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Abstract: In the past decade, time series data have been generated from various fields at a rapid
speed, which offers a huge opportunity for mining valuable knowledge. As a typical task of time
series mining, Time Series Classification (TSC) has attracted lots of attention from both researchers
and domain experts due to its broad applications ranging from human activity recognition to smart
city governance. Specifically, there is an increasing requirement for performing classification tasks on
diverse types of time series data in a timely manner without costly hand-crafting feature engineering.
Therefore, in this paper, we propose a framework named Edge4TSC that allows time series to be
processed in the edge environment, so that the classification results can be instantly returned to
the end-users. Meanwhile, to get rid of the costly hand-crafting feature engineering process, deep
learning techniques are applied for automatic feature extraction, which shows competitive or even
superior performance compared to state-of-the-art TSC solutions. However, because time series
presents complex patterns, even deep learning models are not capable of achieving satisfactory
classification accuracy, which motivated us to explore new time series representation methods to
help classifiers further improve the classification accuracy. In the proposed framework Edge4TSC,
by building the binary distribution tree, a new time series representation method was designed
for addressing the classification accuracy concern in TSC tasks. By conducting comprehensive
experiments on six challenging time series datasets in the edge environment, the potential of the
proposed framework for its generalization ability and classification accuracy improvement is firmly
validated with a number of helpful insights.

Keywords: time series classification; edge environment; binary distribution tree; deep learning

1. Introduction

In the past decade, the time series data are generated from various domains at a rapid speed [1],
which offers a huge opportunity for mining valuable knowledge. As a typical task of time series
mining, Time Series Classification (TSC) has attracted lots of attention from both researchers and
domain experts due to its broad applications, such as human activity recognition [2], clinical data
analysis [3], wind power forecasting [4], psychological research [5], complex event detection [6,7] and
conjunctivities classification [8].

Recently, there has been an increasing requirement for performing classification tasks on diverse
types of time series data in a timely manner. As we all know, computation and storage resources of
most end devices are very limited, which makes locally processing collected data impractical. So, in
most cases, raw time series data will be sent to the remote server for further processing. However, the
unstable network status is a big challenge for such processing mode, especially for large volume of
sensor data. Fortunately, edge computing [9], as an emerging technique, has become the reasonable
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choice to cope with such challenge. It imposes the intensive computation on edge devices that are
located much closer to end devices than the remote server. Therefore, in this paper, we propose a
framework that allows time series to be processed on the edge device so that the classification results
can be instantly returned to end-users.

To solve TSC problems, the 1-Nearest-Neighbor classifier (denoted as 1NN) based on Euclidean
distance [10] is usually selected as a baseline. And 1NN Dynamic Time Warping (denoted as DTW) is
another TSC approach proposed by Reference [11], which aims to search for an optimal match between
two given time series. Besides, many feature-based [12–15] and bag-of-pattern based [16–19] TSC
solutions are proposed with various strategies for extracting discriminative features. However, domain
knowledge is usually required for extracting discriminative features, which can be time-consuming
and varies among different experts. Therefore, deep learning models have recently been applied to
TSC problems [20].

Although there are many TSC solutions to cope with datasets presenting complex patterns,
existing solutions are not able to achieve satisfactory accuracy. This indicates that the limited
classification accuracy is probably caused by the inappropriate time series representation rather
than the classifier design. Hence, we propose a new time series representation method based on the
binary distribution tree, with the hope that it can help existing TSC classifiers further improve their
classification accuracy.

The contributions of this paper mainly focus on the following three aspects:

• A new framework Edge4TSC that allows time series to be processed on the edge device.
• A new time series representation method based on binary distribution tree which transforms the

original time series into the hierarchical distribution space.
• Comprehensive experiments on 6 challenging time series datasets with insightful analysis about

the impact of key factors on the classification accuracy of 4 classifiers.

The rest of this paper is organized as follows. The TSC problem is formally defined in Section 2. In
Section 3, the methodology is illustrated in detail, including the overall architecture of Edge4TSC, the
binary distribution tree-based representation method, and deep learning-based classifiers. In Section 4,
comprehensive experiments are conducted on 6 challenging datasets with a thorough analysis of the
impact of key factors. Related works on existing TSC solutions are discussed in Section 5, followed by
the conclusion made in Section 6.

