 

multiple testing (greater type I error rate) and collinearity (high 

correlation) between variables when selecting impacting varia

bles. Mixture analysis might also be underpowered owing to the 

small effect size of individual exposures. Sample size require

ment for an ExWAS depends on the numbers and general effect 

sizes of exposures of interest and can be estimated using simula

tion. For example, in a post hoc power analysis with over 120 en

docrine disrupting chemicals, we estimated that a sample size of 

�2700 is needed to achieve a statistical power of 0.8,89 which 

means that if there is a true effect, the test has an 80% probabil

ity of detecting it.
Conversely, in nationwide scale analysis, various 

questionnaire-based and targeted external measurements are in

tegrated through personal identifiers or geocodes, and sample 

size could be in the millions or more. Overpowered associations 

are a major issue in this scenario.90-92 The huge sample size 

decreases the standard error, amplifying the ability to detect 

even miniscule differences in effect size. In extreme cases, the in

terpretation could overemphasize statistical differences in effect 

sizes that lack a clear biological relevance or may be “residually” 

confounded, eg, a 0.001% increase in an outcome for an unit 

change of an exposure. If the dataset is split and randomized, a 

pair of exposure-outcome relationships could be both statisti

cally significant in the subsets, but with a flip of the directionality 

of effects, making it even harder to interpret the results.

Advanced methods in analyzing 
the exposome
We have covered basic concepts for exposome study and con

ducting an ExWAS. However, more advanced topics and methods 

are available to gain insights on the complex exposure-disease 

relationships based on the study context and research questions. 

Many of them are extensions of, or involve the application of, the 

ExWAS approach and are discussed below.

Methods to incorporate study design features: 
survey sampling, repeated measures, and 
time-to-events
Survey sampling
Sampling is the process of selecting a representative subset of 
individuals from a population in order to obtain population esti
mates. Commonly used methods include simple random sam
pling and stratified sampling. In contrast to conducting phone 
interviews, large-scale nationwide studies involving physical in
teraction (eg, in person interview and examinations) will require 
significant resources and pose logistical challenges if simple ran
dom sampling is used to identify participants. Therefore, com
plex multistage survey design is employed. It is best to illustrate 
the concept with NHANES, a bi-yearly study conducted by the 
Centers for Disease Control and Prevention. To provide a repre
sentative sample of the US population, a 4-stage survey design is 
used. To begin, primary sampling units (PSUs) mostly in county 
level are first selected (Stage 1), and segments, generally in city 
block level, within PSUs are subsequently sampled (Stage 2). 
Households within segments are randomly drawn (Stage 3), and 
finally individuals were selected at random in households (Stage 
4). To obtain correct population statistics, software or statistical 
packages designed to incorporate PSU, strata, and survey weight 
information of the study must be used. An example is the investi
gation of relationships between 27 physiological markers and 
mortality in multiple NHANES survey cycles by Nguyen et al.93

Mixed linear modeling to account for repeated measures
Many statistical tests assume independence between observa
tions. Violation generally causes the standard error and confi
dence interval of the estimates to be smaller, and thus deflating 
standard errors and increasing the chances of false findings. In 
practice, weak and random correlations are almost always ob
served, but this assumption is still largely valid. However, when 
sources of correlation are known in the study design, they can be 
considered by the model to control for spurious findings. Two 
typical correlational sources are clustering of individuals and re
peated measurement of the same individuals over time. 
Clustering occurs when individuals are sampled through specific 
locations or institutions, such as enrollment of students for IQ 
tests through schools and patients for a disease study through 
hospitals. These designs have the advantages of reducing cost of 
sampling and variability of the data. Correlated data are ana
lyzed with a mixed effect model94 where the correlating hierar
chical or repeating unit is modeled as the random effect and 
other variables of interest are called fixed effects, for example, 
outcome, predictor, and potentially confounding variables. 
Alternatively, a generalized estimating equation method can be 
used if only population-averaged effects are concerned.18,95,96

Time to event outcomes
In a longitudinal study, individuals are followed over time and 
therefore time-to-event data is available. For example, a study on 
early life lead exposure and the later development of learning 
and behavior problems in children. We can conduct survival 
analysis97 to understand the relationship between an exposure 
to a delayed outcome. Specifically, a Cox proportional-hazards 
model can handle multiple predictors and estimate the hazard 
ratio for each predictor. In addition, because Cox model is still a 
regression based method, it fits into the ExWAS analytical frame
work for conducting exposome-level analysis.
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Mixture analysis and additive 
polyexposure scores
Methods we previously introduced for variable selection can also 
be applied to identify important contributors to an outcome in 
mixture exposure settings. However, one of the significant limita
tions is that only the effects of individual exposures are known. 
This issue becomes more prominent when it is believed that con
centration and impact of individual exposures are low but collec
tively they may have meaningful biological perturbation at 
molecular level or even an association to a clinical outcome.87 To 
address this problem, we can apply weighted quantile sum re
gression.86 The approach creates a summary score of the mixture 
for each individual and assesses the relationship between the 
scores and the outcome; however, the new score is a challenge to 
interpret. On the other hand, the model also estimates weights of 
individual exposures to the score, thus also enabling the identifi
cation of significant individual contributors to the overall mix
ture effects. Quantile-based g-Computation85 is a technique 
integrating weighted quantile sum (WQS) regression with g-com
putation. Same as the original WQS regression method, it can es
timate the overall mixture effect while the parameters are 
calculated using a marginal structural model instead of stan
dard regression.

