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Despite mounting evidence demonstrating the significance of inflammation in the
pathophysiological mechanisms of heart failure (HF), most large clinical trials that target
the inflammatory responses in HF yielded neutral or even worsening outcomes. Further
in-depth understanding about the roles of inflammation in the pathogenesis of HF is
eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells,
and extracardiac organs that orchestrate the complex inflammatory responses in HF
and highlights emerging therapeutic targets.
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INTRODUCTION

Heart failure (HF) is a clinical syndrome characterized by symptoms and signs induced by the
structural and/or functional compromise of the heart, presents as dyspnea, fatigue, and fluid
retention, and so on (Ponikowski et al., 2016; Yancy et al., 2017). HF is the principal cause of
mortality and disability worldwide. In developed countries, the prevalence of HF is 1.5–2.2%
(Mosterd and Hoes, 2007). The 1-year all-cause mortality rate of HF patients is 17 and 19.2% in
Europe and Asia, respectively (Maggioni et al., 2013; Tromp et al., 2018a). HF could be divided
into HF with reduced ejection fraction (HFrEF), HF with midrange ejection fraction, and HF
with preserved ejection fraction (HFpEF) (Ponikowski et al., 2016). It is a syndrome caused by the
complicated interaction of myocardial damage, neurohormonal activation, inflammatory response,
and renal dysfunction (Mann, 2002; Zimmet and Hare, 2006; Braunwald, 2008). Although the
etiology and pathogenesis of HF are still perplexing, the persistent inflammation of myocardium
is believed to participate in the pathogenesis across the spectrum of HF subtypes in different
ways (Dick and Epelman, 2016). Two recent biomarker profiles analyses, Counseling in Heart
Failure (COACH) and Biology Study to Tailored Treatment in Chronic Heart Failure (BIOSTAT-
CHF) trials, demonstrated a prominent correlation between inflammation and HFpEF, whereas
HFrEF was more related to stretch-mediated interactions (Tromp et al., 2017, 2018b). This might
partially be explained by the non-cardiac comorbidities of HFpEF patients such as diabetes mellitus,
hypertension, obesity, anemia, chronic obstructive pulmonary disease, and chronic kidney disease.
All of them are prone to systemic inflammatory state (Paulus and Tschope, 2013). However, most
clinical trials using anti-inflammatory agents have provided disappointing results, reflecting the
inadequate understanding about the sophisticated inflammatory network within the heterogenous
performance of HF. Thus, a better illustration about how specific inflammatory cytokines,
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immune cells, and extracardiac organs collaborate and influence
cardiac function may provide experimental basis for disease
intervention and drug discovery.

INFLAMMATORY CYTOKINES AND
THEIR ROLES IN HF

Since 1990, levels of several inflammatory mediators, including
tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), IL-
1β, IL-18, and immunological antigens, were validated to
be increased in the plasma of HF patients (Torre-Amione
et al., 1996; Anker and von Haehling, 2004; Braunwald, 2008).
These suggested the “cytokine hypothesis” that inflammation
contributed to the pathogenesis of HF (Seta et al., 1996; Mann,
2015). The elevated circulating cytokines might be produced
by cardiac structural cells [cardiomyocytes (Kapadia et al.,
1995), endothelial cells (Liu Y. et al., 2014), and fibroblasts
(Sandanger et al., 2013)], various cardiac infiltrating immune
cells (Pinto et al., 2016), and extracardiac tissues (hypoperfused
skeletal muscle, lymphoid organs, intestinal tissue, and adipose
tissue) (Murphy et al., 2020). Increased circulating cytokines
do not only correlate with the severity of HF, but also
possess prognostic value (Rauchhaus et al., 2000; Braunwald,
2008). Up to now, various functions of cytokines in HF were
revealed (Table 1).

Tumor Necrosis Factor
Tumor necrosis factor α is the first cytokine discovered to
be elevated in the peripheral blood of HF patients. Increased
serum TNF-α level suggested impaired cardiac function and poor
prognosis (Torre-Amione et al., 1996; Rauchhaus et al., 2000).
TNF-α exerts its function through binding to the receptors. It
is toxic with TNF receptor 1 (TNFR1) while protective with
TNFR2 (Monden et al., 2007). Constantly increased TNF could
attenuate β1-adrenergic responsiveness, induce cell apoptosis,
and destroy the balance between matrix metalloproteinases
(MMPs) and tissue inhibitor of metalloproteinase, resulting
in ventricular hypertrophy, dilatation, and diminished ejection
fraction (Kubota et al., 1997; Tang et al., 2004; Zhang et al., 2011).
Mice with TNF-α overexpression spontaneously progressed
into end-stage dilated cardiomyopathy (DCM) (Tang et al.,
2004). However, clinical trials that target TNF-α with infliximab
[Anti-TNF Therapy Against Congestive Heart Failure Trial
(ATTACH)] or etanercept [Randomized Etanercept Worldwide
Evaluation Trial (RENEWAL)] yielded disappointing results and
were terminated prematurely due to poor survival improvement
and enhanced risk of hospitalization (Chung et al., 2003; Mann
et al., 2004). Thus, further studies are needed to better understand
the effects of TNF-α in HF.

