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Abstract

Muscle ultrasound density (MUD) is a non-invasive parameter to indicate neuromuscular

integrity in both children and adults. In healthy fetuses and infants, physiologic MUD values

during development are still lacking. We therefore aimed to determine the physiologic, age-

related MUD trend of biceps, quadriceps, tibialis anterior, hamstrings, gluteal and calf mus-

cles, from pre- to the first year of postnatal life. To avoid a bias by pregnancy-related signal

disturbances, we expressed fetal MUD as a ratio against bone ultrasound density. We used

the full-term prenatal MUD ratio and the newborn postnatal MUD value as reference points,

so that MUD development could be quantified from early pre- into postnatal life. Results:

During the prenatal period, the total muscle group revealed a developmental MUD trend

concerning a fetal increase in MUD-ratio from the 2nd trimester up to the end of the 3rd tri-

mester [median increase: 27% (range 16–45), p < .001]. After birth, MUD-values increased

up to the sixth month [median increase: 11% (range -7-27), p = 0.025] and stabilized thereaf-

ter. Additionally, there were also individual MUD characteristics per muscle group and

developmental stage, such as relatively low MUD values of fetal hamstrings and high values

of the paediatric gluteus muscles. These MUD trends are likely to concur with analogous

developmentally, maturation-related alterations in the muscle water to peptide content

ratios.

Introduction

Muscle ultrasound provides a non-invasive and easily applicable tool for the detection of mus-

cle alterations in children and adults suspected of neuromuscular pathology [1–5]. The term

muscle ultrasound density (MUD), which is also indicated as echo-intensity or echogenicity, is

based on the principle that a reduction in the muscle water content, fat deposition and fibrosis

cause an increased reflection of the muscle ultrasound beam and thereby enhance the quantifi-

able MUD value (resulting in enhanced echo-intensity or echogenicity) [6–16]. Especially in
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fetuses and young children, this non-invasive surveillance technique has the advantage above

other more invasive approaches, such as anesthesia requiring MRI and/or muscle biopsy per-

formances [3,16]. Well-known pediatric neuromuscular applications of this technique involve

for instance: neuromuscular and metabolic disorders, including spina bifida, myopathies,

motor neuron diseases, neuropathies, mitochondrial disorders and glycogen storage diseases

[3,5,16–19].

In healthy children older than two years of age, it has been reported that MUD values may

generally remain stable [15], although there might be some exceptions in individual muscles

[20]. However, in fetuses and infants younger than one year of age, healthy control values and

potential age related trends are still lacking. In perspective of the pre- to postnatal developmen-

tal change in the muscle -water and -peptide content, we reasoned that MUD values could

change, accordingly [21]. In healthy fetuses and infants under one year of age, we thus aimed

to explore the temporal relationship between MUD trends and gestational age. Developmental

insight in perinatal MUD control values could contribute to the understanding of physiologic

muscle maturation, could enable cross-sectional comparison between innovative fetal treat-

ment strategies (such as in fetal open and endoscopic closure of the neural tube defect) and

also enable non-invasive, longitudinal surveillance of perinatal neuro-muscular abnormalities.

Materials and methods

Participants

The medical ethical committee of the University Medical Center Groningen (UMCG)

approved the study. Informed consent was obtained from all parents in accordance with the

World Medical Association Declaration of Helsinki 2008. After informed consent by the

parents, we assessed MUD parameters in 20 healthy fetuses and infants. By open advertise-

ment, we approached pregnant mothers of healthy fetuses who performed ultrasound (US)

scans for private reasons (‘non-medical’ US recordings). All parent(s) gave their informed con-

sent for off-line muscle ultrasound assessment of the fetal ultrasound recordings. US registra-

tions were performed by a professional sonographer (P.B.M., not involved in image analysis).

Inclusion criteria were: healthy singleton pregnancies. Exclusion criteria were: twin-pregnan-

cies, maternal diseases, medication, congenital malformation and complications such as

asphyxia, infections, cerebral bleedings and infarctions.

We included 20 fetuses. Delivery was at 40+1 weeks gestational age (GA) (median, range

38+3–41+5). All children were delivered after an uneventful pregnancy in absence of perinatal

complications. All lengths and weights of the included fetuses and newborns were within the

normal range of the prenatal Hadlock growth curve and the postnatal growth curve [22]. Since

weight and length of healthy children do not influence MUD [15,20], individual values are not

specified. For personal reasons related to traveling and domestic zest, parents of eight fetally

included children decided to stop with their longitudinal participation after delivery. These

children were “replaced” by eight healthy newborns that fulfilled the same inclusion criteria.