Similarly, polyexposure scores (PXS)73,98-101 provide an alter
native way to summarize the individual exposure risks to a dis
ease, which are typically weak and nonstatistically significant, 
into a single predictive index for each subject. Building a PXS 
involves splitting the original data into three different subsets 
(training, validation, and testing) and employing multiple vari
able selection steps (eg, ExWAS and LASSO) to identify significant 
exposure factors to an outcome. Advanced methods are also 
available for different mixture exposure situations, such as 
Bayesian kernel machine regression80,102 and boosted regression 
trees103 for nonlinear response modeling and interaction screen
ing. Identifying the optimal method for detecting health impacts 
of mixture exposures in the context of exposomics is an active re
search area and a wide range of methods has been discussed by 
others in a consortium setting.83,104-108

Going forward: infrastructure to support 
standardization of ExWAS and terminology
Exposomics and ExWAS is a fast growing field. GWAS were made 
possible by the standardization of the ways that genetic factors 
are digitally represented (eg, as genotypes with standard 
identifiers) and the ease of which samples may be collected (eg, 
in a case-control fashion) due to the lack of unknown confound
ing and static nature of genetic factors and genotypes. 
Standardization of ExWASs will be possible, but require advance
ment in not only analytic standards but also will depend on 
study design characteristics, some of which we articulated in 
this paper.

We foresee that a few emerging topics will be crucial to facili
tate standardization of ExWAS studies in the future. First, the 
prevalence of open data and technologies to access these data, 
such as cloud computing will be beneficial. Since 2023, NIH 
requires all grant applications to submit a data management and 
sharing plan under a new policy.109 It is becoming a standard for 
study funders/providers to share their data via FAIR Data 
Principles—Findability, Accessibility, Interoperability, and 
Reusability of digital assets.110

Second, administrative healthcare data, such as electronic 
health records and administrative claims, contains comprehen
sive, codified, and longitudinal information about an individual’s 
health and disease status and drug prescription. These data have 
been instrumental in geospatial environmental health stud
ies.9,111-114 Unlike data collected for observational cohorts, these 
datasets are not created for research.115-117 Data could be coming 
from a few major health care centers, and variations due to style 
of practices have to be considered. In addition, records are trig
gered by the severity of illnesses. An absence of disease records 
does not necessarily mean that the patient is disease/symptoms 
free. Repurposing these records for research requires that inves
tigators have an understanding of the healthcare practice and 
coding system in order to draw valid conclusions from 
the analysis.

Third, the functional exposome encompasses a subset of bio
logically active exposome.5 Semi-agnostic methods for functional 
exposomics, which are different from targeted and non-targeted 
measurement approaches, could become the mainstream driving 
molecular exposure and multi-omics analysis. These methods in
clude semi-targeted analysis,118-120 suspected screening,121-123

adductomics,124-127 and affinity-based measurement128 and 
they are characterized by striking a balance between throughput 
and interpretability of measurement. An understanding of 
data generation processes is essential to ensure correct applica
tion of analytical methods and interpretation of results. 
Furthermore, the application of the functional exposome 
concept to the One Health concept129 could enable holistic and 
integrated studies between humans, animals, and the external 
environment.

Finally, the term environment-wide association study (EWAS) 
was coined by Patel et al. in 2010,16 but variants are common, in
cluding environmental-wide association study,130 exposome- 
wide association study,89 exposure-wide association study17 with 
acronyms such as XWAS, EnWAS, and ExWAS. To further com
plicate the issue, EWAS is also an acronym for epigenome-wide 
association study, which appears in the literature around the 
same period of time. The ambiguity makes it challenging to 
search for relevant studies and creates confusion among 
researchers. In light of this, we propose to standardize the no
menclature with the term “exposome-wide association study, 
ExWAS”, pronounced as “x-wahz”, for any data-driven study that 
associates multiple and diverse exposome-based exposures with 
a phenotype or multiple phenotypes and involves correction for 
multiple comparisons and elucidation of replication. In 
discipline-specific analyses, such as nutrient-wide association 
study, and drug-wide association study, ExWAS could be tagged 
as a keyword for effective paper retrieval during litera
ture reviews.

Uncovering the contribution of the environment to diseases 
presents a significant challenge and requires advancements 
in both measurement technologies and data analytical 
methods. From a data scientist’s perspective, embracing the use 
of large cohorts and repurposed datasets, along with the applica
tion of the latest analytical techniques, could enable novel dis
covery of the elusive relationships between the environment 
and diseases.
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