Factor associated suicide (Fas), also named as APO-1, is a
member of TNF receptor family, which is expressed in various
tissues and cells including cardiomyocytes. Circulating level
of Fas was elevated in HF patients and was associated with
the severity of cardiac dysfunction (Okuyama et al., 1997).
Blockade of the interaction between Fas and its ligands could
improve survival rate and reduce ventricular remodeling in mice

with myocardial infarction (MI). Thus, it might be a potential
therapeutic target against chronic HF after MI (Li et al., 2004).

IL-1 Family
It was reported that IL-1 had a close association with HF.
In patients with sepsis, IL-1 was considered to be a “soluble
myocardial depressant factor” (Van Tassell et al., 2013b). Chronic
hypoxia could induce IL-1 production in the cardiomyocytes
(Kacimi et al., 1997). Circulating levels of IL-1β and IL-1
receptor antagonist (IL-1Ra) were increased in congestive HF
patients (Testa et al., 1996). IL-1 could induce reversible negative
inotropic effects on cardiomyocytes both in vitro (Liu and
Schreur, 1995) and in vivo (Van Tassell et al., 2013a) through
impairing β-adrenergic responsiveness and calcium handling
(Buckley and Abbate, 2018). Meanwhile, blockade of IL-1 could
restore calcium homeostasis, reduce inflammatory infiltration,
and improve cardiac dysfunction (Van Tassell et al., 2012; Francis
et al., 2014; Sager et al., 2015). Previous case reports indicated that
in myocarditis-associated end-stage HF patients, blocking IL-1
improved cardiac contractility within 24 h (Cavalli et al., 2016,
2017). The prespecified subanalysis of the Canakinumab Anti-
inflammatory Thrombosis Outcome Study (CANTOS) showed
that for patients with prior MI and elevated high-sensitivity
C-reactive protein (hs-CRP), canakinumab effectively reduced
HF-related hospitalization and all-cause mortality at a dose-
dependent manner (Everett et al., 2019). Thus, IL-1-targeted
therapy may be beneficial to HF patients. Moreover, stratified
analysis using multiple indexes revealed that HF patients with
higher CRP could benefit more from anti-inflammatory therapy.

Suppression of tumorigenicity 2 (ST2), a decoy receptor of
IL-33, is another member of IL-1 cytokine superfamily, which
could be secreted by cardiomyocytes under mechanical strain
(Weinberg et al., 2003). The increase in soluble ST2 (sST2)
was independently and positively associated with poor outcomes
in HF patients and might be valuable to predict prognosis
(Anand et al., 2014).

Interleukin 6
Interleukin 6 acts as a downstream of IL-1, which attracted
particular attention as a central factor in the pathophysiological
processes of several inflammatory conditions. Preclinical
researches indicated that IL-6 had pleiotropic adverse effects
on cardiovascular system. Increased circulating IL-6 was
reported in congestive HF patients, which had a significantly
positive correlation with worsening cardiac symptom and renal
dysfunction (Deswal et al., 2001; Plenz et al., 2001; Hanberg
et al., 2018). Stimulation of isolated cardiomyocytes with IL-6
and soluble IL-6R could induce hypertrophy (Hirota et al., 1995),
whereas IL-6 inhibition reduced cardiac hypertrophy and fibrosis
in angiotensin II-treated mice (Coles et al., 2007). Although
many IL-6-targeted therapies were used in the treatment of
rheumatologic diseases and immune checkpoint inhibitor-
induced cytokine release syndrome (Kang et al., 2019), clinical
trials especially aimed at the therapeutic effects of anti-IL-6
on HF have not been implemented. A recent observational
study containing 2,329 patients in the BIOSTAT-CHF cohort
demonstrated that increased plasma IL-6 concentration was
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TABLE 1 | Cytokines in heart failure.