Before processing the data of these eight neonates as part of the postnatal study group, we veri-

fied whether early neonatal MUD outcomes (at 0 months of age) statistically differed between

these and the other 12 fetally included neonates. This was not the case (NS, Mann-Whitney-U).

From five perinatal autopsies in fetuses and infants without neuromuscular disease, iliop-

soas muscle samples were taken at GA 21+3, 31+2, 39+4 (immediately after birth), 8 months

postnatal and 12 months postnatal. In such autopsies iliopsoas is routinely sampled and these

tissue slides were therefore present for evaluation, according to the ‘Code of Conduct for deal-

ing responsibly with human tissue in the context of health research’ published by the Federa-

tion of Dutch Medical Scientific Societies in 2011 [23].
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Muscle ultrasound assessments

Prenatally, we assessed MUD of biceps, quadriceps, tibialis anterior, hamstrings, gluteal and

calf muscles at three time points: 20–24 weeks GA, 28–32 weeks and 36–40 weeks GA. Postna-

tally, we assessed MUD of the same muscles at 0, 6 and 12 months of age.

Fetal muscle ultrasound assessments

Fetal muscle ultrasound recordings were performed using a General Electric Healthcare Volu-
son E8 ultrasound machine. To avoid a bias by pregnancy-related signal disturbances (such as

the maternal subcutaneous fat layer and/or the intra-uterine fetal conditions), we expressed

fetal-MUD as a ratio between muscle- and bone- density: fetal-MUD-ratio = [mean muscle

pixel value] / [mean bone pixel value] [16]. For analysis of the fetal muscle, we selected the

whole muscle in a longitudinal section as the region of interest, see S1A Fig. The fetal-MUD-

ratio was assessed for the biceps (reference bone: humerus), quadriceps (reference bone:

femur), tibialis anterior (reference bone: tibia), hamstrings (reference bone: femur), gluteus

(reference bone: hip) and calf muscles (reference bone: tibia or fibula). From each set of five

images per muscle per fetus, we derived one data point by excluding the highest and lowest

value and calculating the mean of the remaining three MUD values.

Postnatal muscle ultrasound assessments

Postnatally, we obtained absolute MUD values using General Electric Healthcare LOGIQ 9
(fixed) or General Electric Healthcare LOGIQ e (portable) US machines (Jiangsu, China). The

registrations were performed at the outpatient clinic of Clinical Neurophysiology, or at home

(using the portable device) when parents were unable to attend the appointment at the outpa-

tient clinic. Both ultrasound machines are compatible systems, calibrated by General Electric
technicians. We performed MU registrations with standardized settings for muscle ultrasound

gain, dynamic range, compression, and time-gain compensation parameters [10,11]. All set-

tings for muscle ultrasound assessments were identical and held constant for each machine.

This setting has been shown to result in highly compatible results, with a validated conversion

factor between both machines: MUDlogiq 9 = 37.262 + 1.368 � MUDlogiq e (r2 = .74) [24].

According to standardized reference points [10], we recorded transverse US images of a

total of six muscles of upper arm, thigh and leg muscles (i.e. biceps, quadriceps, tibialis ante-

rior, hamstrings, gluteus and calf muscles). The US assessments were performed during mus-

cle relaxation in supine (biceps, quadriceps and tibialis anterior muscles) and prone

(hamstrings, gluteus and calf muscles) position, respectively. At 0, 6 and 12 months postnatal

age, we assessed the children in a quiet and awake state [25]. Digital MUD values were

obtained according to standardized methodology, in which images of muscle selections are

made at the cross-sectional plane from the muscle belly, see S1B Fig [10,11,15]. We recorded

five transverse muscle ultrasound images per muscle (of the left and right extremities in each

child). From each set of five images per muscle per child, we derived one data point by exclud-

ing the highest and lowest value and calculating the mean of the remaining three MUD values.

For digital pixel analysis of the fetal and postnatal muscles, we used Adobe Photoshop (San

Jose, CA).

Developmental MUD trend

Since fetal-MUD is assessed as a muscle to bone ratio [16] and postnatal MUD as an absolute

value [6–15], we used the full-term prenatal MUD ratio and the newborn postnatal MUD

value as a reference point. Accordingly, we set the full-term fetal-MUD-ratio value at 100%
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and calculated the %MUD difference between the two earlier fetal time points. Analogously,

we set the newborn MUD value at the reference value of 100% and calculated the difference

between the two consecutive time points at 6 and 12 months of age.

