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Introduction. Alterations in miR-155 serum levels have been described in inflammatory and infectious diseases. Moreover, a role for
miR-155 in aging and age-related diseases was recently suggested. We therefore analyzed a potential age-dependent prognostic
value of circulating miR-155 as a serum-based marker in critical illness. Methods. Concentrations of circulating miR-155 were
determined in 218 critically ill patients and 76 healthy controls. Results. By using qPCR, we demonstrate that miR-155 serum
levels are elevated in patients with critical illness when compared to controls. Notably, levels of circulating miR-155 were
independent on the severity of disease, the disease etiology, or the presence of sepsis. In the total cohort, miR-155 was not an
indicator for patient survival. Intriguingly, when patients were subdivided according to their age upon admission to the ICU
into those younger than 65 years, lower levels of miR-155 turned out as a strong marker, indicating patient mortality with a
similar accuracy than other markers frequently used to evaluate critically ill patients on a medical ICU. Conclusion. In summary,
the data provided within this study suggest an age-specific role of miR-155 as a prognostic biomarker in patients younger than
65 years. Our study is the first to describe an age-dependent miRNA-based prognostic biomarker in human diseases.

1. Introduction

Sepsis represents a complex pathological process including
inflammation, coagulopathy, and deterioration of the
patients’ hemodynamic state, finally leading to organ failure
[1]. Although it was shown that an immediate initiation of
anti-infective and supportive therapeutic measures consid-
erably improves the prognosis in critically ill patients [2],
the overall sepsis-related mortality remains high. This high-
lights the need for biomarkers allowing an early possible
diagnosis on the one hand and prognosis assessment to
guide therapy, on the other [3, 4].

MicroRNAs represent endogenous RNA molecules with
a length of ~22 nucleotides [5]. They are created by a com-
plex process leading from pre-miRNAs to the mature
miRNA that regulates multiple processes such as cell metab-
olism, cell growth, and differentiation as well as cell death

[5]. miR-155 represents one of the best characterized micro-
RNAs in the context of infection and inflammation. This
miRNA is predominantly found in the liver, spleen, and
thymus [6] and is involved in immune cell development
and the regulation of systemic inflammatory processes
[7–9]. Alterations in miR-155 expression were demon-
strated in activated immune cells and consequently in
many inflammatory diseases such as allergic asthma [8],
atopic dermatitis [10], rheumatoid arthritis [11], Crohn’s
disease [12], and liver injury [13]. In a recently published
in vitro study using LPS-induced THP-1 monocytes, it was
demonstrated that miR-155 regulated the expression of
different proinflammatory mediators [14], arguing for a func-
tion in systemic inflammation and infection.

Due to their simple chemical structure and the resulting
biological stability, circulating miRNAs were proposed by
many authors as biomarkers for several diseases including
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inflammatory diseases and infections [15]. In particular,
many authors proposed circulating miRNAs as serum-
based markers in patients with critical illness. Nevertheless,
despite intensive research efforts, specific mechanisms or
pathogenic factors regulating concentrations of circulating
miRNAs in sepsis (and many other diseases) are poorly
understood.

Here, we analyzed the diagnostic and prognostic value
of miR-155 serum levels in 218 critically ill patients
treated on an intensive care unit.

2. Methods

2.1. Study Design and Patient Characteristics. Between 2010
and 2013, 218 patients (see Table 1), consecutively admitted
to the Internal Medicine Intensive Care Unit at the University
Clinic (RWTH) Aachen, were included. Patients, expected
having an intensive care treatment < 3 days, were excluded.
After discharge, patients were included into a follow-up by
contacting the patients, the patients’ relatives, or the pri-
mary care physician. Sepsis, severe sepsis, and septic shock
were diagnosed based on the criteria published by the
ACCP/SCCM Consensus Conference. 76 healthy blood
donors (47 males, 29 females; median age 33 years, range
18-67) with normal values for blood counts, C-reactive pro-
tein, and liver enzymes served as a control as recently
described [16].

2.2. miRNA Isolation [16, 17]. 400μl serum was spiked with
miScript miRNA mimic SV40 (Qiagen 2μM, 1μl/100μl

serum). 800μl phenol (Qiazol) and 200μl chloroform were
added to the sample and mixed vigorously for 15 sec
followed by an incubation at room temperature for
10min, followed by centrifugation for 15min at 12,000 g.
The aqueous phase was precipitated with 500μl 100%
isopropanol and 2μl glycogen (Fermentas, St. Leon-Rot,
Germany) o.n. at -20°C. After centrifugation at 4°C for
30min (12,000 g), the pellets were washed with 70% EtOH
and RNA was resuspended in 30μl RNase-free water
(Ambion, Austin, TX). RNA quality was assessed using a
NanoDrop spectrophotometer (NanoDrop), and a small
RNA assay for Agilent’s Bioanalyzer was performed
(Agilent Technologies, Böblingen, Germany).