2. Problem Formulation

The TSC problem can be formulated as follows.
Given:

• a set of class labels C = {ck}(1 ≤ k ≤ K);
• a train set of time series TStrain = {tsp

train}(1 ≤ p ≤ P) in which each time series tsp
train is attached

with one class label ck ∈ C; and
• a test set of time series TStest = {tsq

test}(1 ≤ q ≤ Q) in which each time series tsq
test is attached

with one class label that is unknown during classification but available for evaluation;

assume:

• TStrain ∩ TStest = ∅;
• each time series ts = {tpvi}(1 ≤ i ≤ N, ts ∈ TStrain ∪ TStest) consists of a set of consecutive

numerical values (i.e., the time point value tpvi must be a real number); and
• the class label of each time series tsq

test ∈ TStest must be included in the class label set C.

Objective:

• Maximize the classification accuracy AccR
F defined as follows:
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AccR
F =

Q
∑

q=1
hitq

Q
,

where hitq is 1 if the class label of the time series tsq
test ∈ TStest is correctly predicted by the classifier F

using representation R; otherwise, hitq is 0.

3. Methodology

3.1. Overall Architecture

To meet the increasing requirement of performing classification tasks on diverse types of time series
data in a timely manner without costly hand-crafting feature engineering, we propose a framework
named Edge4TSC that allows the time series data to be classified on the edge device rather than the
remote server. The framework consists of modules deployed on the end device and edge device,
respectively. On the end device, the Data Source Layer implemented on data sources, such as sensors,
smartphones, or web crawlers, is mainly responsible for collecting series-like raw data. Then, the raw
time series will be sent to processing modules deployed on the edge device via the networking facility
by using various communication techniques (e.g., WiFi, Bluetooth, Zigbee, 5G, etc.). Afterwards, the
raw time series will first undergo the extract-transform-load (ETL) process, which is supported by
modules of the Preprocessing Layer. Finally, the cleaned time series are fed into the Classification Layer.
In the Classification Layer, the Representation Generator aims to produce the new representation as the
input to the Classifier. And the Classifier is responsible for generating the final classification results.
The overall architecture of the proposed framework is shown in Figure 1. In this paper, since we utilize
the standard time series datasets for validation and thus do not need to consider data collection, the
focus will be on the Classification Layer. Hence, in the following sub-sections, Sections 3.2 and 3.3, a
new time series representation method and the classifier design are illustrated in detail.

Sensors Smartphones Web Crawlers

Extractor

Representation
Generator

Preprocessing Layer

End Device

LoaderTransformer

Classification Layer Classifier

Edge Device

Data Source Layer

Networking Facility

Figure 1. Overall architecture of Edge4TSC. TSC = Time Series Classification.

3.2. Time Series Representation Based on Binary Distribution Tree

In this paper, by utilizing Binary Distribution Tree (BDT), an approach to generating new time
series representation is proposed. The entire procedure for obtaining the BDT-based representation
consists of three main stages: Binary Subsequence Tree (BST) construction, Binary Distribution
Tree (BDT) transformation, and representation generation. At the first stage, the goal is to build
the Binary Subsequence Tree (BST) of which nodes at the same level contain subsequences of the
original time series with no intersection. Given the time series ts and the split ratio sr, which is a
decimal between 0 and 1 that helps decide where to cut the time series of the current node into two
non-intersected subsequences, the way for constructing BST could be generally depicted as following



Sensors 2020, 20, 1908 4 of 18

steps: 1) set the original time series ts as the root node of the BST, and return BST if ts has only one
element; 2) calculate the split position sp = integer(len(ts) ∗ sr) (len(ts) is the length of ts) for the
current node, and return BST if sp is 1; 3) add the subsequences ts1,sp and tssp+1,len(ts) as the left and
right child nodes of the current node; 4) step 2 and 3 would be conducted in a recursive manner until
the entire BST is constructed. A more formal description of BST construction on time series ts with the
split ratio sr is provided, as shown in Algorithm 1.