Statistical analysis

We performed statistical analysis by SPSS version 16.0 (SPSS Inc., Chicago, IL, USA). MUD val-

ues were not-normally distributed (according to Q-Q-plots and Shapiro-Wilk tests). We com-

pared the differences in fetal-MUD ratio between the second trimester to the end of the third

trimester of pregnancy (nonparametric Kruskal-Wallis test) for the total muscle group (i.e. all

investigated muscles together), and performed post hoc analysis by Mann Whitney-U test.

After birth, we cross-sectionally compared MUD values for the total muscle group between 0, 6

and 12 months postnatal age by Kruskal-Wallis test and also performed post hoc analysis by the

Mann-Whitney-U test. Inter-individual MUD differences (i.e. differences between muscles)

were determined by the Mann-Whitney-U test. Statistical significance was set at α = .05.

Results

Fetal MUD-ratio

In healthy fetuses and infants, MUD values of the total muscle group (biceps, quadriceps, tibia-

lis anterior, hamstrings, gluteal, calf muscles) increased during pregnancy (from the second

trimester until late in the third trimester), Kruskal-Wallis test, p< .001. Post-hoc analysis

(Mann-Whitney-U) showed the lowest MUD-ratio at 20–24 weeks GA, which increased up to

36–40 weeks GA [20–24 weeks GA: 0.22 (0.13–0.42) vs 28–32 weeks GA: 0.27 (0.14–0.41) and

36–40 weeks GA: 0.28 (0.13–0.55), respectively; p< .001]. For all muscles together, the median

%fetal-MUD-ratio increase was 27% (range 16–45%), Fig 1 (data shown for biceps, quadriceps

and calf muscles). The median fetal MUD-ratio values per muscle per time point are indicated

in Table 1. Comparing the fetal MUD-ratio between the different muscles revealed relatively

lower MUD-ratios in hamstrings muscles in the third trimester of pregnancy (Kruskal-Wallis,

Post-hoc, p< .05).

Postnatal MUD

Postnatally, median MUD values of the total muscle group were different between the three

measurement points (Kruskal-Wallis test; p = .019). Post-hoc analysis (Mann-Whitney-U)

showed a higher median MUD value at 6 months than at birth [for all muscles: 80 (38–157) vs

72 (46–124), respectively; p = .025] and a stabilization thereafter, see Fig 1. The median %

increase of postnatal MUD was 11% (range -7-27%). The median MUD values per muscle and

per measurement point (0, 6 and 12 months) are provided in Table 1. From Table 1 it can be

derived that not all individual muscles showed the same global developmental trend in MUD.

For instance, the MUD values of biceps and tibialis anterior muscles did not increase from 0 to

6 months of age. Postnatally, MUD values of the gluteus muscle were higher than that of other

muscles (Kruskal-Wallis, Post-hoc, p< .001).

Discussion

In healthy fetuses and infants until the first year of life, we investigated developmental changes

in MUD. Between the 2nd and 3rd trimester of pregnancy, we observed an increase in fetal

MUD values, continuing until the sixth month of postnatal life for the total muscle group and

a relative stabilization, thereafter. These developmental MUD changes concur in time with his-

tologic alterations and physiologic shifts in the muscle peptide and water content. Although
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Fig 1. Physiologic trend of MUD in biceps, quadriceps and calf muscles in healthy fetuses and infants. Section A. Developmental pre- and postnatal MUD

alterations of biceps, quadriceps and calf muscles, expressed as % change in MUD (using a-term/newborn MUD values as reference point). Fetal-MUD parameters are

expressed as the ratio between muscle- and bone- density: [mean muscle pixel value] / [mean bone pixel value]. Postnatal-MUD parameters are directly obtained as the

absolute muscle ultrasound density of the muscle. The a-term fetal values and the newborn postnatal values are coupled and set as a reference at 100%. From the a-term/

newborn reference points, we calculated the %differences in pre- and postnatal MUD parameters from the second trimester of gestation until the first year of postnatal

life. The whiskerplots indicate the medians and 1st and 3rd quartile (shown for biceps, quadriceps and calf muscle). In healthy fetuses, the MUD-ratio of the total muscle

group increased from the second trimester (20–24 weeks) of pregnancy until the third trimester (36–40 weeks) of pregnancy (p<0.001�). The median %increase of fetal