2.3. Quantitative Real-Time PCR [16, 17]. 5μl of extracted
total RNA was used for cDNA synthesis using the miS-
cript Reverse Transcriptase Kit (Qiagen). cDNA samples
were used for qPCR using the miScript SYBR Green
PCR Kit (Qiagen) and miRNA-specific primers (Qiagen)
on a qPCR machine (Applied Biosystems 7300 Sequence
Detection System, Applied Biosystems, Foster City, CA).
Data were generated and analyzed using the SDS 2.3 and
RQ manager 1.2 software packages.

2.4. Statistical Analysis [16–19].Data are given as the median
and range using the Mann-Whitney U test, and for multiple
comparisons, the Kruskal-Wallis H test was used. Box plot
graphics display a statistical summary of the median,
quartiles, and ranges. Correlation analyses were performed
by using the Spearman correlation tests. Kaplan-Meier

Table 1: Baseline patient characteristics.

Parameter All patients <65 years >65 years
Number 218 125 93

Sex (male/female) 138/80 82/43 56/37

Age median (range) (years) 63 (18-89) 52 (18-65) 74 (66-89)

APACHE II score median (range) 17 (2-43) 15 (2-43) 19 (5-40)

SAPS2 score median (range) 43.0 (0-79) 40 (9-79) 45 (0-72)

ICU days median (range) 7 (1-83) 7 (1-70) 7 (1-83)

Death during ICU or follow-up (%) 47.2% 36% 51.6%

28 d mortality 24.8% 18.2% 31.3%

Ventilation time median (range) (h) 129 (0.5-1363) 127 (0.5-928) 132 (1-1363)

Diabetes mellitus (%) 30.7% 20.0% 45.16%

Body mass index (BMI) 26.78 (16.6-86.5) 26 (16.6-86.5) 26.12 (19.3-61)

Creatinine 1.3 (0-15) 1.3 (0.2-15) 1.35 (0-11.5)

Albumin 27.0 (15.2- 52.2) 26 (15.2-41) 28.6 (15.8-52.2)

WBC median (range) (×103/μl) 12.15 (0.1-67.4) 11.65 (0.1-67.4) 12.7 (0.1-66.2)

CRP median (range) (mg/dl) 95.5 (<5-230) 112 (5-230) 90 (<5-230)
Procalcitonin median (range) (μg/l) 0.7 (0-180.6) 0.7 (0.06-125.2) 0.65 (0-180.6)

Interleukin-6 median (range) (pg/ml) 105 (0-83000) 130 (2-28000) 100 (0-83000)

Tumor necrosis factor median (pg/ml) 19 (4.9-140) 19 (4.9-140) 20 (10-100)

Serum lactate (mmol/l) 1.70 (0-21.9) 1.5 (0-21.9) 1.7 (0-20.8)

miR-155 median (range) (rel. ex.) 9.35 (0.1-56.49) 10.05 (0.17-56.49) 8.63 (0.1-29.65)

APACHE: acute physiology and chronic health evaluation; CRP: C-reactive protein; ICU: intensive care unit; SAPS: simplified acute physiology score; WBC:
white blood cell count.

2 Mediators of Inflammation



curves were used to analyze the overall survival (OS).
Optimal cut-off values were established using the well-
established Youden index as described before. The prognos-
tic relevance of serum miR-155 was further tested using
univariate Cox regression analysis. ROC curves were
generated by plotting sensitivity against 1 − specificity. All
statistical analyses were performed with SPSS (SPSS 23,
Chicago, IL, USA).

3. Results

3.1. miR-155 Serum Levels Are Elevated in Critically Ill
Patients. We measured miR-155 serum concentrations in
218 patients upon admission to the ICU and in 76 healthy
controls. In these analyses, miR-155 serum concentrations
were significantly elevated in critically ill patients
(Figure 1(a)). Next, we analyzed whether miR-155 concen-
trations might reflect the disease severity in critically ill
patients. Therefore, we subdivided our cohort of patients
into those with a more severe disease state versus a less
severe disease state according to APACHE-II score values.
Interestingly, both groups displayed similar miR-155 serum
concentrations (Figure 1(b)), indicating that circulating
miR-155 is independent of the disease severity in critically
ill patients.