Cytokines Functions

TNF-αXIu� Induce inflammatory genes expression and apoptosis, release proinflammatory cytokines, promote adverse remodeling

FasXIu Trigger programmed cell death

IL-1XIu� Induce negative inotropic effect through impairing β-adrenergic responsiveness and disturbing calcium handling

ST2XIu} Negatively modulate TLR signaling, inhibit nuclear factor κB activation

IL-6XIu� Pleiotropic proinflammatory responses

IL-10Xu Inhibits proinflammatory cytokines secretion, block ROS release, modulate TNF-α-mediated responses

XParticipate in pathogenesis. IPrognostic value. u Identify high-risk patients. �Potential therapeutic target. }Diagnostic value.
TNF-α, tumor necrosis factor-α; Fas, factor associated suicide; IL-1, interleukin 1; ST2, suppression of tumorigenicity 2; TLR, toll like receptor; IL-6, interleukin 6; IL-10,
interleukin 10; ROS, reactive oxygen species.

positively correlated with atrial fibrillation, disturbed iron
metabolism, poorer exercise tolerance, higher N-terminal
pro-brain natriuretic peptide (NT-proBNP) concentrations,
and lower estimated glomerular filtration rate (Markousis-
Mavrogenis et al., 2019). Besides, circulating IL-6 concentration
was independently predictive of all-cause and cause-specific
mortality (Markousis-Mavrogenis et al., 2019).

Interleukin 10
Interleukin-10 is generally considered as an anti-inflammatory
cytokine with pleiotropic function. It inhibits the secretion
of various proinflammatory cytokines, especially TNF-α (Kaur
et al., 2006; Ouyang et al., 2011). The protein and mRNA
levels of membrane-bound IL-10 were dramatically reduced in
the heart of mice with acute MI (AMI) (Kaur et al., 2006).
Moreover, it was negatively correlated with the cardiac function
and progression to congestive HF (Kaur et al., 2006). In the
heart samples of DCM patients, IL-10 expression was decreased
and negatively associated with the disease severity (Ukimura
et al., 2003). Although there has yet to be a clinical trial that
specifically regulates IL-10 in HF patients, treatment with growth
hormone or intravenous immunoglobulin has been shown to
be associated with a marked increase in plasma IL-10 level and
consequently improved cardiac contractile performance in HF
patients (Gullestad et al., 2001; Adamopoulos, 2003).

IMMUNE CELLS AND THEIR ROLES
IN HF

The heart harbors all of the major immune cell types in the steady
state, including monocytes, macrophages, T cells, neutrophils, B
cells, dendritic cells (DCs), natural killer (NK) cells, and mast
cells (Pinto et al., 2016). The number of immune cells in the
heart from a healthy adult mouse is more than 10-fold than in
skeletal muscle (Ramos et al., 2017). Immune cells participate in
the pathogenesis of various inflammatory and non-inflammatory
cardiovascular diseases (Adamo et al., 2020). Previous researches
revealed a positive correlation between peripheral blood immune
cell level and left ventricular dysfunction both in animal model
and HF patients (Yndestad, 2003; Fukunaga et al., 2007a;
Pistulli et al., 2016). Apart from circulating inflammatory cells,
transcriptional sequencing of human heart samples showed

diverse expression profiles of innate immune responses related
genes between failing and non-failing hearts (Mann et al., 2010).
Endomyocardial biopsy in HF and DCM patients revealed a
30% detection rate of myocardial inflammatory infiltration (Kuhl
and Schultheiss, 2012). A research using dual-target positron
emission tomography (PET)/magnetic resonance imaging to
monitor the size of immune cell population indicated a
large number of inflammatory monocytes, macrophages, and
neutrophils existed in the cardiac tissue after MI (Keliher et al.,
2017). Another research demonstrated that inflammatory cells
especially macrophages and T cells infiltrated in the heart of
DCM patients without any discernible viral infection history
(Noutsias et al., 2002). Studies from different animal models have
revealed various potential therapeutic targets focusing on these
immune cells in HF (Table 2).

Macrophages
Macrophages, one of the most abundant immune cell types in
the heart, are commonly divided into M1 and M2 types due
to cell surface markers and their functions in inflammatory
responses. Recently, this classification criterion was considered
imperfect because of the plasticity and highly variable cell
surface marker expression of macrophages. Evidence from single-
cell sequencing and genetic fate mapping indicated that the
expression levels of CCR2 and MHC-II were sufficient to
classify macrophage populations in adult mouse heart (Epelman
et al., 2014; Hulsmans et al., 2017; Lavine et al., 2018). At
healthy status, heart macrophages were dominated by CCR2−
macrophages, which could further divide into two categories
by MHCII expression (CCR2−MHCIIhigh macrophage and
CCR2+MHCIIlow macrophage). CCR2− macrophages originate
from embryonic precursor, mainly function in coronary system
development, angiogenesis, and immune quiescence (Epelman
et al., 2014; Lavine et al., 2014). In addition, CCR2−MHCIIhigh

macrophages have a special role in presenting antigens to T
cells (Epelman et al., 2014; Leid et al., 2016). A small, but more
proinflammatory CCR2+MHCIIhigh macrophage populations
also exist in the healthy heart, which were maintained and
renewed by circulating Ly6ChighCCR2+ monocytes influx (Leid
et al., 2016). In the heart tissue of transverse aortic constriction-
induced HF mice, myocardial expression of CCR2 ligand such
as CCL2, CCL7, and CCL12 was enhanced, accompanied
with significantly increased proinflammatory monocyte-derived
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TABLE 2 | Main immune cells in heart failure.

