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Surfing a genetic association interaction network to
identify modulators of antibody response to smallpox
vaccine
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The variation in antibody response to vaccination likely involves small contributions of numerous genetic variants, such as
single-nucleotide polymorphisms (SNPs), which interact in gene networks and pathways. To accumulate the bits of genetic
information relevant to the phenotype that are distributed throughout the interaction network, we develop a network eigenvector
centrality algorithm (SNPrank) that is sensitive to the weak main effects, gene–gene interactions and small higher-order
interactions through hub effects. Analogous to Google PageRank, we interpret the algorithm as the simulation of a random
SNP surfer (RSS) that accumulates bits of information in the network through a dynamic probabilistic Markov chain. The
transition matrix for the RSS is based on a data-driven genetic association interaction network (GAIN), the nodes of which are
SNPs weighted by the main-effect strength and edges weighted by the gene–gene interaction strength. We apply SNPrank to a
GAIN analysis of a candidate-gene association study on human immune response to smallpox vaccine. SNPrank implicates a
SNP in the retinoid X receptor a (RXRA) gene through a network interaction effect on antibody response. This vitamin A- and
D-signaling mediator has been previously implicated in human immune responses, although it would be neglected in a standard
analysis because its significance is unremarkable outside the context of its network centrality. This work suggests SNPrank to
be a powerful method for identifying network effects in genetic association data and reveals a potential vitamin regulation
network association with antibody response.
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Introduction

The availability of high-throughput technology for
capturing DNA sequence variation has spawned the
growing field of vaccinomics, which attempts to interro-
gate the role of heritable host genetic variation on vaccine
immune response and reactogenicity.1,2 Although the
scope of genotyping continues to grow increasingly
comprehensive, most analyses to date in vaccine applica-
tions have focused only on the marginal effects of host
polymorphisms, that is, the effect of genetic variants in
isolation from other genetic and environmental factors.
Recent genome-wide association studies have identified
hundreds of variants associated with common diseases
and traits; however, these genetic variants only account
for a small amount of the inherited variation, leaving
much of the variation to be discovered.3

In a recent study, we developed a more global
approach for characterizing single-nucleotide poly-
morphisms (SNPs) in a genetic association study by
treating the system as a phenotype-specific genetic
association interaction network (GAIN).4 Small amounts
of the inherited variation are encoded in numerous SNP
nodes throughout this network in the form of main
effects and gene–gene interactions. In this study, we
introduce SNPrank, which we conceptualize as a random
SNP surfer (RSS) that circulates through the GAIN,
accumulating bits of information from each SNP with
regard to the phenotype. SNPrank represents a modified
eigenvector centrality algorithm that ranks the impor-
tance of each SNP through the complex interactions
encoded in the GAIN.

The notion of centrality concerns the importance of a
node in a network. For a social network, centrality
quantifies how central or influential a person is in the
network. Degree centrality simply counts the number of
connections that a node has in a network (equation 4).
However, not all incoming connections are equally
important: some SNPs may exhibit strong interactions
that yield considerable information about the phenotype,
whereas other SNPs may show weak interactions but
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with numerous connections (a hub) that influence the
phenotype. Still other SNPs may not be highly connected
but may be highly relevant to the phenotype, analogous
to someone being an authority on a given topic.
Eigenvector centrality—the basis of Google’s well-known
PageRank algorithm for ranking web pages5—balances
the quantity of connections with the quality. The aim of
the SNPrank eigenvector centrality algorithm presented
here is to balance the main effect and network interaction
effects in the genotype–phenotype relationship encoded
in the GAIN. Moreover, by accounting for indirect
connections in the recursion process, eigenvector cen-
trality allows for the possibility of including higher-order
interactions when ranking the relevance of a particular
variant.