Algorithm 1 Build_BST

Input: ts, sr in
Output: BST(ts) out

Initialisation:
1: BST(ts)root

root = ts
2: if (len(ts) == 1) then

3: return BST(ts)
4: end if

Iterative Process:
5: sp = integer(len(ts) ∗ sr)
6: if (sp == 1) then

7: return BST(ts)
8: end if
9: le f t_series = ts[1, sp]

10: right_series = ts[sp + 1, len(ts)]
11: BST(ts)le f t

root = Build_BST(le f t_series, sr)
12: BST(ts)right

root = Build_BST(right_series, sr)

Output Binary Subsequence Tree for ts:
13: return BST(ts)

To illustrate the procedure for constructing the binary subsequence tree (i.e., BST) in detail, we
would like to utilize a concrete example, as shown in Figure 2. Suppose it is given a time series
ts = {1, 2, 3, 4, 4, 3, 2, 1} and the split ratio sr = 0.5, which means that each time we would like to split
the current time series into two subsequences at the middle position. In this example, we would like
to use the depth-first method for iteratively creating nodes of BST. Firstly, ts is set as the root of BST,
which is the only node at level 0 of BST. And then the split position sp is calculated, which is the integer
part of the result by multiplying the length of ts 8 and the split ratio sr 0.5. And now, in this operation,
the split position sp is 4. The parent time series ts is divided into a subsequence containing the first
four elements {1, 2, 3, 4} of ts and a subsequence containing the other four elements {4, 3, 2, 1} of ts.
Afterwards, the former subsequence is set as the left child node of the root, while the latter becomes
the right child node of the root. And due to the adoption of the depth-first strategy, we set the left
node of the root as the current node and find it contains more than one element, which means that
the split procedure will continue. Thus, we calculate the split position sp for the current node, which
is 2 according to the length of {1, 2, 3, 4} and the split ratio sr = 0.5. Similarly, the first two elements
{1, 2} and the rest two elements {3, 4} become the left and right child nodes of the current node (i.e.,
the node {1, 2, 3, 4}). After that, the node {1, 2} is set as the current node with the split position sp
computed as 1. Finally, nodes {1} and {2} are recorded as the left and right child nodes of the current
node {1, 2}, which indicates the termination for splitting on both newly created nodes due to the fact
that both nodes have only one element. And then we go back to other leaf nodes which have more



Sensors 2020, 20, 1908 5 of 18

than one element and apply the aforementioned procedure to them for constructing the complete BST,
as shown in Figure 2.

ts = {1, 2, 3, 4, 4, 3, 2, 1}

{1, 2, 3, 4, 4, 3, 2, 1}

{1, 2, 3, 4} {4, 3, 2, 1}

{1, 2} {3, 4} {4, 3} {2, 1}

{1} {2} {3} {4} {4} {3} {2} {1}

Build_BST(sr=0.5)

sp=4

sp=2 sp=2

sp=1 sp=1 sp=1 sp=1

level = 0

level = 1

level = 2

level = 3

Figure 2. An example for Binary Subsequence Tree (BST) construction procedure.

Once the BST construction process is done, the second stage could be launched for generating the
Binary Distribution Tree for ts based on BST. As we know, to avoid the so-called data leakage problem, it
is forbidden to use any information or data sample from the test set during the training process. This is
also applicable to the process for generating new representations for time series. Thus, no information
nor data sample from the test set will be used for generating new representations. Rather than using
the original data points of the time series and its subsequences, transforming them into the hierarchical
distribution space could be helpful for not only reserving the global distribution but also presenting the
local distribution for the original time series. Given BST(ts), TStrain, and bins (an integer greater than 1 to
help determine the bin edges which are critical for gaining the distribution of the given subsequence), the
way for constructing the binary distribution tree BDT(ts) for ts could be generally depicted as follows:
1) compute the bin_width according to the maximum, minimum of TStrain and bins; 2) determine the
bin_edges according to the minimum of TStrain and the bin_width (each bin has a range of the same width);
and 3) traverse BST(ts) and transform the subsequence in each node of BST(ts) into the distribution
format by computing its histograms over bin_edges. A more formal description of the binary distribution
tree construction on the time series ts is provided, as shown in Algorithm 2.