MUD was 27% (���). Postnatally, MUD increased from birth until the sixth month postnatal age and stabilized thereafter (p = .025��). The median %increase of

postnatal MUD was 11% (����). Section B. Illustrations of cross-sectional muscle histology sections (hematoxylin-eosin staining; 400x) from iliopsoas muscles of healthy

fetuses and infants showing how %MUD alterations may correspond with pre- and postnatal limb muscle histology. Insert a: fetal section at 21+3 weeks GA. Insert b:

fetal section at 31+2 weeks GA. Insert c: neonatal section at 39+4 GA. Insert d: postnatal section at 8 months of age. Insert e: postnatal section at 12 months of age. All

inserts are derived from the UMCG pathology database. Section B illustrates how developmental %MUD alterations of section A concur in time with developmental

muscle alterations in fiber diameter and muscle fiber density. Section C. Graph compiled from the reported % muscle water content in muscle samples (expressed in

percent of the total wet weight of the muscles). The biochemically determined muscle water content changed from 89% at 25 weeks of gestation to approximately 80% at

delivery, to 78% at the first year of life [21]. Section C illustrates how the reported alterations in %MUD outcomes (reflecting the relative muscle water content) from

section A correspond with previously reported biochemical outcome data on the muscle water content. We assembled this graph from the data previously reported by

Colling-Saltin, J Neurol Sciences 1978 [21]. For the absolute values of all pre- and postnatal MUD parameters (median and ranges), see Table 1. MUD = muscle

ultrasound density; GA = gestational age.

https://doi.org/10.1371/journal.pone.0235836.g001
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this trend appeared globally applicable, individual muscle characteristics may still coexist.

These data may implicate that perinatal MUD outcome parameters should be interpreted for

gestational age and muscle type.

From pre- to postnatal life, histologic muscle development is known to concur with incre-

mental changes of the muscle peptide to water ratio [21,26], which will enhance the reflection

of the muscle ultrasound beam causing increased MUD values. In Fig 2, we provide an over-

view of the perinatal histologic muscle development.

During embryogenesis, fetal muscles develop from the mesodermal progenitor cell [29,30].

After neuronal innervation, these precursor cells differentiate into multinucleated myotubes

(i.e. immature muscles fibres) and subsequently into muscle fibres (Fig 2). During the 2nd tri-

mester of pregnancy (from 20 to 30 weeks GA), undifferentiated muscle fibres type IIC differ-

entiate into muscle fibres type I and II [26]. By the end of pregnancy, myogenesis is nearly

Table 1. MUD values in healthy control fetuses and infants.

Fetal-MUD-ratio Postnatal-MUD

2nd (20–24 wks) 3rd (28–32 wks) 3rd (36–40 wks) 0 (0–2 mo) 6 (5–8 mo) 12 (11–12 mo)

Biceps .24 (.16-.37) .32 (.19-.41) .33 (.23-.46) 67 (48–92) 65 (38–83) 70 (51–87)

Quadriceps .22 (.15-.38) .30 (.22-.37) .32 (.19-.56) 72 (53–81) 83 (58–96) 77 (64–93)

Tibialis anterior .25 (.17-.42) .28 (.17-.35) .29 (.21-.48) 75 (57–96) 70 (53–100) 70 (59–89)

Gluteus .20 (.13-.38) .24 (.16-.30) .26 (.18-.38) 95 (63–124) 102 (80–157) 92 (73–126)

Hamstrings .19 (.16-.28) .21 (.14-.30) .22 (.13-.29) 61 (46–76) 64 (51–86) 67 (50–85)

Calf .25 (.16-.37) .29 (.19-.39) .29 (.15-.38) 71 (61–81) 90 (62–104) 84 (69–110)

Fetal-MUD is expressed as the ratio between muscle- and bone density: [mean muscle pixel value] / [mean bone muscle pixel value] and obtained at the indicated weeks

of GA. Postnatal-MUD is directly obtained as the absolute muscle ultrasound density of the muscle [mean muscle pixel value] and obtained at the indicated months

postnatal age. All values are indicated as median values (ranges = minimum-maximum). MUD = muscle ultrasound density; wks = weeks; mo = months.

https://doi.org/10.1371/journal.pone.0235836.t001

Fig 2. Schematic overview of physiological muscle maturation during pre- and postnatal life (until the first year after birth). During embryogenesis, muscle fibres

are derived from mesodermal progenitor cells. These cells are determined to become myoblasts and differentiate into multinucleated myotubes (immature muscle fibre).

Maturation of myotubes into muscle fibres is completed by innervation. At the end of gestation, myogenesis is nearly complete. Postnatally, muscle growth is mainly

controlled by hypertrophy (i.e. increase in fibre diameter and length without significant change in myonuclear number) and to a very limited extent by muscle

hyperplasia (i.e. increase in cell number) [27,28]. The process of muscle development is associated with an overall decrease in muscle water content and an increase in

muscle peptide content [21,26,27] potentially underlying the observed age-related increase in MUD values. MUD = muscle ultrasound density.

https://doi.org/10.1371/journal.pone.0235836.g002
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completed with only a small percentage (15 to 20%) of undifferentiated muscle fibres. During

the newborn period, muscle development will continue with: 1. muscle fibre hypertrophy

[27,28]; 2. gradual increase in muscle fibre diameter and in type I and II fibres, and 3. a relative

reduction in the undifferentiated muscle fibres [26].