Just as the connectivity of a person’s social network
depends on context—such as family, friends or business
relationships—there is growing awareness that genetic
effects will exhibit differences in network connectivity
that depend on contexts such as the environment, the
organism or particular antigen perturbation in a vac-
cine.4 Most current network approaches neglect the
phenotypic context when defining connections between
genes. For example, traditional coexpression networks
do not account for the context of the phenotype because
connections are based on the correlation between
biomarkers across all phenotype states.6 Recent studies
have suggested that improvements in predicting biolo-
gical connections may be gained when the context is
restricted to a more relevant space. For example, when
mining gene expression databases for coexpression,
Oldham et al.6 found that restricting inputs to biologi-
cally relevant sample types yields a more informative
network. In their case study, restricting the database to
gene expression experiments involving relevant tissue or
sample types allowed them to identify known functional
genes that are absent from the network generated from
all available samples. Similar improvements have been
suggested in predicting the biological relationships
between diseases from the human phenotype ontology
as the resolution of these ontologies become finer
grained.7 The data-driven GAIN network approach used
in this study is not biased by restricting correlation to a
particular phenotype state, but rather calculates the
interaction between SNPs, which is a conditional
correlation that conditions all phenotype states in the
experiment.

The quality of SNPrank importance scores will depend
critically on the quality of the starting network. A
familiar analogy with social networks further motivates
the need for a data-driven, context-sensitive network.
Consider a hypothetical network in which actors
represent SNPs and the context of acting in a drama
represents immune response to vaccine phenotype. If we
considered the context of acting in a comedy instead of in
a drama, the network connections and the relative
importance of nodes will change somewhat. Similarly,
we would expect a different network and SNP impor-
tance scores if we considered the context of immuniza-
tion with influenza instead of smallpox. We would
expect an even more divergent social network if we
considered the context of acting in a musical; similarly, a
SNP network for vaccine immune response would look
very different from a network for major depressive
disorder. Therefore, an advantage of the data-driven

network constructed by GAIN is that it includes the
context of the phenotype when defining gene–gene
interactions between SNP nodes (equation 1).

When ranking the importance of a webpage URL U,
Google’s PageRank not only takes into account the
number of connections that U has but also considers
the connectivity of the pages connected to U. This can be
understood through the random surfer interpretation of
PageRank in which web-surfing behavior is simulated,
with the surfer either following the link structure of the
Internet or going to a random page. The more frequently
the random surfer lands on a page, the higher the page’s
rank. Similarly, SNPrank simulates an RSS that walks
through the GAIN Markov chain. The more often the RSS
lands on a SNP, the higher its SNPrank. To guard against
human manipulation of the rank of a web page,
PageRank does not reward pages with self-referential
links. In contrast, SNPrank includes self-connections that
arise from the independent relevance of that SNP to the
phenotype. In the connectivity matrix, these self-connec-
tions are calculated using the SNP’s information gain I2

with respect to the phenotype (equation 2). Self-connec-
tions represent the probability of the RSS to stay at the
current node during a simulation step. GeneRank is an
eigenvector centrality method for gene expression
data that uses either a coexpression network or a gene
ontology (GO) annotation network to define connections
between genes.8 The GeneRank Markov chain incorpo-
rates single-marker differential expression information,
but the connectivity matrix is not sensitive to the context
of the phenotype. SNPrank uses a data-driven, pheno-
type-sensitive network of main effects and gene–gene
interactions inferred using the recently developed
GAIN tool.4

In summary, the SNPrank transition matrix T (equa-
tion 5) accounts for single-locus main effects through the
information gain I2 (equation 2) along the diagonal of the
GAIN matrix G (equation 3). It considers pairwise
interactions through the interaction gain I3 (equation 1)
on the off-diagonal elements of G and higher-order
interactions through the network sampling by the RSS.
To continue the social network analogy with the
phenotype analogous to acting in a drama, the aim of
our importance score is (A) to identify actors who are
important in the network because of their ability to
connect to other actors in dramas, such as Kevin Bacon,
and (B) to identify actors who have strong individual
importance to dramatic acting, such as Marlon Brando.
SNPrank is designed to identify SNPs that are important
to the phenotype because of their ability to connect to
other SNPs (Bacon SNPs), as well as SNPs that are
important because of their individual importance to the
phenotype (Brando SNPs).

SNPrank

In the following sections, we describe the mathematical
machinery and steps of the SNPrank algorithm. In brief,
we first describe the information-theoretic GAIN con-
nectivity matrix. Then, on the basis of GAIN, we
construct the SNPrank Markov chain, which the RSS
surfs. The construction of the Markov chain is con-
strained by the need to balance main and interaction
effects and by the requirement that the Markov chain be
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a stochastic matrix. Finally, having satisfied these
constraints, we are able to use the iterative power
method to solve for the SNPrank eigenvector. The
components of the eigenvector are the SNPrank scores
of the corresponding SNPs. The software implementing
GAIN and the proposed SNPrank algorithm is available
at http://insilico.utulsa.edu/Software.