Algorithm 2 Build_BDT

Input: BST(ts), TStrain, bins in
Output: BDT(ts) out

Initialisation:
1: minimum = argmin(TStrain)

2: maximum = argmax(TStrain)

3: bin_width = (maximum−minimum)/bins

Determining Bin Edges:
4: bin_edges[1] = minimum
5: for i = 1 to bins do

6: bin_edges[i + 1] = bin_edges[i] + bin_width
7: end for

Transforming BST(ts) into Distribution Space:
8: for eachnode in BST(ts) do

9: BDT(ts)node = histogram(BST(ts)node, bin_edges)
10: end for

Output Binary Distribution Tree for ts:
11: return BDT(ts)
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To illustrate the procedure for transforming the binary subsequence tree (i.e., BST) to binary
distribution tree (i.e., BDT) in detail, we would like to utilize a concrete example, as shown in Figure 3.
Suppose it is given the train set TStrain = {ts1, ts2} containing two time series ts1 = {1, 2, 3, 4, 4, 3, 2, 1}
and ts2 = {7, 6, 5, 4, 4, 5, 6, 7}, and the value of bins which is set to 3. The whole procedure of
transforming BST to BDT consists of two phases. As shown in Figure 3, above the red arrow, the first
step of the first phase is to determine the minimum and maximum of the train set TStrain. Obviously,
by executing the functions argmin(TStrain) and argmax(TStrain), 1 and 7 are obtained as the minimum
and maximum of TStrain, respectively. At the second step of the first phase, the gap between the
minimum 1 and maximum 7 is computed as 6. To divide by bins (set to 3 in this example), the
bin_width is computed as 2, which means that each bin is of the width 2. By the end of the first phase,
bin_edges = {1, 3, 5} records the edge for each bin with the width 2. At the second phase, each BST
node is transformed to a histogram based format according to the number of elements falling into the
specific bin defined by bin_edges. For instance, the BST root is {1, 2, 3, 4, 4, 3, 2, 1}, having 2 elements
({1, 1}) in range (−∞, 1], 4 elements ({2, 3, 2, 3}) in range (1, 3], 2 elements ({4, 4}) in range (3, 5], and
0 element in range (5,+∞). Hence, the histogram based representation for the BST root is (2, 4, 2, 0).
The histogram based representations for the rest nodes of BST are shown in Figure 3.

When BST construction and BDT transformation are finished, the final stage to obtain the
BDT-based representation of ts is to concatenate each node from level 0 to the target level of BDT(ts)
as a vector in a width-first order. For BDT shown in Figure 3, the BDT-based representations of all
levels are shown in Figure 4. rp(level = x) represents the representation by concatenating the nodes
from level 0 to level x of the binary distribution tree (i.e., BDT) in a width-first order. Therefore,
for the BDT-based representation method, three parameters (i.e., sr, bins, and level) described in
Table 1 work jointly to uniquely identify a specific representation. By executing BST construction, BDT
transformation, and BDT-based representation generation on all original time series from both train
and test sets, the original time series are mapped from the raw representation space to the BDT-based
representation space and are now ready to be fed into the classifier for training and classification.

TStrain = {ts1, ts2}
ts1 = {1, 2, 3, 4, 4, 3, 2, 1}
ts2 = {7, 6, 5, 4, 4, 5, 6, 7}
argmin(TStrain) = 1
argmax(TStrain) = 7
bin_width = (7-1)/3 =2
bin_edges = {1, 3, 5}

{1, 2, 3, 4, 4, 3, 2, 1}

{1, 2, 3, 4} {4, 3, 2, 1}

{1, 2} {3, 4} {4, 3} {2, 1}

{1} {2} {3} {4} {4} {3} {2} {1}

Build_BDT(bins=3)

(2, 4, 2, 0)

(1, 2, 1, 0) (1, 2, 1, 0)

(1,1,0,0) (0,1,1,0) (0,1,1,0) (1,1,0,0)

(1,0,0,0) (0,1,0,0) (0,1,0,0) (0,0,1,0) (0,0,1,0) (0,1,0,0) (0,1,0,0) (1,0,0,0)

Figure 3. An example for Binary Distribution Tree (BDT) transformation procedure.

(2, 4, 2, 0)

(1, 2, 1, 0) (1, 2, 1, 0)

(1,1,0,0) (0,1,1,0) (0,1,1,0) (1,1,0,0)

(1,0,0,0) (0,1,0,0) (0,1,0,0) (0,0,1,0) (0,0,1,0) (0,1,0,0) (0,1,0,0) (1,0,0,0)

rp(level=0)=(2,4,2,0)

rp(level=1)=(2,4,2,0,1,2,1,0,1,2,1,0)

rp(level=2)=(2,4,2,0,1,2,1,0,1,2,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,0,0)

rp(level=3)=(2,4,2,0,1,2,1,0,1,2,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,0,0,\
1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,,0,1,0,0,0,1,0,0,1,0,0,0)

Figure 4. An example for BDT-based representation generation.
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Table 1. Parameters of Binary Distribution Tree (BDT)-based representation.