It was recently demonstrated that metabolic comorbid-
ities determine the prognosis and treatment outcome of
patients treated on a medical ICU. As alterations in
miR-155 serum levels have recently been found in meta-
bolic diseases, we next analyzed the impact of preexisting
type 2 diabetes or obesity on miR-155 concentrations. Of
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Figure 1: Serum miR-155 levels of critically ill patients at ICU admission. (a) qPCR was used to determine the concentrations of circulating
miR-155 at admission to the ICU. In this analysis, critically ill patients (n = 218) displayed significantly higher serum levels of miR-155
compared to healthy controls (n = 76). (b) Serum miR-155 concentrations were independent on disease severity. (c) Serum concentrations
of miR-155 were measured in patients with/without diabetes mellitus type 2. (d) Serum concentrations of miR-155 independent on the
presence of obesity. (e) Serum concentrations of miR-155 did not vary with respect to patients’ sex. ∗∗∗p < 0 001.

Table 2: Disease etiology of the study population.

All
patients

<65
years

>65
years

Sepsis critical illness n = 135 n = 74 n = 61
Source of infection n (%)

Pulmonary 71 34 37

Abdominal 28 17 11

Urogenital 3 3 0

Other 33 20 12

Nonsepsis critical illness n (%) n = 83 n = 51 n = 32
Cardiopulmonary disease 28 13 16

Decompensated liver
cirrhosis

12 9 3

Nonsepsis other 43 29 14
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note, we found significantly lower levels of miR-155 in
patients with type 2 diabetes, while miR-155 concentrations
were independent on the presence of obesity (Figures 1(c)
and 1(d)).

There is increasing evidence for sex differences in inflam-
matory pathologies. Therefore, we analyzed the levels of
circulating miR-155 specifically in male and female patients.
Notably, no differences were found in this analysis
(Figure 1(e)).

3.2. miR-155 Serum Levels Are Not Affected by the Presence of
Sepsis. Based on recent results, suggesting that mir-155 serum
concentrations are elevated in sepsis [20], we subdivided our
patients into those that fulfilled sepsis 3 criteria (n = 135) and
those that did not (patients’ characteristics are given in
Table 2). Interestingly, no significant differences in circulat-
ing miR-155 levels between both subgroups of patients
became apparent (Supplementary Figure 1A). To further
substantiate this finding, we performed correlation analyses
between miR-155 and parameters routinely used to access
the presence of sepsis in critically ill patients. In this
analysis, serum miR-155 levels were not correlated to
pro- or anti-inflammatory C-reactive protein (CRP; r =
0 027, p = 0 770), procalcitonin (PCT; r = 0 133, p = 0 197),
interleukin-6 (IL-6; r = 0 084, p = 0 519), interleukin-10
(IL-10; r = −0 002, p = 0 983), or tumor necrosis factor
(TNF; r = −0 022, p = 0 990). Next, we hypothesized that
miR-155 serum levels might be altered in specific disease
etiologies. However, the differences between the various
etiologies did not meet the criteria of statistical significance
(Supplementary Figure 1B).

3.3. miR-155 Serum Concentrations Predict Survival
Specifically in Critically Ill Patients Younger than 65 Years.

We next tested whether miR-155 serum levels might allow
to estimate overall mortality. We therefore compared
miR-155 levels in patients that succumbed to death to those
in patients that survived in the long-term follow-up. How-
ever, no differences between both patient groups became
apparent (Figures 2(a) and 2(b)).