Immune cells Functions Potential therapeutic targets from
animal studies

Macrophages Elevated CCR2+MHCIIhighLy6c+ macrophages in myocardium could secrete
inflammatory cytokines and contribute to ventricular dysfunction

CCR2–CCL2 signaling axis

Mast cells Attenuate left ventricular remodeling and promote cardiac dysfunction Mast cell depletion

Neutrophils Destructive at acute stage and protective at chronic stage Annexin A1

Natural killer cells Release cytokines and modulate immune system

Dendritic cells Protective at acute stage and destructive at chronic stage

CD4+ T cells TH1 cells are mainly proinflammatory

TH2 cells are mainly profibrosis

TH17 cells contribute to cardiac hypertrophy and promote adverse cardiac
remodeling

B cells Induce direct myocardial injury, produce inflammatory cytokines, and antibodies B-cell depletion

CCR2+ macrophages (Xia et al., 2009; Liao et al., 2018; Patel
et al., 2018). The increased CCR2+ macrophages could produce
inflammatory cytokines and chemokines, resulting in cardiac
T-cell expansion, contributing to cardiomyocyte damage, cardiac
remodeling, and pathological hypertrophy (Patel et al., 2018).
Clinically, the abundance of CCR2+ macrophage was positively
associated with adverse left ventricular remodeling and persistent
left ventricular dysfunction in HF patients (Bajpai et al., 2018;
Dick et al., 2019). Thus far, no CCR2 modulating therapy has
been approved for clinical indications. But previous animal
experiments targeting the CCR2-CCL2 signaling axis through
various approaches such as CCR2 antagonists and monoclonal
antibody (Hilgendorf et al., 2014; Liao et al., 2018; Patel
et al., 2018), CCR2-targeting PEG-DSPE micelles (Wang et al.,
2018), RNA silencing technique targeted on endothelial cell
adhesion molecules (Sager et al., 2016), silencing of macrophage
polarization factor IRF5 (interferon regulatory factor 5) (Courties
et al., 2014), immune-modifying microparticles infusion (Getts
et al., 2014), and CCR2-targeted lipid nanoparticle-encapsulated
small interfering RNA (Gordon, 2012) had obtained therapeutic
benefits both in ischemic and non-ischemic HF by attenuating
the proinflammatory monocyte infiltration in the myocardium.
These results highlight the potential of CCR2-CCL2 signaling
axis-targeted therapy. Apart from that, a recent single-cell
sequencing study indicated that in pressure overload HF mice,
CCR2+M1 like proinflammatory macrophages, expressed a high
level of oncostatin M (OSM) (Martini et al., 2019), which exerted
a major role of cardiomyocyte dedifferentiation and remodeling
during AMI and in DCM (Kubin et al., 2011). OSM was identified
to mediate the TNF-α-resistant effect in inflammatory bowel
disease patients. This might partially explain the refractivity of
HF patients to anti-TNF-α therapy (West et al., 2017).

Mast Cells
Mast cells were originally defined as effectors of allergy
and anaphylactic reactions. However, recent researches have
validated that cardiac mast cells also participated in other
physiological processes, including vascular homeostasis and
angiogenesis (da Silva et al., 2014). Mast cells harbor granules
that store histamine, proteases, various cytokines, chemokines,

and growth factors in the cytoplasm and exert their function
through degranulation (Mukai et al., 2018). Researches indicated
that the number of mast cells was significantly increased
in the heart of end-stage cardiomyopathy patients, which
promoted cardiac adverse remodeling through activating MMPs
and myocardial fibrillar collagen degradation (Akgul et al.,
2004; Levick et al., 2011). Either depletion of mast cells
or inhibition of their degranulation could attenuate left
ventricular remodeling and cardiac dysfunction, as well as
improve survival rate in animal models (Hara et al., 2002;
Brower and Janicki, 2005; Liu Y. H. et al., 2014). Thus,
cardiac mast cell population may be a potential target for
cardioprotection.

