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A B S T R A C T   

Purpose: This study aims to investigate the correlation between myocardial area at risk at coronary computed 
tomography angiography (CCTA) and the ischemic burden derived from myocardial computed tomography 
perfusion (CTP) by using the 17-segment model. 
Methods: Forty-two patients with chest pain complaints who underwent a combined CCTA and CTP protocol were 
identified. Patients with reversible ischemia at CTP and at least one stenosis of ≥ 50% at CCTA were selected. 
Myocardial area at risk was calculated using a Voronoi-based segmentation algorithm at CCTA and was defined 
as the sum of all territories related to a ≥ 50% stenosis as a percentage of the total left ventricular (LV) mass. The 
latter was calculated using LV contours which were automatically drawn using a machine learning algorithm. 
Subsequently, the ischemic burden was defined as the number of segments demonstrating relative hypoperfusion 
as a percentage of the total amount of segments (=17). Finally, correlations were tested between the myocardial 
area at risk and the ischemic burden using Pearson’s correlation coefficient. 
Results: A total of 77 coronary lesions were assessed. Average myocardial area at risk and ischemic burden for all 
lesions was 59% and 23%, respectively. Correlations for ≥ 50% and ≥ 70% stenosis based myocardial area at risk 
compared to ischemic burden were moderate (r = 0.564; p < 0.01) and good (r = 0.708; p < 0.01), respectively. 
Conclusion: The relation between myocardial area at risk as calculated by using a Voronoi-based algorithm at 
CCTA and ischemic burden as assessed by CTP is dependent on stenosis severity.   

1. Introduction 

Coronary computed tomography angiography (CCTA) is widely used 
to diagnose coronary artery disease (CAD) and determine stenosis 
severity [1]. However, the assessment of ischemic myocardium is also of 
prognostic importance and plays a vital role in the decision to revas-
cularize patients which depends on the extent of the relative hypo-
perfused (ischemic) myocardium, relative to the subtended myocardial 
mass distal of the coronary stenosis [2]. A key advantage of combining 
CCTA and adenosine stress CT myocardial perfusion (CTP) is that it al-
lows for both the assessment of coronary artery stenosis as well as 
myocardial ischemia [2]. Also, CTP has a substantially shorter exam 

time as compared to cardiac magnetic resonance (CMR) and myocardial 
perfusion imaging (MPI). Furthermore, CTP may be especially beneficial 
in patients with contraindications for CMR [3,4]. However, it must be 
noted that a major disadvantage of CTP is the relatively high radiation 
dose exposure. Still, this is gradually improving thanks to technological 
advancement [4]. 

The Voronoi decomposition encompasses a mathematical algorithm 
that divides a three-dimensional space or two-dimensional area between 
predetermined points based on the shortest distance to those points. This 
algorithm can be used to partition the myocardium according to which 
blood vessel is closest [5,6]. By using a Voronoi decomposition algo-
rithm on myocardial tissue one can take into account the many 
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variations that exist in coronary anatomy. This is a major advantage of 
the aforementioned method over the standard 17 segment model in 
which the segments correspond to a fixed location and do not change 
according to differences in coronary anatomy [7]. The importance of 
using a different approach for the assessment of the coronary distribu-
tion was demonstrated in a study by Ortiz-Perez et al. in which in pa-
tients who underwent CMR 23% of the hyper enhanced segments were 
discordant with the empirically assigned coronary distribution accord-
ing to the standard 17-segment model. A Voronoi based segmentation 
algorithm can overcome this problem as its output is dependent on pa-
tient specific coronary anatomy [6,8]. 

Artificial intelligence (AI) is rapidly evolving in the work field of 
cardiovascular imaging and can greatly lessen the time needed for image 
processing, Machine learning which is a subclass of AI allows for the 
creation of a model based on historical data. As such, machine learning 
has been widely used for automatic left ventricle (LV) segmentation 
greatly speeding up the process of LV contour placement [9,10]. 

The aim of this study was to assess whether the subtended myocar-
dial mass as calculated by using the Voronoi-based segmentation 
method correlated to myocardial ischemia at CTP. As such, CCTA may 
not only be used to assess the degree of a coronary stenosis, but also for 
the quantification of the subtended myocardial mass which may predict 
the ischemic burden without the need for a stress test. 