GAIN connectivity matrix
The performance of SNPrank depends on the quality and
context sensitivity of the underlying network. Thus, we
characterize the main effects and interactions among
SNPs by inferring a GAIN for a particular genetic
association study. GAIN is based on the interaction
information, I3, between three variables (in this case,
between two SNPs A and B and the class/phenotype
variable C):

I3ðA; B; CÞ ¼ I2ðAB; CÞ � I2ðA; CÞ � I2ðB; CÞ ð1Þ
The quantities I2(A;C) and I2(B;C) are the information
gained about the class/phenotype C when locus A or locus
B, respectively, are measured. The information gain
between two discrete random variables X and Y is given by

I2ðX; YÞ ¼
X
x2X

X
y2Y

pXYðx; yÞ log
pXYðx; yÞ

pXðxÞpYðyÞ

� �
ð2Þ

The quantity AB in equation 1 is a joint attribute
constructed from attributes A and B, with states given by
the Cartesian product of the states of A and B. I3 is then the
gain in information obtained about the phenotype when
considering A and B jointly (I2(AB;C)) above the phenotype
information that would be gained by considering variables
A and B independently (I2(A;C)þ I2(B;C)). We use I3 as the
connection strength of each edge in the GAIN. Thus, each
edge represents the increase in information about the
phenotype achieved by considering the two SNPs jointly,
compared with the expected increase in information with
the assumption of independence between SNPs. We
emphasize that a connection between SNPs in GAIN is
specific to the given phenotype because it measures the
correlation between two SNPs that influences association
with the phenotype. In the current work, we weigh the
nodes and edges of the connectivity matrix using informa-
tion theoretic quantities. However, other data-driven
weighting schemes are compatible with SNPrank, such as
the main effect and pairwise interaction estimates from
regression models. One may also augment or replace the
data-driven GAIN connectivity matrix with a matrix based
on gene annotation or pathway knowledge.

The GAIN connectivity matrix, with weights gij, will be
used below to construct the probability for the RSS to make
a transition from SNPi to SNPj in the network. Off-diagonal
weights are defined as the interaction, I3, between two
distinct SNPs, conditional on the phenotype:

gij ¼
I3ðSNPi; SNPj; PhenotypeÞ; i 6¼ j

I2ðSNPi; PhenotypeÞ; i ¼ j

�
ð3Þ

and the diagonal is a vector of information gains, I2, or
main effect associations of each SNP with the phenotype.

SNPrank Markov chain
We now derive a new variant of the eigenvector
centrality algorithm to determine the importance of
SNPs in a genetic association study by transforming

the GAIN matrix into a Markov chain transition matrix,
T. The construction involves multiple scalings to ensure
that the final matrix T (equation 5 below) is a stochastic

matrix (that is,
PN

i¼1tij ¼ 1, where N is the number of
SNP nodes) so that the recursion procedure will
converge. We begin the construction by considering the
elements of the GAIN matrix (equation 3), which are
used to weigh the probability of the RSS to make a
transition from SNPi to SNPj in the network. We scale the
elements of the GAIN matrix by column sums, which are
the out-degree association fluxes of each SNP:

dj ¼
XN

i¼1

gij: ð4Þ

The PageRank matrix includes a probability g to follow
direct connections, gg/d, and a corresponding term with
the probability (1�g) that a random page will follow. The
latter may be interpreted as a fatigue term that models an
Internet surfer that has grown tired of the current thread
of links. Similar to GeneRank, we modify this probability
to be proportional to the correlation of each SNP with the
phenotype. But rather than use differential expression, we
use the information gain of each SNP, which is given by
the diagonal elements of G, gii. This requires added
scaling, involving the trace of the G matrix to constrain T
to be a stochastic matrix. Also note that in place of the gii