Neutrophils
Neutrophils are the most abundant type of circulating leucocytes
in human, and recognized as the first responder to acute
inflammatory response. Cumulative evidence indicated that
neutrophils played a pivotal role in chronic inflammation as well
(Bonaventura et al., 2019). Neutrophils participate in various
cardiovascular diseases via releasing degranulation products,
recruiting and activating macrophages and pDCs, delivering
microvesicle and cytokine, and so on (Bonaventura et al., 2019).
Some researches indicated that the blood count of neutrophil
was positively correlated with the severity of coronary damage
in coronary artery disease patients (Sharma et al., 2017).
Neutrophil/lymphocyte ratio could predict acute HF patients
with a higher risk of vascular events (Uthamalingam et al.,
2011). In patients with AMI that developed congestive HF,
92.5% had relative neutrophilia (neutrophil percentage >65%),
whereas in patients with AMI that did not develop into
congestive HF, the incidence of neutrophilia was 45% (Kyne
et al., 2000). Previously, it was believed that neutrophils exerted
a proinflammatory effect and augmented heart damage in MI.
The increased counts or volume of circulating neutrophils after
MI was positively correlated with infarction size and negatively
correlated with left ventricular function and clinical outcomes
(Chia et al., 2009; van Hout et al., 2015). However, recently,
researchers found that in infarct healing process, neutrophils
could promote macrophages polarization toward a proreparative
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and proangiogenesis phenotype through releasing gelatinase-
associated lipocalin (NGAL) and annexin A1 (Horckmans et al.,
2017; Ferraro et al., 2019). Accordingly, depletion of neutrophils
in mice led to worsening cardiac function, increased cardiac
fibrosis, and enhanced expression of HF biomarkers after MI
(Horckmans et al., 2017). Besides, annexin A1 knockout mice
subjected to MI were stagnated in macrophages repolarization
and exhibited impeded healing after MI. Annexin A1 treatment
significantly improved cardiac function both in mice and pig
(Ferraro et al., 2019). In addition, another research indicated
that OSM produced by neutrophils and macrophages after MI
could induce the release of regenerating islet-derived protein
3β (Reg3β), an essential regulator of macrophage trafficking,
from dedifferentiating cardiomyocytes, which further promoted
the accumulation of proreparative macrophages in the damaged
heart (Lorchner et al., 2015). Thus, special attention should be
given on the timing of neutrophil targeted therapy in respect of
the clinical course pattern of neutrophil function in HF.

NK Cells
Natural killer cells were primarily recognized as the major
effector lymphocytes of innate immune responses endowed with
constitutive cytolytic functions. They play a significant role in
repairing damaged tissue and maintaining tissue homeostasis
(Tosello-Trampont et al., 2017). In addition, NK cells possess
complex biological functions in modulating the immune system
through receptor-ligand interactions or release various cytokines
and chemokines, such as enhancing the antigen-presenting
ability of DCs and dampening macrophage/T-cell responses
(Vivier et al., 2011; Ong et al., 2017). Circulating NK cells
were dramatically reduced in number with diminished cytolytic
function in HF patients, as well as coronary heart disease
patients and ischemic heart disease patients (Anderson et al.,
1982; Vredevoe et al., 2004; Jonasson et al., 2005; Hou et al.,
2012; Backteman et al., 2014). Consistent NK cell deficiency
was correlated with low-grade chronic cardiac inflammation,
while cardiac inflammation was diminished in patients with
restored circulating NK cells (Vredevoe et al., 2004; Backteman
et al., 2014). Whether this observation is causative or merely a
concomitant phenomenon remains to be clarified. The cytolytic
impairment of NK cells was associated with increased IL-
6 level, but the underlying molecular mechanism was not
revealed (Vredevoe et al., 2004). By preventing inflammatory
cell accumulation and limiting collagen production from cardiac
fibroblasts, NK cells could suppress the development of cardiac
fibrosis (Ong et al., 2017). Further investigation is urgently
needed to clarify the role of NK cells in HF.

Dendritic Cells
As the sentinels of immune system, DCs serve as a bridge
linking adaptive and innate immune responses (Mildner and
Jung, 2014). Heart-specific self-peptide loaded DCs were capable
to induce CD4+ T-cell-mediated myocarditis and autoimmune
HF in mice (Eriksson et al., 2003). In AMI, the migration
and accumulation of DCs to the infarction site were increased
and DC depletion resulted in worsening post-MI remodeling
(Anzai et al., 2012). The number of proinflammatory monocytes

and macrophages increased in the myocardium of DC-
depleted mice, indicating that DCs might act as an immune-
protective regulator during the postinfarction healing process
via regulating monocyte/macrophage homeostasis (Anzai et al.,
2012). However, DC infiltration was decreased in the cardiac
tissue of symptomatic DCM patients, which indicated a damaged
ejection fraction (Pistulli et al., 2013). Thus, the function of DCs
may be different in acute and chronic HF.

T Cells
T cell is the major element of the adaptive immune response.
Initial evidence implicated that T cells that participated in the
pathogenesis of HF came from the elevated T cell-generated
cytokines, IL-2 and IL-10, in the plasma of HF patients (Marriott
et al., 1996). Then, circulating T cells from congestive HF patients
were validated to have enhanced expression of T-cell activation
markers (CD25 and CD69), chemokines, and proinflammatory
cytokines [TNF-α, interferon γ (IFN-γ), and IL-18] (Yndestad,
2003). Circulating inflammatory cytokines produced by T cells
had a positive correlation with left ventricular dysfunction in
chronic ischemic HF and idiopathic DCM patients (Fukunaga
et al., 2007b). The proportion of regulatory T (Treg) cells in the
plasma of HFrEF patients was decreased with less suppressive
activity, whereas the proportion of proinflammatory T-helper 17
(TH17) cells was increased (Li N. et al., 2010; Tang H. et al., 2010;
Tang T. T. et al., 2010; Okamoto et al., 2014). The number of Treg
cells was negatively associated with the levels of NT-proBNP, CRP,
and IL-6 and possessed a prognostic value in predicting cardiac
function (Tang et al., 2011; Okamoto et al., 2014).