Symbol Description Range

sr Split ratio for determining the split position for the current node. (0.00, 1.00)
bins Number of bins for calculating the width of each bin. (1, ∞)
level Level of BDT that all nodes from level 0 to this level are concatenated to

generate the representation, and L is the total number of BDT levels.
[0, L)

3.3. Classifier Selection and Design

When the representation of time series is ready, the next step is to select a proper classifier. In this
paper, the 1NN classifier based on Euclidean distance is selected because it is of simple implementation
and needs no parameter tuning. Therefore, the effect, if any, on the classification performance of 1NN
classifier using the proposed BDT-based representation can be easily identified. For the 1NN classifier,
it calculates the Euclidean distance between the test time series and all the train time series. Then, it
predicts the label of the test time series as the label of the train time series that has shorter distance to
that test time series than all the other train time series.

Meanwhile, as deep learning models show promising potential for solving TSC problems [20],
we are very interested in recruiting three deep learning models, Multi-Layer Perceptron (MLP),
Fully Convolutional Network (FCN), and Residual Network (ResNet), as the candidate classifiers for
validating the effectiveness of the BDT-based representation method. For all the three deep learning
classifiers, the Input layer is to receive the time series representation as the input. And the Softmax
layer is responsible for mapping the classification results to different class labels. Furthermore, the
Rectified Linear Unit (ReLU layer) is adopted as the activation function for all deep learning classifiers.
To avoid overfitting in MLP, the Dropout technique (Dropout layer) is employed where the decimal
indicates the probability of randomly dropping the weights. For FCN and ResNet, the Conv1D layer is
utilized for conducting one dimensional convolution operations. In addition, the Batch Normalization
technique (BatchNorm layer) is applied to FCN and ResNet, which leads to faster learning rates. The
purpose of employing the Global Average Pooling (GAP layer) in FCN and ResNet is to dramatically
reduce the amount of parameters, thus speeding up the training process. The network structure and
the hyper-parameter setting of MLP, FCN, and ResNet are shown in Figure 5.

Figure 5. Network structure and hyper-parameter setting of deep learning classifiers. MLP =
Multi-Layer Perceptron; FCN = Fully Convolutional Network; ResNet = Residual Network; ReLU =
Rectified Linear Unit; GAP = Global Average Pooling.
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4. Evaluation

4.1. Experimental Settings

To emulate the edge environment, a laptop is employed as the data source where consecutive data
points of each time series are sent to a mobile work station, which plays the role of the edge device.
The time interval for sending consecutive data points is set to 1ms, so that the time series with a length
shorter than 1000 could be sent to the edge device within one second. For deep learning classifiers, all
time series in the train set will be transmitted to the edge device via WiFi network for classifier training,
and then time series in the test set will be fed into the well-trained classifiers for label prediction. For
the 1NN classifier, there will be no model training process. The class label of time series in the test set
would be predicted by calculating the Euclidean distance between the test time series and all train set
time series.

For validating TSC solutions, the most widely used time series datasets collected from different
application fields are archived by Reference [21] and are called UCR Archive. Although there are
more than 80 datasets in the UCR Archive, we selected 6 challenging datasets on which neither 1NN
Euclidean classifier nor deep learning models are able to achieve satisfactory classification accuracy.
More details about these 6 datasets are provided in Table 2.

Table 2. Datasets description.

Dataset No. of Classes Train/Test Size Series Length Domain

Haptics 5 155/308 1092 Passgraph Identification
Herring 2 64/64 512 Otolith Analysis
InlineSkate 7 100/550 1882 In-Line Speed Skating
InsectWingbeatSound 11 220/1980 256 Flying Insect Classification
Phoneme 39 214/1896 1024 Phoneme Classification
ScreenType 3 375/375 720 Screen Type Identification