term, one could use expert knowledge if one wished to
enrich for certain biological pathways. Depending on the
interaction gain (I3) cutoff used, some paths in the
network may lead to closed cycles or absorbing states.
An absorbing state occurs when a jump takes place to a
SNP j that has nowhere to go, that is, dj¼ 0. Again, rather
than use a uniform probability when dj¼ 0, we weigh the
transition to another SNP by the information gain I2 of
each SNP (the diagonal elements of G). The elements of
the stochastic transition matrix T become

tij ¼
g gij

dj
þ ð1�gÞTrðGÞ gii; dj 6¼ 0

gii

TrðGÞ ; dj ¼ 0

(
ð5Þ

where g is the probability of the RSS to follow a gene–gene
interaction-weighted path in the network and 1–g is the
probability of the RSS to remain at a SNP weighted by the
main effect strength. We use g¼ 0.85 in our data analysis.

SNPrank eigenvector scores
Beginning with some arbitrary vector r(o), the RSS
random walk is simulated by the repeated application
of the transition matrix T:

rðkþ1Þ ¼ TrðkÞ ð6Þ
The frequency with which the RSS lands on a SNP node
during a simulation through the network is related to the
SNPrank importance score, which is obtained by norma-
lizing the frequencies to yield a probability field. The
final SNPrank score of SNPi is given by the ith element of
the stationary probability vector, rs, which is the vector
whose the elements do not change under application of
the transition matrix:

rs ¼ Trs ð7Þ
Typically, rs is obtained in the limit of a large number of
transitions k; however, SNPrank only requires a few
recursion steps to converge for our data set. Finding rs

reduces the problem of finding the eigenvector with
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eigenvalue l¼ 1, which can be solved by the power
method.9 The Perron–Frobenius theorem ensures that the
eigenvector rs exists, and that the largest eigenvalue
associated with the stochastic matrix is always 1. The
power method recursively applies equation 6, with T
defined by equation 5, until the eigenvalue converges to
1 to within some small tolerance. Below is the pseudo-
code outline for the power method of calculating the
SNPrank eigenvector.

1. Initialize SNPrank eigenvector r(o), and tolerance e
2. Begin Power Method

k¼ 0
while |r(kþ 1) – r(k)| o e
normalize vector r(k)

rðkþ1Þ ¼ TrðkÞ

k¼kþ1
3. final eigenvector: rs¼ r(k)

4. SNPrank of ith SNP ¼ rs(i)

Fast convergence is found for the eigenvalue when the
probability elements of the initial eigenvector r(o) are
chosen to be uniform, 1/N, N being the number of SNPs.
More informed initial guesses, such as the normalized
evaporative cooling (EC) feature selection scores4,10 or
the many variants of Relief-F,11,12 may further speed up
convergence.

Application to smallpox vaccine antibody
response

We expect a combination of genetic main effects and
interactions to influence the immune response to
vaccine.13 Thus, we illustrate SNPrank using SNP data
from a study of the human immune response after
smallpox vaccination. Genotyping was performed using
a custom SNP panel based on the NCI SNP500 Cancer
project that has been described previously.14 The majority
of SNPs included in the panel target soluble factor
mediators and signaling pathways, many of which have
immunological significance. Of the 1536 SNPs assayed, a
total of 1442 genotypes passed standard quality control
filters (minor allele frequency 40.01, Hardy–Weinberg
equilibrium P-value 40.001, and SNP call rate 40.95).

Previously, we used this panel to investigate the
association between SNPs and adverse event phenotypes
after smallpox vaccination.4,15,16 In the current study, we
investigate associations in this SNP panel with post-
vaccination antibody response. Specimens were collected
from 136 smallpox vaccine-naive volunteers at baseline
before vaccination and at 28 days after vaccination.
Serum-neutralizing antibody responses were measured
by plaque reduction neutralization assay as described
previously.17 We used mixture model density estimation
to categorize the neutralizing antibody phenotype
into high and low immune response. This Gaussian
discretization yielded 76 low and 60 high immune
responders.