CD4+ and CD8+ T cells, as well as CD4+ subsets (TH1,
TH2, TH17, and Treg cells), are also infiltrated in the failing
heart (Nevers et al., 2015; Martini et al., 2019). Although bulk
blockade of CD4+ T cells in mice prevented cardiac remodeling
and exhibited preserved contractile function (Laroumanie et al.,
2014), the roles of CD4+ T-cell subtypes are quite different.
TH1 cells are mainly proinflammatory and could activate
proinflammatory macrophages, whereas TH2 responses are
mainly profibrotic. T-bet, a TH1 cell-specific transcription factor,
was detected to be elevated in hypertrophic myocardium of
patients. T-bet deficiency improved pressure overload-induced
cardiac remodeling in rats, indicating the potential therapeutic
value of T-bet for HF treatment (Ma et al., 2018). TH17 cells
have been reported to contribute to cardiac hypertrophy and
promote adverse cardiac remodeling (Frieler and Mortensen,
2015). IL-17 is an effector molecule of TH17 cells; blockade
of IL-17 cells was beneficial in DCM and MI disease models
(Baldeviano et al., 2010; Liao et al., 2012). Treg cells are
known to negatively regulate the immune response and suppress
the effector functions of T-helper cells (Meng et al., 2016).
But a recent research indicated that in non-reperfused MI-
induced HF mice, myocardial infiltrating CD4+Foxp3+ Treg
cells exhibited proinflammatory TH1-type features with the
expression of IFN-γ, TNF-α, and TNFR1 and had decreased
immunomodulatory capacity with potentiated antiangiogenic
and profibrotic properties. Periodic Treg-cell depletion reversed
left ventricular remodeling, reduced cardiac fibrosis, and
improved neovascularization. Treg cell reconstitution after their
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depletion could restore immunomodulatory capacity (Bansal
et al., 2019). Besides, in mice with existing left ventricular
failure, administration of IL-2 (also named as T-cell growth
factor) significantly increased Tregs in the lung, consecutively
reduced pulmonary macrophages and CD8+ T cell infiltration,
and attenuated right ventricular hypertrophy (Wang et al., 2016).
Thus, Treg cells may be a potential high-yield target for the
treatment of ischemic cardiomyopathy and HF. Furthermore,
single-cell sequencing of the heart tissues from pressure overload
HF mice indicated that Treg-cell population expressed a high
level of programmed cell death protein 1 (PD-1), which might
partially explain the cardiac toxicity during anti-PD-1 cancer
immunotherapy (Martini et al., 2019).

B Cells
The density of B-cell population increased in the myocardium
of both acute cardiac MI and pressure-overload HF mice
(Yan et al., 2013; Martini et al., 2019). B cells could produce
proinflammatory cytokines including TNF-α, lymphotoxin,
IL-1, and IL-6 after acquiring cytokine secretion capability.
These cytokines were reported to attenuate left ventricular
function and promote cardiac remodeling (Vazquez et al., 2015).
Activated B cells could also directly induce cardiomyocyte
damage through complement-mediated cytotoxicity (Cordero-
Reyes et al., 2013). After AMI, B cells could produce CCL7
to chemoattract Ly6Chigh monocyte to local heart, resulting
in tissue damage and myocardial function deterioration
(Zouggari et al., 2013). Besides, B cells produced various
antibodies, which might precede disease manifestation.
Several antibodies against proteins in the heart, including
β1 adrenergic receptor, M2 receptor, myosin heavy-chain
α and β, troponin I, Na-K-ATPase, and Kv channel, were
reported to be elevated in DCM patients (Kaya et al.,
2012). Antibodies deposited in the myocardium could exert
direct injury and contribute to cardiac electrical instability
(Cordero-Reyes et al., 2013). Serum levels of anti-heart
autoantibodies were proven to be negatively associated with
inotropic effects and could independently predict 5-year
prognosis (Caforio et al., 2007; Kaya et al., 2012). In angiotensin
II-induced HF mice model, B-cell depletion by anti-CD22
antibody resulted in reduced cardiomyocyte apoptosis,
proinflammatory cytokines levels, and immunoglobulin G
deposition in the myocardium; alleviated cardiac hypertrophy;
and preserved left ventricular function (Cordero-Reyes et al.,
2016). Therapies that depleted B cells with rituximab (CD20-
specific antibody) diminished myocardial injury and improved
cardiac function in patients with inflammatory DCM (Tschope
et al., 2019) or AMI (phase I/II study) (Zouggari et al., 2013).
Therefore, B-cell-targeted therapy is an appealing option
in HF treatment.