Based on the recent data suggesting that the expression
patterns and functions of miRNAs might depend on the
patients’ age, we next compared concentrations in circulating
miR-155 between patients that were older than 65 years on
those that were younger at the time point of admission to
the ICU. Interestingly, we found statistically significant lower
miR-155 levels in the subgroup of the older patients com-
pared to patients < 65 years old (Figure 3(a); patients’ charac-
teristics are given in Supplementary Figure 2, Tables 1 and 2).
In line, miR-155 levels correlated with patients’ age
(r = −0 212; p = 0 002). To evaluate the impact of age on
the role of miR-155 as a prognostic biomarker in critical
illness, we performed Kaplan Meier curve analysis
separately in the subgroup of the younger (<65 years) and
the older (>65 years) patients. Strikingly, while in the
subgroup of patients < 65 years, those with low miR-155
concentrations (below the median of all patients) displayed
a significantly impaired overall mortality compared to the
other patients (Figure 3(b)), no such effect was observed
in the group of the patients > 65 years (Figure 3(c)). To
substantiate these findings, the Youden index was used
to determine an optimal threshold of miR-155 levels for
predicting patients’ survival within the group of the patients
< 65 years [21]. This analysis revealed that relative
miR-155 concentrations of 9.28 (AU) had the best
sensitivity and specificity to decide whether a patient will
survive or not. Strikingly, patients with miR-155 serum
concentrations >9.28 (AU) demonstrated a significantly
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Figure 2: Serum levels of miR-155 are not predictive for patients’ overall prognosis. (a) Serum levels of miR-155 were analyzed by qPCR in
critically ill patients that survived in the long-term follow-up or succumbed to death. No difference between these groups became apparent.
(b) Patients with miR-155 levels below or higher than the median of all patients displayed a similar long-term survival.
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longer survival compared to patients with lower values
(Figures 3(c) and 3(d)). Again, no such effect was seen in
the subgroup of the critically ill patients older than 65
years (Figure 3(e)). Consequently, circulating miR-155
demonstrated a significant correlation with the patients’
survival time specifically in the group of the young ICU
patients (r = 0 443, p = 0 001 vs. r = 0 170, p = 0 330) and
differences in mortality between patients with low (51%)
vs. high (29%, p = 0 014) serum concentrations of miR-155
were only apparent in this specific collective of patients,
while in older patients a similar mortality was observed
(56% vs. 62%, n.s.).

Finally, we used ROC curve analysis, showing that the
prognostic value of miR-155 is similar to that of the
APACHE-II score, patient’s age, serum creatinine concen-
tration, INR, and suPAR (Figure 3(f); Supplementary
Figure 3). In summary, these results imply a novel
function of miR-155 serum levels as a prognostic
serum-based marker that is only apparent in critically ill
patients younger than 65 years.

4. Discussion and Conclusions

miR-155 levels were recently described as diagnostic bio-
markers in coronary artery disease [22, 23] and dissection
of the ascending aorta [24] and have also been validated
as a powerful biomarker in B-cell malignancies [25], esoph-
ageal cancer [20], and other malignant diseases [26]. How-
ever, studies proving a diagnostic or prognostic role of
miR-155 in critical illness are not available yet. Our study
reports a novel role of circulating miR-155 in distinguishing
critically ill patients from healthy controls and in predicting
survival of critically ill patients < 65 years old. Our data rely
on a large sequentially recruited cohort comprising 218
critically ill patients that were precisely characterized
regarding clinical characteristics. 76 healthy blood donors
that were unfortunately not age-matched to the patients
were used as controls.

A Chinese study group investigated a cohort of sixty
patients and found that, compared to healthy controls, sep-
sis patients exhibit significantly elevated miR-155 levels,
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Figure 3: Serum concentrations of ICU predict long-term survival specifically in young ICU patients. (a) miR-155 serum levels in patients
younger or older than 65 years. (b, c) Kaplan-Meier curve analysis demonstrating that patients < 65 years (but not older patients) with
miR-155 concentrations below the median of all patients had an increased overall mortality. (d) The Youden index was used to calculate
the optimal threshold for distinguishing between long-term survivors and patients that did not survive in the group of patients < 65 years
old. Kaplan-Meier survival curve analyses revealed that patients with miR-155 concentrations below this threshold had an increased
overall mortality. (e) Kaplan-Meier curve analysis was performed in patients > 65 years old, revealing that the mortality of these patients
was independent of their miR-155 serum concentration. (f) ROC curve analysis revealing that miR-155 serum levels display a superior
prognostic value in critically ill patients younger than 65 years. ∗p < 0 05.
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which is positively related to a greater severity of sepsis
[20]. Neither could we identify an influence of sepsis on
miR-155 levels nor were miR-155 serum levels correlated
to disease severity. Interestingly, elevated miR-155 levels
were predictive of a severe condition and poor prognosis
in sepsis patients [20]. In accordance, our study identifies
the prognostic value of miR-155 regarding survival. How-
ever, we demonstrate that low miR-155 levels correlate with
reduced survival in young critically ill patients including the
group of patients with sepsis.