For our primary SNPrank analysis, we filtered the 1442
SNPs to the top 100 using EC feature selection4 to allow
for the combination of main and interaction effects in the
initial screen. EC is a machine-learning algorithm that
combines the ability of Random Forests to detect main
effects with the ability of Relief-F to detect interactions.
Our simulation studies have shown that EC greatly
boosts the power of Random Forests and Relief-F to
detect a combination of effects that may be present in a
real data set. More details may be found in the study by
McKinney and colleagues.4,10 Filtering with a univariate
approach, such as logistic regression, runs the risk of
eliminating interacting SNPs. However, as a secondary
analysis to show the effectiveness of SNPrank in
conjunction with a conventional genetic association
analysis, we also filtered SNPs through marginal
hypothesis tests based on logistic regression implemen-
ted in PLINK.18 We assumed an additive model of
inheritance in all models, subsequently using the top
100 SNPs ranked according to P-value to generate the
GAIN for SNPrank. The filtered SNPs from both
approaches were highly congruent. We present results
using the EC filter because of its ability to capture a
spectrum of genetic effects. From the filter list, we apply
GAIN to construct the data-driven, information theoretic
interaction network, and then we apply the SNPrank
algorithm.

Figure 1 shows a bar plot resulting from the SNPrank
importance scores. The SNPs are ranked by their
chromosome positions, with the height of each bar

Figure 1 SNPrank importance scores. SNPs are ordered by basepair position, with chromosome boundaries denoted by dotted lines. The
height of each bar corresponds to its SNPrank score. The top SNPrank variant is rs1805352 in the retinoid X receptor a (RXRA) gene.
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corresponding to its SNPrank score. The top SNPrank
variant (rs1805352) is an intronic SNP in the retinoid X
receptor a (RXRA) gene, which is known to be a mediator
of vitamin D signaling and has recently been shown to be
involved in innate immune response.19,20 Figure 2 shows
the smallpox vaccine-specific immune response GAIN.
For clarity, we only show the top 40 nodes as ranked by
SNPrank. The top three SNPrank nodes and their
connections are highlighted: RXRA (red); neutrophil
cytosolic factor 2 (NCF2, green); and cytochrome P450,
family 1, subfamily a, polypeptide 1 (CYP1A1, blue).
Being the most interactive SNP in Figure 2, the influence
of RXRA SNP on the smallpox vaccine antibody response
is primarily because of its being a hub in the GAIN
network. In addition to RXRA, GAIN indicates the
importance of other vitamin regulation pathway genes
for immune response following smallpox vaccination.

Discussion

The important role of RXRA in our SNPrank network
analysis of smallpox antibody response is noteworthy,
given the findings in recent studies of the influence of
this vitamin A- and D-signaling mediator on human
immune responses. Results from a recent study of
Rubella vaccination suggested that an intronic SNP in
RXRA influences the magnitude and type of cytokine
response following vaccination.20 Another recent study
of CpG-activated human B cells showed that nanomolar

concentrations of RXRA and peroxisome proliferator-
activated receptor (PPAR)g ligands increase antibody
production.19 Taken together, these studies suggest that
variation in RXRA function may explain in part the
variability of human adaptive immune responses follow-
ing vaccination. Furthermore, the findings suggest that
RXRA, PPARg and pathways related to these molecules
could be exploited for development of new adjuvants
that enhance antibody responses.

The smallpox vaccine-specific immune response net-
work (Figure 2) reveals a consistent relationship between
vitamin regulation and immune response genes. In the
GAIN in Figure 2, RXRA has a direct connection with
toll-like receptor 2 (TLR2). This further supports the
evidence in Ovsyannikova et al.20 for Rubella vaccine
that polymorphisms in toll-like and vitamin A and D
receptors influence adaptive immune response to vac-
cines more generally. In Figure 2, RXRA has an
intermediate connection to RXRB, which is also a
mediator of vitamin D signaling. The second-ranked
variant on the SNPrank importance list is CYP1A1,
which is in the pathway of chemical reactions resulting
in the formation of 9-cis-retinoic acid, a metabolically
active vitamin A derivative. The direct GAIN connection
of a variant in 5,10-methylenetetrahydrofolate reductase
(MTHFR) to RXRA (ranked first by SNPrank) and to
NCF2 (ranked third by SNPrank) suggests a role for folic
acid metabolism in antibody responses. Understanding
the interactions in GAIN may inform the development of
new vaccines and immunotherapies, and these interactions

Figure 2 Genetic association interaction network (GAIN) for the top 40 SNPs selected by SNPrank as being the most relevant to smallpox
vaccine-associated immune response. The top 10 SNPs (labeled in Figure 1) have bold labels. The top three SNPrank nodes and their
connections are highlighted: RXRA (red), NCF2 (green) and CYP1A1 (blue).
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may explain the variability of antibody response to other
vaccines and infections.