Comparing developmental MUD alterations before and after birth, reveals a stronger MUD

increase before birth. This can be attributed to the strongest physiologic changes in the fetal

muscle. During prenatal life, the muscle protein content increases from 80 milligram protein

per gram muscle at 25 weeks gestational age to 155–170 milligram protein per gram muscle

after the 36 weeks of gestation [21,26]. Analogously, the water content of fetal muscles

(expressed as % total wet muscle weight) declines from 89% at 25 weeks of gestation to approx-

imately 80% at delivery. During the postnatal period, the decline in the water content is

smaller, i.e. 80% at birth, to 79% at the first month and to 78% at the first year of life [21].

In addition to the above described developmental MUD trends related to the maturation of

the muscle, we also observed some individual differences between muscle groups. These varia-

tions can be theoretically attributed to: 1. differences in muscle fibre type differentiation per

muscle [29–31]; 2. differences in the genetic profile and/or DNA content between the muscles

[27,29,32]; 3. differences in ‘slow twitch’ (for endurance, type I) and ‘fast twitch’ characteristics

(for strength, type II) and 4. differences between the distribution of fibre types over the muscle

(depending on the muscle function and the influence by activity, muscle force and exercise)

[27,33]. However, regarding the considerable ranges in MUD outcomes, one should be reluc-

tant with strong (over)interpretations of individual outcomes.

Altogether, in fetuses and young infants under one year of age, MUD values of human mus-

cles reveal a physiological developmental increase with age, despite potentially inter-individual

differences and specific muscle characteristics per muscle group. These data may implicate

that non-invasive MUD assessment can be diagnostically used [3,5,16,19,34], however, on the

condition that outcome data are interpreted for gestational age.

We recognize some weak points to this study. First, to avoid confounding influences (by

the maternal sub-cutaneous fat layer and the fetal intra-uterine position), we had to express

fetal-MUD by the muscle to bone-ratio, instead of by the absolute value. However, in previous

studies we have shown that MUD-ratios can be used for prenatal surveillance purposes, as well

[16]. Furthermore, by setting a-term age as a reference point, longitudinal trends can be reli-

ably derived. Second, like any biological sample or parameter, we are aware that there are

inter-individual differences such as for the fetal muscle glycogen content [21], subcutaneous

fat layers [10,11,15], muscle size and body mass index [15] and, finally, there may be conse-

quences by technical, measurement related factors [10,35]. However, despite these limitations,

we observed an identical developmental MUD trend for all investigated fetal muscles that can

be attributed to ongoing muscle maturation. Postnatally, this developmental trend continued,

but attenuated in the total muscle group. Additionally, we noticed moderate deviations from

the total MUD trend in some individual muscles (biceps and tibialis anterior muscles).

Although we are reluctant to over-interpret these findings, it is tempting to hypothesize that

these muscles could still reveal the same developmental trend, after a short delay. For instance,

in this respect Lori et al. had reported that biceps and tibialis anterior muscles do reveal an

MUD increase, after the 2nd year of life [20]. However, additional data are needed to substanti-

ate this hypothesis to further extent.

Conclusions

In healthy fetuses and infants, limb muscles revealed a trend with increasing MUD values

from prenatal life to 6 months of age, followed by a relative stabilization, thereafter. In fetuses
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and children younger than one year of age, these data may implicate that MUD outcome

parameters of limb muscles should be interpreted for gestational age. These findings may pro-

vide a non-invasive tool for perinatal neuromuscular surveillance, potentially allowing quanti-

tative comparison between different innovative fetal and neonatal treatment strategies.

Supporting information

S1 Fig. Ultrasound images of the fetal and postnatal quadriceps muscle. a. Fetal ultrasound

image of the quadriceps muscle. The image shows a longitudinal section of the quadriceps

muscle. The blue encircled area indicates the region of interest for fetal muscle ultrasound

analysis. b. Postnatal ultrasound image of the quadriceps muscle. The image shows a cross-sec-

tion of the quadriceps muscle taken at the muscle belly of the rectus femoris. The blue encir-

cled area (rectus femoris and vastus intermedius) indicates the region of interest for postnatal

muscle ultrasound analysis.

(TIF)

S1 File.
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