2. Materials and methods 

2.1. Patients 

248 patients referred for a combined CCTA and CTP protocol due to 
chest pain complaints were identified. Patients with normal CTP images 
or fixed perfusion defects (N═178), absence of at least one ≥ 50% cor-
onary stenosis (N = 11), inferior CTP scan quality (N = 16) and prior 
coronary revascularization (N = 1) were excluded [11]. We selected a 
total of 42 patients for the current analysis. A detailed flowchart of the 
patient selection is depicted in Fig. 1. CTP scan quality classified as 
either “poor” or “ fair” was deemed inferior. All data were retrospec-
tively analyzed. The local ethics committee of the Leiden University 
Medical Center approved this retrospective analysis of clinical data and 
the need for informed consent was waived. 

2.2. Data acquisition 

Using a 320-row volumetric scanner (Aquilion ONE, Canon Medical 
Systems and Aquilion ONE Genesis Edition, Canon Medical Systems, 
Otawara, Japan) CCTA and static adenosine stress CTP were acquired on 
the same day. Patients were advised not to consume caffeine products 
24 h before examination. One hour prior to CCTA blood pressure and 
heart rate were monitored. Patients with a heart rate exceeding 60 beats 
per minutes (bpm) were given metoprolol, 25 mg up to 150 mg orally, 
unless contraindications were present. Additionally, metoprolol could 
be injected intravenously if the heart rate remained above 60 bpm. 

Sublingual administration of nitroglycerin (0.4 mg) was done prior 
to CCTA. Scanner settings for CCTA were as follows: A detector colli-
mation of 320 × 0.5 mm, a 275 ms gantry rotation time and temporal 
resolution of 137 ms for the Aquilion ONE Genesis Edition and a de-
tector collimation of 320 × 0.5 mm, 350 ms gantry rotation time and 
temporal resolution of 175 ms for the Aquilion ONE. Tube current was 
140–580 mA and a peak tube voltage 100–135 kV. The antecubital vein 
was used for administration of 50–90 mL of contrast agent (Iomeron 
400, Bracco, Milan, Italy) followed by a 1:1 mixture of 20 mL contrast 
and saline and finally 25 mL of saline. Tube current, peak tube voltage 
and the amount of administered contrast agent varied due to variations 
in patient size [12]. Using prospective electrocardiogram (ECG) trig-
gering 70–80% of the RR interval was scanned. In patients with a heart 
rate exceeding 65 bpm 30–80% of the RR-interval was scanned. When a 
threshold of 300 Hounsfield units (HU) was reached in the descending 

aorta CCTA was performed the next beat. 
CTP was only performed if there was suspicion of a significant ste-

nosis (≥ 50%) at CCTA. To achieve adequate myocardial contrast wash- 
out the minimum scan-interval was 20 min between CCTA and CTP. 
ECG and blood pressure were continuously monitored following 
continuous adenosine infusion (0.14 mg/kg/min) after which a contrast 
agent was administered. CTP images were acquired when a threshold of 
300 HU was reached in the descending aorta scanning 80–99% of the RR 
interval. Tube settings, injection protocol and contrast agent were all 
similar to the CCTA acquisition. 

2.3. Image analysis 

Images were transferred to a workstation and analyzed using dedi-
cated post-processing software (Vitrea FX 7.12; Vital Images, Minne-
tonka, Minnesota). All CCTA and CTP images were analysed by trained 
cardiologists with at least 10 years of experience. In accordance with 
SCCT guidelines, stenosis severity per segment was semi quantitatively 
assessed using visual analysis as: 50–69% (moderate), 70–99% (severe), 
and 100% (occluded) [13]. In case multiple stenoses were observed in 
the same segment and vessel, the most proximal stenosis was labelled as 
the culprit stenosis. 

CTP images were analysed by reconstructing cardiac phases for every 
2% of the scanned interval. Subsequently, analysis was performed on the 
phase with the best scan quality using short-axis reformatted images and 
a slice thickness of 4 mm using a narrow window width and level setting 
(W300/L150) and utilizing the standard 17 segment myocardial model 
for scoring [14]. If one or more segments demonstrated signs of relative 
hypoperfusion the CTP was considered abnormal [11]. The number of 
segments with relative hypoperfusion relative to the total of 17 segments 
was defined as the ischemic burden and calculated using the following 
formula: 