EXTRACARDIAC ORGANS

As a systemic disease of HF, inflammatory cells and cytokines
would not only affect cardiac function but also contribute to
multiorgan damage through various mechanisms (Figure 1).

FIGURE 1 | Interaction between heart and extracardiac organs. Heart failure
and inflammatory responses are mutually reinforced with each other. Upon
injury, splenic monocytes could mobilize and accumulate in myocardium to
induce cardiac injury. Stimulus such as elevated circulating inflammatory
cytokines, adipokines, and peripheral organs hypoperfusion could induce
renal dysfunction, gut microbiota disorder, and skeletal muscle catabolism,
which further exacerbate cardiac dysfunction.

Conversely, remote organ-related inflammatory responses would
further deteriorate cardiac function.

Cardiosplenic Axis
Clinical study that using 18F-fluorodeoxyglucose PET to measure
the glucose metabolic rate of patients after MI revealed increased
metabolic activity (reflects enhanced inflammatory cell activity)
in the spleen (Wollenweber et al., 2014). Thus, remote organs
might also participate in the inflammatory process of HF. Spleen
harbors a large reservoir of undifferentiated monocytes. Upon
injury, splenic monocytes could increase motility and accumulate
in damaged tissues to regulate inflammation and promote healing
process (Swirski et al., 2009). After AMI, a unique spatiotemporal
pattern of a marked depletion of splenic monocytes that
coincided with the accumulation of myocardial monocytes
supported the hypothesis of cardiosplenic axis (van der Laan
et al., 2014). HF mice underwent splenectomy showed attenuated
monocyte-derived tissue macrophages and DC infiltration and
reversed cardiac remodeling, whereas adoptive transfer of
splenic monocytes from HF mice could induce left ventricular
dysfunction and fibrosis in recipient mice (Ismahil et al., 2014).
Therefore, cardiosplenic axis might play an important role in the
pathogenesis of HF.

Cardiorenal Interaction
End-stage renal disease and severe cardiovascular dysfunction
are closely related to each other, which is termed as cardiorenal
syndrome (CRS) (Bock and Gottlieb, 2010). Inflammatory
responses, especially IL-6-related pathway, are thought to be
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a crucial driver of CRS in HF patients. A research containing
98 HF patients found that increased plasma IL-6 concentration
was correlated with higher mortality risk, whereas elevated
urine IL-6 level (quantify inflammation at the level of renal
tissue) was independently associated with renal dysfunction
(Hanberg et al., 2018). Previous studies demonstrated that IL-6
could impair pressure natriuresis and exacerbate renal function
through activating renal epithelial sodium (ENaC) (Li K. et al.,
2010) and promoting the expression of fibrotic and endothelin-
1 gene (Zhang et al., 2012). Apart from the cytokine-induced
renal damage, the activation of renal-angiotensin system plays
a vital role in CRS. The elevated angiotensin II stimulated
cardiomyocytes to release proinflammatory cytokines, including
TNF-α and IL-1, which are involved in the complex mechanisms
of HF (Kalra et al., 2002; Ruiz-Ortega et al., 2002).

Gut Microbiota
Cumulative evidence has implied the significance of intestinal
microbiota in various diseases including HF. The reduced
cardiac output leads to intestinal ischemia, edema, and
increased gut permeability, making it possible for the entry
of bacteria, endotoxins, and metabolites into the bloodstream.
Edematous HF patients had higher blood concentrations of
lipopolysaccharide (Sandek et al., 2012). Meanwhile, higher
endotoxin levels in hepatic veins than left ventricle during acute
HF suggested the translocation of microbial components or
endotoxins from the bowel into the circulating blood (Peschel
et al., 2003). Translocation of lipopolysaccharide activated the
inflammatory pathways, promoted the expression of cytokines,
and contributed to HF progression (Verbrugge et al., 2013;
Liu et al., 2015). Thus, probiotics and antibiotics such as
rifaximin could be used in HF patients to attenuate systemic
inflammation and restore metabolic homeostasis through gut
microbiota modulation.