Using gene set enrichment, we obtain additional
weight for RXRA as a candidate biomarker for vaccine
immune response. Specifically, we use GOrilla, which is
a web-based tool that identifies enriched GO terms in a
ranked list of genes.21 We use the EC rank list to compare
how the genes would be prioritized by GO enrichment
versus the data-driven SNPrank approach. The most
significantly enriched GO category has RXRA along with
CTNNB1, GPX1 and KRAS annotated with the term,
muscle cell differentiation (GO:0042692, P¼ 6.5e-4). The
role of muscle cell differentiation in smallpox vaccine
immune response is unclear because of the intradermal
route of smallpox vaccine administration. Nevertheless,
multiple lines of evidence suggest a role for RXRA in
vaccine antibody response.

In a conventional analysis alone, the RXRA variant
found by SNPrank would have been neglected because
of its marginally significant P-value of 0.03. In our
primary analysis, we filtered the data according to EC,
which maintains main effects and interactions.4 How-
ever, we also performed a SNPrank analysis with a
logistic regression filter to determine whether SNPrank
could recover important interaction effects. Indeed, with
the main effect filter, the rank of the RXRA variant was
boosted by SNPrank to the top position because of
multiple network connections based on gene–gene
interactions encoded in the GAIN. The initial ranking
of the SNPs by logistic regression and EC differed
considerably; however, the top list was nearly the same
after SNPrank was applied to both filters. This suggests
that SNPrank was able to boost the main effect and
interaction effects regardless of filter for this data.
Certainly, if an association represents a pure interaction
with no marginal effect, then a filter based on main
effects will lead to a loss in power. For example,
NCF2 was ranked third in our final analysis, but it did
not meet the logistic regression P-value threshold.
Similarly, RXRB did not pass the main effect filter,
whereas it was found to interact with RXRA through an
intermediate gene in our primary analysis. Thus,
SNPrank with a main effect filter is able to generate
novel biological knowledge from genetic association
studies through network interactions, suggesting it is a
reasonable alternative to more computationally intense
filters coupled with SNPrank.

The SNPrank algorithm uses a Markov recursion
matrix that couples the individual importance of SNPs
(main effects) and their interactions with other SNPs on
the basis of the data-driven GAIN connectivity matrix.
The GAIN matrix is inferred using information theory,
but currently does not include covariate corrections. The
SNPrank algorithm itself does not depend on the
technique used to construct the network. Thus, SNPrank
may use a covariate-corrected GAIN or a network based
on other statistical weights, such as linear or logistic
regression. Fitted coefficients for interaction and main
effect terms in the regression model may be used to
construct the Markov chain, and important covariates
can be included in the model.

The main effects and interaction effects of GAIN are
coupled in SNPrank by the probability g in equation 5.
When g¼ 1, the SNPrank score depends only on
connectivity. In this limit, the RSS agent samples SNPs

by following connections based on gene–gene interac-
tions (I3) that influence the phenotype, but independent
effects of SNPs have little influence on the RSS. When
g¼ 0, the SNPrank scores only depend on the main effect
of SNPs, which is based on the information gain (I2)
between each SNP and the phenotype. In this limit, the
SNPrank scores become correlated with a main effect
score such as those obtained from logistic regression.
Clearly, these two extremes place too much emphasis on
main effects and gene–gene interactions, respectively, in
the GAIN connection structure. The developers of
PageRank prescribed the value of g¼ 0.85, which makes
a simulated random web surfer more likely to follow the
link structure of the web instead of navigating to a
random web page. For SNPrank, we find that the rank
order of the top SNPs is robust to values of g that are not
too extreme (close to 0 or 1). As our aim was to discover
new biological knowledge, we selected g¼ 0.85 to enrich
for weak higher-order network interactions without
completely neglecting main effects. SNPrank gives very
similar rankings for g in the range (0.5, 0.85). The
optimum value of g is likely data dependent and may be
estimated through context-dependent GO networks,
previous data or other expert knowledge.
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