Ischemic burden=
number of segments with relative hypoperfusion

17
∗100  

2.4. Image processing 

Before executing the Voronoi-based segmentation algorithm the 
complete coronary artery tree was automatically extracted from the 
CCTA (Fig. 2A) and the relevant lesions were manually defined using 
dedicated software (Fig. 2B) (QAngio CT Research Edition v3.1.5.1 
Medis Medical Imaging, Leiden, The Netherlands). Hereafter, the CCTA 
images were automatically reformatted into a short-axis orientation 
covering the complete left ventricle with an inter-slice spacing of 4 mm. 
Subsequently, left ventricular epicardial and endocardial contours were 
automatically drawn in the CCTA (Fig. 3). Both tasks were done semi 
automatically using in house developed MASS software (Leiden Uni-
versity Medical Center) by using a machine learning model, manual 
corrections were made if needed. This model was trained using a 
different dataset of 50 randomly selected CCTA’s in which reformatting 
of the short axis and drawing of the LV epicardial and endocardial 
contours was done manually. Subsequently we used dedicated open- 
source software (TensorFlow v2.6 software available from www.ten-
sorflow.org) to train a neural network. Executing the machine learning 
model took approximately 1 min and 20 s per CCTA. 

To assess the feasibility of the machine learning model as compared 
to manual measurements one observer (F.Y. with 3 years of experience 
in cardiovascular imaging analysis) randomly selected a sample of 10 
cases in which manual reformatting of the short axis and manual 
drawing of the left ventricular epicardial and endocardial contours was 
performed. Correlations were subsequently tested between manual and 
automatic measurements concerning the left ventricular mass which is 
derived from the epicardial and endocardial contours. Statistical anal-
ysis of these correlations was done using Pearson’s correlation coeffi-
cient using SPSS software (version 25, SPSS IBM Corp, Armonk, New 
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Fig. 1. Flowchart depicting the selection process of patients. CTP scans with “poor” or “fair” scan quality were deemed inferior.  
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York). 

2.5. Voronoi-based segmentation 

In order to calculate the subtended mass a Voronoi-based segmen-
tation algorithm was used on the CCTA by using in-house developed 
MASS software (Leiden University Medical Center). By using this algo-
rithm it is possible to find the nearest location of the extracted coronary 
artery tree for every voxel within the left ventricular myocardium [5,6]. 
Subsequently, results of the image segmentation were exported as 3D 

objects in the visualization toolkit (VTK) format for further analysis and 
visualization (Fig. 4). Executing the Voronoi-based segmentation algo-
rithm took approximately 1 min per lesion. 

Finally, the subtended mass was calculated for both ≥ 50% and 
≥ 70% stenosis as a percentage of the total LV mass and defined as the 
myocardial area at risk using the following formula: 

myocardial area at risk =
Subtended mass

LV mass
∗ 100  

2.6. Statistical analysis 

Correlations between the ischemic burden and myocardial area at 
risk as well as correlations between manual and machine learning based 
LV contours were calculated using Pearson’s correlation coefficient. All 
analysis were performed using SPSS software (version 25, SPSS IBM 
Corp, Armonk, New York). 

3. Results 

CCTA and CTP images from forty-two patients (25 men, mean age, 
68.2 ± 7.7) were used for the current analysis. Patient characteristics 
are listed in Table 1. Voronoi-based segmentation and semi-automatic 
drawing of the LV epi- and endocardial contours using a machine 
learning algorithm was successful in all cases. A total of 77 coronary 
lesions with a luminal stenosis of ≥ 50% were assessed. Average 
myocardial area at risk for stenosis ≥ 50% and ≥ 70% were 59% and 
37%, respectively. Average ischemic burden for stenosis ≥ 50% and 
≥ 70% were 23% and 24%, respectively. There was a moderate corre-
lation of the ischemic burden versus myocardial area at risk for stenosis 
of ≥ 50% (r = 0.564; p < 0.01) (Fig. 5). A good correlation was found 
for the ischemic burden versus the area at risk for stenosis of ≥ 70% 
(r = 0.708; p < 0.01) (Fig. 6). A complete example is depicted in Fig. 7. 

Comparison of the LV mass as calculated from manually drawn 
contours versus contours drawn with the machine learning model 

Fig. 2. The complete coronary tree was automatically extracted from the CCTA (Panel A.). The proximal part of the lesion in the proximal LAD as marked by the red 
arrow (Panel B) is used as the starting point for calculating the subtended mass. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 3. Epicardial contours (green line) and endocardial contours (red line) 
were automatically drawn using a machine learning model. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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demonstrated a very good correlation (r = 0.870; p < 0.01). 