As explained in Table 1, there are three parameters (i.e., sr, bins, and level) to determine a
BDT-based time series representation. In our experiments, sr is initialized as 0.1 and increased by
0.1 until it reaches 0.9 (for deep learning classifiers due to their time-consuming training process), or
initialized as 0.05 and increased by 0.05 until it reaches 0.95 (for 1NN Euclidean classifier due to its
low computation cost). bins is initialized as 3 and increased by 1 until it reaches 20 (for deep learning
classifiers due to the same reason as sr), or until it reaches 30 (for 1NN Euclidean classifier due to
the same reason as sr). level is set to 0 initially and increased by 1 until it reaches 9. Since the 1NN
classifier is a deterministic model, we train the 1NN classifier for only one time on each representation
and record the classification accuracy. Different from the 1NN classifier, the outputs of deep learning
classifiers are not deterministic. Thus, we run 10 iterations for each deep learning classifier on each
representation and take the average accuracy of 10 runs as the final performance. The training process
of deep learning classifiers will last for 100 epochs with the batch size set to 16. One more thing to note
is that the accuracy of the deep learning classifiers on the test set is taken at the epoch when the loss on
the train set reaches the lowest.

4.2. Overall Results and Analysis

The experimental results of 4 selected classifiers over 6 challenging datasets with and without the
BDT-based representation are shown in Table 3. "RAW" or "BDT" means that the original representation
or the BDT-based representation of the time series is fed to the specific classifier. The accuracy is in bold
if it outperforms the couterpart. Obviously, among all the six datasets, the 1NN Euclidean classifier
using BDT-based representation outperforms its counterparts with the raw representation, and the
classification accuracy is significantly enhanced from 0.377 to 0.466 on average.
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For MLP, BDT-based representation helps improve the performance on all the 6 datasets (5 wins
and 1 tie), and the average accuracy is improved from 0.409 to 0.483 on average. When we check the
results of ResNet and FCN, it is observed that, for 4 out of 6 datasets, the TSC accuracy is significantly
improved, while the average accuracy is boosted to 0.481 and 0.46, respectively. According to the
overall experimental results, it could be concluded that the accuracy enhancement is achieved by the
adoption of BDT-based representation, since all classifiers have exactly the same configuration and
training strategy.

Table 3. Overall TSC results.

Dataset 1NN MLP ResNet FCN
RAW BDT RAW BDT RAW BDT RAW BDT

Haptics 0.370 0.435 0.419 0.468 0.377 0.445 0.334 0.432
Herring 0.516 0.750 0.594 0.734 0.625 0.734 0.422 0.719
InlineSkate 0.342 0.413 0.336 0.404 0.187 0.413 0.187 0.405
InsectWingbeatSound 0.562 0.573 0.618 0.623 0.505 0.568 0.244 0.516
Phoneme 0.109 0.161 0.087 0.190 0.319 0.249 0.249 0.226
ScreenType 0.360 0.461 0.397 0.477 0.605 0.475 0.619 0.464
Average Accuracy 0.377 0.466 0.409 0.483 0.436 0.481 0.342 0.46
Standard Deviation 0.159 0.194 0.193 0.187 0.172 0.162 0.158 0.160
Win 0 6 0 5 2 4 2 4
Tie 0 0 1 1 0 0 0 0
Lose 6 0 5 0 4 2 4 2
Win: if the accuracy is at least 0.01 higher; Loss: if the accuracy is at least 0.01 lower; Tie: otherwise.

To demonstrate the benefits of utilizing the edge device to train the classifiers, we show the
time consumption of the edge device and the end device for training different classifiers over all
the six datasets in Figure 6. For the 1NN classifier, it can only utilize the CPU of either the end
device or the edge device. For the other three deep learning classifiers, MLP, FCN, and ResNet,
they can be trained efficiently on the edge device equipped with a GPU. The three parts of the
legend in Figure 6 indicate the representation method (RAW/BDT), the device (END/EDGE), and the
classifier (1NN/MLP/FCN/ResNet). For instance, the legend RAW_END_1NN represents the time
consumption of running the 1NN classifier using the raw representation of the specific dataset on the
end device. As can be observed in Figure 6, for both representation methods RAW and BDT, it saves a
lot of time by offloading the classifier training process from the end device to the edge device. And
such benefit is more dramatic for FCN and ResNet than 1NN and MLP. The possible reason might
be that 1NN cannot utilize the GPU of the edge device for further efficiency enhancement. Thus, the
efficiency improvement of 1NN classifier is mainly due to the more powerful CPU of the edge device
than the end device. And for MLP, it has much fewer tunable parameters than FCN and ResNet, thus
benefiting less from the great parallelism of the edge device GPU. Obviously, from FCN and ResNet
charts in Figure 6 where the time consumption of the edge device can hardly be observed, FCN and
ResNet obtain the tremendous speed-up by fully utilizing the GPU of the edge device for updating
massive parameters in high parallelism. According to the above-mentioned reasons, it is valuable to
employ Edge4TSC framework for building time series classification systems, especially when heavy
classifiers, such as FCN or ResNet, get involved. Although the average time consumption of the edge
device on a single representation is reasonably affordable, the entire process for searching the optimal
representation in the given space could be as long as several days or even several weeks.
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Figure 6. Time consumption of end device and edge device. 1NN = 1-Nearest-Neighbor.