In the pathophysiology of critical illness, life-threatening
diseases of diverse origins like infection and shock lead to
instant local and systemic physiologic responses involving all
major organs [27]. The time course and severity of the host
response to damage are determined by both the intensity of
the trauma and host factors, and the activation of the
first-line inflammatory immune response is sometimes
followed by immunosuppression. Prior studies identified
miR-155 as an integral part of the initial immune reaction
(i.e., activation of macrophages) to diverse inflammation-
causing agents. For example, it was shown that miR-155
expression can be initiated upon stimulation with LPS in a
human monocytic cell line [28]. Furthermore, activators of
inflammation like interferon-β or TNF can provoke
miR-155 expression in macrophages and monocytes. In
patients with critical illness, the inflammatory mediator LPS
is found in higher levels compared to healthy probands [29].
Moreover, LPS and TNF exert profound influence on the
systemic inflammatory response caused by infection, trauma,
burns or hemorrhagic shock, and pancreatitis [30, 31].
Investigations using on a mouse macrophage/monocyte cell
line showed that an increase in TNF levels by LPS results
in the upregulation of miR-155 [32]. Conversely, LPS-
induced upregulation of miR-155 leads to increased TNF
production [32]. Furthermore, studies in a transgenic mouse
line overexpressing miR-155 in a B-cell lineage synthetize
more TNF when stimulated with LPS and are highly suscep-
tible to septic shock induced by LPS [32]. Thus, a possible
pathomechanism in the pathogenesis of critical illness might
be the interaction between miR-155 and LPS/TNF. One pos-
sible explanation might be that in patients with critical ill-
ness, increased LPS levels might lead to the upregulation of
miR-155 which then leads to an increase in TNF, contribut-
ing to long-term detrimental effects on survival in these
patients. It is conceivable that miR-155 raises TNF levels
by improving transcript stability through binding to its 3′
UTR. Finally, targeting and reduction of expression of
SHIP1 phosphatase by miR-155 might explain its proinflam-
matory effects observed in different pathologies [33]. As
another option, miR-155 could influence gene transcripts
coding for proteins that are recognized for their ability to
suppress TNF-α translation. This pathomechanism will be
subject to studies in the future. Furthermore, miR-155 is
reported to target and reduce the expression of genes
involved in the LPS/TNF such as FADD. Therefore, it will
be important to characterize further downstream targets of
miR-155 in this context. We demonstrate a significant asso-
ciation of miR-155 levels with the presence of critical illness
and miR-155 levels correlated with survival in patients

younger than 65 years old. Several investigators have
reported that the amount of serum miRNA is age dependent
[34] and that circulating microvesicle number, function, and
small RNA content vary with age [35]. Importantly,
miR-155 has been identified to have a significantly lower
abundance in peripheral blood mononuclear cells of older
(mean age 65 years old) individuals [36]. These findings
could explain the fact that the prognostic value of miR-155
levels is compromised with increased age.

In summary, our data and results from previous studies
imply a novel function of miR-155 as a serum-based marker
in critically ill patients.
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Additional Points

Key Messages. miR-155 serum concentrations are elevated in
critically ill patients; are independent on the severity of
disease, the disease etiology, and the presence of sepsis; do
not reflect the overall survival in the total cohort of patients;
and predict long-term survival specifically in patients < 65
years old.
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Supplementary Figure 1: serum miR-155 concentrations are
unaltered in sepsis. (A) miR-155 serum levels were analyzed
in patients with or without sepsis. (B) miR-155 was analyzed
in different disease etiologies. Supplementary Figure 2: anal-
ysis of the cohort with respect to patients’ age. (A) miR-155
serum levels were analyzed in patients < 65 years with differ-
ent disease severities. (B) miR-155 serum levels were ana-
lyzed in patients < 65 years with or without sepsis. (C)
miR-155 serum levels analyzed in patients < 65 years with
different disease etiologies. (D) Serum concentrations of
miR-155 were analyzed in patients < 65 years with or without
diabetes mellitus type 2. (E) Serum concentrations of
miR-155 were analyzed in patients < 65 years with or without
obesity. (F) miR-155 serum levels were analyzed in patients
> 65 years with different disease severities. (G) miR-155
serum levels were analyzed in patients > 65 years with or

without sepsis. (H) miR-155 serum levels analyzed in
patients > 65 years with different disease etiologies. (I) Serum
concentrations of miR-155 were analyzed in patients > 65
years with or without diabetes mellitus type 2. (J) Serum con-
centrations of miR-155 were analyzed in patients > 65 years
with or without obesity. Supplementary Figure 3. prognostic
value of miR-155 serum levels in patients younger than 65
years old. ROC curve analysis was performed. Supplemen-
tary Table 1A: disease etiology of the study population (<65
years) Supplementary Table 1B: disease etiology population
(>65 years). (Supplementary Materials)
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