4. Discussion 

This study assessed the relationship between myocardial area at risk 
at CCTA and ischemic burden as assessed at CTP. Our results demon-
strate that calculating subtended mass using a Voronoi-based segmen-
tation algorithm in combination with a machine learning algorithm for 
semi-automatically drawing LV epi- and endocardial contours at CCTA is 
feasible and its correlation to the ischemic burden as measured using a 
standard 17-segment model at CTP increases with increasing stenosis 
severity. Consequently, coronary CTA can be used not only to assess the 
degree of a coronary stenosis, but also for quantification of the sub-
tended myocardial mass which may predict the ischemic burden without 
the need for a stress test. It should however be noted that the use of 
integrated diagnostics of CCTA and CTP is still better than CCTA alone as 
the first allows for both assessment of coronary stenosis as well as the 

presence of (reversible) ischemia. This is of great importance as not 
every coronary stenosis is hemodynamically significant [15]. 

Multiple studies have demonstrated that adding CTP to regular CCTA 
improves the detection of hemodynamically significant coronary lesions 
[16,17]. For instance, Pontone et al. demonstrated that addition of CTP 
to CCTA improved the detection of functional significant coronary le-
sions. In a vessel-based model addition of CTP to CCTA yielded an 
improvement of specificity (94%; p < 0.001), positive predictive value 
(86%; p < 0.001), and accuracy (93%; p = 0.002). Similarly, in a 
patient-based model, improvements in specificity (83%; p < 0.001), 
positive predictive value (86%; p = 0.02), and accuracy (91%; 
p = 0.004) were also observed when stress CTP was combined with 
CCTA [16]. 

Aside from the degree of coronary stenosis there have been several 
studies assessing the relationship between the anatomical location of a 
coronary stenosis and the presence of myocardial ischemia. For instance, 
in a study by Tanabe et al. the combined diagnostic performance of 
coronary artery stenosis-subtended myocardial volume and myocardial 
blood flow (MBF) on CTP for detecting obstructive coronary artery 
disease was assessed. It was found that the AUC of the combined use of 
the subtended CTP myocardial blood flow and subtended mass was 
significantly higher than that of myocardial blood flow alone in the 
detection of hemodynamically significant stenoses (0.89 vs. 0.75, 0.77; 
p < 0.05) [18]. 

Ide et al. demonstrated the feasibility and validity of Voronoi-based 
tissue segmentation. It was found that CCTA based subtended myocar-
dial mass calculated using a Voronoi-based segmentation algorithm 
closely corresponded to actual subtended mass measured on ex-vivo- 
sine hearts (r = 0.92, p = 0.02 for the left anterior descending artery 
(LAD); r = 0.96, p = 0.009 for the circumflex artery (CX); r = 0.96, 
p = 0.009 for the right coronary artery (RCA)) [19]. 

Semi-automatic segmentation of the LV using a machine learning 
model for defining epi- and endocardial contours has been validated 
extensively. Several studies have reported high comparability to a 
manual segmentation of the LV versus a machine learning approach 

Fig. 4. Using the previously defined lesion in the proximal LAD (Panel A) and executing the Voronoi-based algorithm the subtended mass can be computed and 
visualized in 3D (Panel B). 

Table 1 
CAD: Coronary artery disease. 1: Defined as luminal diameter stenosis 
of ≥ 50% on CCTA in one major epicardial coronary vessel. 2: Defined 
as luminal diameter stenosis of ≥ 50% on CCTA in two major epicar-
dial coronary vessels. 3: Defined as luminal diameter stenosis of 
≥ 50% on CCTA in three major epicardial coronary vessels.  

Patient characteristics N = 42 

Male/Female 25 (60%) / 17 (40%) 
Age (years) 68.2 ± 7.7 
Hypertension 23 (55%) 
Hyperlipidaemia 22 (52%) 
Diabetes mellitus 9 (21%) 
Family history of CAD 22 (52%) 
Smoking 3 (7%) 
Single-vessel disease1 24 (57%) 
Double-vessel disease2 10 (24%) 
Triple-vessel disease3 8 (19%)  
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[20–23]. It must also be noted that manually drawing epi- and endo-
cardial contours is a time-intensive process of usually around 20–30 min 
[20]. Semi-Automatic LV segmentation can speed up this process 
significantly as we have noted an execution time of approximately 1 min 

and 20 s 
Kurata et al. also assessed the relationship between calculated sub-

tended mass at CCTA using a Voronoi-based segmentation algorithm 
and ischemic burden as assessed by single photon emission computed 

Fig. 5. “Area at risk 50′′ represents the percentage of myocardial area at risk of the total LV as calculated by using the Voronoi-based segmentation algorithm for 
every ≥ 50% stenosis. “Ischemic burden” represents the percentage of segments with relative hypoperfusion of the total amount of segments (=17). 