Since each unique BDT-based representation is generated by using three parameters, sr, bins, and
level, it will be helpful for exploring their impact on TSC accuracy of each selected classifier, which is
investigated separately in Sections 4.3, 4.4 and 4.5.

4.3. Impact of Split Ratio on TSC Accuracy

To make understanding the experimental results easier and more accurate, we would like to take
an example to illustrate the detailed process of generating results, as shown in Figures 7–9, in advance.
As mentioned in Section 4.1, for deep learning models, the split ratio sr ranges from 0.1 to 0.9 with a
stride 0.1 and the bin number bins ranges from 3 to 20 with a stride 1, which means that there will be
9× 18 binary distribution trees in total (9 different split ratios and 18 different bin number values). And
for each binary distribution tree, we would generate 10 representations from level 0 representation
to level 9 representation. Therefore, for each dataset, the amount of different representations will
be 9× 18× 10. Furthermore, since deep learning classifiers may generate varied results due to their
random parameter initialization strategy, we conduct 10 runs for the same representation and take the
average accuracy as the final performance for that representation. Let us take the chart at row 2 and
column 1 in Figure 7 as an instance, which shows the impact of split ratio on dataset Haptics adopting
classifier MLP. In that chart, MLP is trained and tested on 9× 18× 10 BDT-based representations.
All the 9× 18× 10 accuracy results are grouped into 9 sets by the split ratio, while each set contains
18× 10 accuracy results with the same split ratio. Then, 9 boxes are plotted for 9 sets with different
split ratios. Each box extends from the lower to upper quartile values of the classification accuracy on
18*10 BDT-based representations with the split ratio corresponding to the x-axis tick, with a colored
line at the median. The whiskers extend from the box to show the range of the classification accuracy.
The top short horizontal line represents the highest classification accuracy among representations in
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the same group, while the bottom short horizontal line represents the lowest. Therefore, by analyzing
the boxes among different x-axis values (in this case, that is the split ratio ranging from 0.1 to 0.9 with
a stride 0.1), it is easier to figure out the quantitative impact of the specific factor (i.e., the split ratio in
Figure 7) on the y-axis variable (i.e., the classification accuracy).

The experimental results about the impact of split ratio sr on TSC accuracy are shown in Figure 7
as box plots, with minimum, maximum, and average classification accuracy from comprehensive
experiments. The six columns represent 6 datasets and the four rows represent 4 classifiers. For 1NN
Euclidean classifier, the best accuracy is usually observed when sr is 0.4, 0.5 or 0.6. In particular, on the
dataset "InsectWingbeatSound", both best accuracy and average accuracy increases until sr reaches
0.6 and then decreases afterwards. A similar phenomenon is also observed in MLP cases. However,
in ResNet and FCN cases, it becomes quite different, as both best accuracy and average accuracy are
significantly lower than most cases when sr is 0.5. The impact of sr on ResNet and FCN looks similar
to each other, while 1NN Euclidean classifier and MLP share some common trends.

4.4. Impact of Bin Number on TSC Accuracy

For the parameter bins, intuitively, a rather small bins tends to make the BDT-based representation
undiscriminating among times series, especially those with many categories. When a rather large
bins is set, it would make the BDT-based representation too sensitive to filter out the negative effect
of noisy data points in the original time series. To study the impact of bins on classification accuracy,
experiments were conducted, and detailed results are shown in Figure 8. And it is clearly seen that
almost all classifiers on all tested datasets benefit from a larger value of bins to different extents. And
when bins becomes larger than a certain threshold, either the best accuracy or the average accuracy
tend to fluctuate (e.g., 1NN Euclidean on ScreenType when sr is greater than 12) or even decrease (e.g.,
1NN Euclidean on InlineSkate when sr is greater than 10).
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Figure 7. Impact of split ratio on TSC accuracy.
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Figure 8. Impact of bin number on TSC accuracy.
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Figure 9. Impact of BDT level on TSC accuracy.
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4.5. Impact of BDT Level on TSC Accuracy

To obtain the BDT-based representation of time series, the nodes from the BDT root to level of
BDT are concatenated. Therefore, the deeper level is, the more detailed information of the original
time series would be contained by the BDT-based representation. The experimental results that helped
us quantify the impact of level over classification accuracy are shown in Figure 9. It is found that
1NN Euclidean and MLP classifiers could benefit from the adoption of BDT-based representations
when level increases except on dataset "Herring". And it seems that ResNet and FCN models prefer a
relatively small level, such as 2, 3, or 4.