Cardioadipose Tissue Crosstalk
The relationship between HF and obesity has long been
recognized (Abel et al., 2008). Obesity is an independent risk
factor for HF, especially in HFpEF. But some studies indicated
that HF patients with higher body mass index and waist

circumference had better prognosis than lean patients. This
phenomenon has been defined as “obesity paradox” (Lavie
et al., 2016; Carbone et al., 2017). Although the detailed
mechanism behind this discrepancy is not clear, inflammation
might be involved (Karason and Jamaly, 2020). It is widely
accepted that obesity could promote systemic inflammation
(Berg and Scherer, 2005; Ghigliotti et al., 2014). In obesity,
visceral fat, as well as epicardial and pericardial fat, enhanced
the expression of various proinflammatory cytokines, including
TNF-α, IL-6, IL-1β, and monocyte chemoattractant protein
1, whereas it reduced the expression of anti-inflammatory
cytokines, such as IL-10 and adiponectin (Jahng et al., 2016).
The chronic systemic inflammation in obesity further promoted
the accumulation of epicardial fat and adversely damaged the
biology of epicardial fat toward a proinflammatory phenotype
(Hirata et al., 2011; Wernstedt Asterholm et al., 2014). The
proinflammatory adipocytokines, gaseous messengers, and lipids
secreted by epicardial adipose tissue could affect cardiomyocytes
and extracellular matrix through a paracrine manner (Patel et al.,
2017). Thus, epicardial fat could serve as a transducer that
mediated the influence of systemic inflammation on adjacent
myocardium (Packer, 2018). This might partially explain the
cardiac sterile inflammation in obese people. On the other
hand, in HF patients, damaged cardiomyocytes could release
proinflammatory cytokines, such as IL-6 and TNF-α, which could
trigger lipolysis of epicardial adipose tissue, leading to cardiac
cachexia and worsening outcome (Oikonomou and Antoniades,
2019). Strategies that reduced the quantity of epicardial adipose
tissue, such as high doses of statins (Abe et al., 2008; Alexopoulos
et al., 2013; Cho et al., 2015; Yamada et al., 2017), metformin
(Jonker et al., 2010; Cameron et al., 2016), mineralocorticoid
receptor antagonists (Guo et al., 2008; Anand et al., 2017; Olivier
et al., 2017), sodium–glucose cotransporter 2 inhibitors (Habibi
et al., 2017; Lee et al., 2017), as well as low-calorie diets and
physical exercise (Kim et al., 1985; Kelly et al., 2014), could reduce
systemic inflammation, prevent, or treat HFpEF.

Heart and Skeletal Muscle Crosstalk
Heart failure patients are frequently accompanied with skeletal
muscle wasting, which is generally not associated with body

TABLE 3 | Ongoing clinical trials targeting inflammation.

Drug Trial identifier Disease Primary endpoint Duration
of therapy

Phase and
status

Sponsor

Anakinra (interleukin 1 blockade) NCT03797001 Heart failure, systolic,
inflammation

Changes in peak VO2 at
earlier endpoints

24 Weeks Phase 2;
recruiting

Virginia Commonwealth
University

Proleukin (interleukin 2) NCT03113773 Ischemic heart disease – 5 Days Phase 1/2;
active, not
recruiting

Cambridge University
Hospitals NHS Foundation

Trust

Interleukin 2 (IL-2) NCT04241601 Acute coronary
syndromes

Change in vascular
inflammation

5 Days Phase 2;
recruiting

Cambridge University
Hospitals NHS Foundation

Trust

Colchicine (anti-inflammatory) NCT04857931 Heart failure,
inflammation

Change in hs-CRP
(C-reactive protein)

– Phase 3; not
yet recruiting

Montreal Heart Institute

Colchicine (anti-inflammatory) NCT04420624 Myocardial infarction,
acute

Percentage of myocardial
denervation

1 Month Phase 2/3;
recruiting

University Hospital,
Montpellier
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weight loss but mainly due to the imbalance of the muscle
protein synthesis and degradation (von Haehling et al., 2013;
Ebner et al., 2014). The elevated circulating cytokines such as
TNF-α and IL-6 in HF patients could induce muscle protein
loss by activating nuclear factor κB pathway (Li et al., 1998;
Lavine and Sierra, 2017) and lead to skeletal muscle apoptosis
through promoting sphingosine production (Dalla Libera et al.,
2001). Besides, activated angiotensin II in HF patients was
involved in the metabolism of skeletal muscle (Delafontaine and
Akao, 2006; Sukhanov et al., 2011). In HF patients, damaged
or dying myocytes could release various danger-associated
molecular patterns and myokines, such as myostatin, IL-8, IL-
15, and osteonectin, into plasma, which contribute to HF-related
myopathy (Chan et al., 2012; Berezin et al., 2021).

CONCLUSION

Immune activation possesses a vital role in the progression
of HF. However, anti-inflammatory clinical trials showed
limited success. The diverse clinical etiologies and the intrinsic
complexity of inflammatory responses may partially explain
these unsatisfied results. Further insights and clinical trials about
inflammation in specific etiologies and stages of HF are needed
(Table 3). Furthermore, stratifying the HF patients into particular

subpopulations according to their inflammatory conditions may
maximize the effects of anti-inflammatory therapy.
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