Fig. 6. “Area at risk 70′′ represents the percentage of myocardial area at risk of the total LV as calculated by using the Voronoi-based segmentation algorithm for 
every ≥ 70% stenosis. “Ischemic burden” represents the percentage of segments with relative hypoperfusion of the total number of segments (=17). 
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tomography (SPECT). A moderate correlation was found between the 
calculated subtended mass and ischemic burden (r = 0.531; p = 0.001) 
which is only slightly lower compared to our results (r = 0.564; 
p < 0.01) [24]. Also, Fukuyama et al. performed a similar study by 
assessing the relationship between calculated subtended mass at CCTA 
using a Voronoi-based segmentation algorithm and ischemic burden as 
assessed by magnetic resonance imaging (MRI). A slightly better cor-
relation was found when correlating subtended mass to ischemic burden 
(r = 0.73; p < 0.001) [25]. This difference in correlation may be 
partially explained by the fact that cardiac MRI perfusion is still superior 
to cardiac CTP in the detection of (reversible) ischemia [26]. 

Interestingly, in our study lesions with a diameter stenosis of 70% or 
more demonstrated a better correlation between the myocardial area at 
risk and ischemic burden compared to lesions with a diameter stenosis of 
50% (r = 0.708 and r = 0.564 respectively). A similar observation was 
found by Fukuyama et al. [25]. This difference in correlation may be 
attributed to the fact that lesions with a greater diameter stenosis may 
cause more (reversible) ischemia and hereby enlarge the ischemic 
burden. Van Rosendael et al. clearly demonstrated the relationship be-
tween quantitative CCTA lesion measurements and myocardial ischemia 
at CTP. It was confirmed that increasing stenosis percentage by quan-
titative CCTA is positively correlated to myocardial ischemia [15]. 
Furthermore, a recent study by Bax et al. demonstrated that lesions in 
left sided coronary arteries with a larger diameter stenosis were often 
localized more distally in the subsequent vessel. Thus, explaining the 
better correlation for lesions with a diameter stenosis of 70% or more as 
these accompany for a lower subtended mass [27]. 

4.1. Limitations 

This study has several limitations which are inherent to its retro-
spective design. Firstly, the amount of analyzed patients is small which 
may have influenced the strength of the statistical analysis. Hence, 

future studies with a larger number of patients will be required to clarify 
the significance of these findings in clinical practice. Selection bias may 
have been introduced as we only selected patients with reversible 
ischemia as diagnosed on CTP. Secondly, the subtended mass was 
calculated using the anatomical location of the relevant coronary lesion. 
This was independent of whether the lesion was hemodynamically sig-
nificant or not. In case of multivessel disease the correlation between 
subtended mass and ischemic burden may have been biased as we solely 
selected the most proximal lesions for calculating the subtended mass. 
Of course, the most proximal lesions also encompass the largest sub-
tended mass. Also, there was no validation of the ischemic burden to the 
corresponding anatomical territory that corresponds to the relevant 
coronary artery lesion used for calculating the myocardial area at risk 
[28]. Thirdly, the Voronoi-based segmentation algorithm does not take 
into account the curved surface of the myocardium but derives the 
distance the between the coronary vessels and every myocardial voxel 
by using a straight line. As distances are relatively small we feel the 
impact of not using the myocardial curvature on the final output will be 
very minimal. Lastly, we must acknowledge that no inter- or 
intra-observer measurements were done on the CCTA or CTP analysis. 
However, prior studies have reported excellent and moderate inter- and 
intra-observer agreements for both imaging modalities. [6,29]. 

5. Conclusions 

Quantification of the myocardial area at risk calculated by using a 
Voronoi-based algorithm in combination with a machine learning based 
algorithm for LV segmentation at CCTA significantly correlates with the 
ischemic burden as assessed by the standard 17-segment model at CTP. 
This correlation improves with increasing stenosis degree. This rela-
tionship may be beneficial in risk assessment of patients with CAD and 
may aid in clinical-decision making. 

Fig. 7. Example of a 58-year-old male with single vessel disease. A significant stenosis is present in the proximal LAD with contrast opacification distally (Panel A). 
Perfusion defects assessed by CTP can be seen in panel B. The ischemic burden can consequently be calculated as 8/17 * 100 ≈ 47%. The complete coronary tree with 
the relevant stenosis is shown in panel C. Using the previously mentioned stenosis the subtended mass is calculated by using the Voronoi-based segmentation al-
gorithm. Subsequently, the myocardial area at risk is calculated as 53/100 * 100 = 53%. 
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