5. Related Work

For solving TSC problems, the most frequently adopted baseline is probably the 1NN classifier
based on Euclidean distance (denoted as 1NN-EUC) due to its parametric-free and time-efficient
features [10]. Then, inspired by the success of the Dynamic Time Warping technique in speech
recognition, 1NN Dynamic Time Warping (denoted as 1NN-DTW) is introduced into time series
analysis [11].

Different from 1NN-EUC and 1NN-DTW, which take the whole series similarity into account,
feature-based TS classifiers are constructed on the basis of either local shapelets or bag-of-patterns
(BOP) of time series. Shapelets are usually defined as a set of subsequences of the original time series,
which is regarded as the most discriminative features for classifying time series. According to the
recent evaluation of existing TSC solutions [10], Shapelet Transform (ST) [12,13] is regarded as the most
accurate shapelet-based method. In Reference [14], a decision tree is built based on the distance to a set
of shapelets. And the Learning Shapelets (LS) approach is proposed in Reference [15], which generates
optimal shapelets synthetically. However, the computation cost of the shapelet-based methods has
always been the main concern that limits their application in TSC.

For the BOP branch of feature-based TSC solutions, Symbolic Aggregate approXimation (SAX)
is regarded as the first published BOP approach. It transforms the raw time series into a sequence
of characters by using a fixed-length sliding window and then employs the 1NN classifier based on
a self-defined distance between two character sequences for classification [16]. SAX is extended to
SAX-VSM [17] by combining tf-idf weighted features with Cosine distance to obtain a single feature
vector for each class, which not only saves memory space but also speeds up the execution time. The
TS Bag-of-features Framework (TSBF) [18] is another member of the BOP family. The idea of TSBF is to
build a supervised codebook generated by a random forest classifier with random-length windows
at random positions. The BOP-based model BOSS (Bag-of-SFA-Symbols) [19] is currently the most
accurate BOP-based approach by replacing SAX with Symbolic Fourier Approximation (SFA) [22].
And WEASEL [23] is proposed to achive fast and accurate classification on time series by extracting
smaller but yet discriminative features from the original time series.

To further enhance accuracy, ensemble solutions are designed by incorporating different types of
core classifiers and making the final decisions based on techniques, such as majority voting, bagging,
or weighted aggregation. Elastic Ensemble (EE) [24] employs 11 core classifiers, while COTE [25]
combines 35 core classifiers, including EE. The performance of the ensemble TSC solutions depends
much on the variety of core classifiers and the decision-making strategy.

Recently, there have been attempts to apply deep learning models for solving TSC problems. In
Reference [20], for instance, several types of deep learning models are directly applied to time series
classification without any preprocessing. According to the experimental evaluation in Reference [20],
FCN performs the best among all tested deep learning models, which shows competitive performance
to COTE and BOSS.
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6. Conclusions

To perform classification on diverse types of time series data in a timely manner without costly
hand-crafting feature engineering, in this paper, we propose a new framework, Edge4TSC, that
allows time series to be processed by deep learning classifiers on the edge device. A new time
series representation is designed by utilizing the binary distribution tree and integrated with the
proposed framework. By conducting experiments for 4 classifiers using the raw or proposed BDT-based
representation over 6 challenging datasets, we validated the potential of the proposed representation
for further enhancing classification accuracy. And by comparing the time consumption of classifier
training on the end device and the edge device, the offloading mode is verified to be effective for
dramatically speeding up the classifier training process. Furthermore, a comprehensive analysis of the
impact of key factors (i.e., sr, bins, and level) was performed to offer deep insights into key parameter
tuning strategies. In addition, as mentioned in Section 3, the BDT-based representation could be
seamlessly integrated with any classifier that is able to handle vectorized representations.
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