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Abstract 

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by 
peripheral distribution of bilateral pulmonary fibrosis that is more pronounced at the base. IPF has a short 
median survival time and a poor prognosis. Therefore, it is necessary to identify effective prognostic 
indicators to guide the treatment of patients with IPF. 
Methods: We downloaded microarray data of bronchoalveolar lavage cells from the Gene Expression 
Omnibus (GEO), containing 176 IPF patients and 20 controls. The top 5,000 genes in the median absolute 
deviation were classified into different color modules using weighted gene co-expression network 
analysis (WGCNA), and the modules significantly associated with both survival time and survival status 
were identified as prognostic modules. We used Lasso Cox regression and multivariate Cox regression 
to search for hub genes related to prognosis from the differentially expressed genes (DEGs) in the 
prognostic modules and constructed a risk model and nomogram accordingly. Moreover, based on the 
risk model, we divided IPF patients into high-risk and low-risk groups to determine the biological 
functions and immune cell subtypes associated with the prognosis of IPF using gene set enrichment 
analysis and immune cell infiltration analysis. 
Results: A total of 153 DEGs located in the prognostic modules, three (TPST1, MRVI1, and TM4SF1) of 
which were eventually defined as prognostic hub genes. A risk model was constructed based on the 
expression levels of the three hub genes, and the accuracy of the model was evaluated using 
time-dependent receiver operating characteristic (ROC) curves. The areas under the curve for 1-, 2-, and 
3-year survival rates were 0.862, 0.885, and 0.833, respectively. The results of enrichment analysis 
showed that inflammation and immune processes significantly affected the prognosis of patients with IPF. 
The degree of mast and natural killer (NK) cell infiltration also increases the prognostic risk of IPF. 
Conclusions: We identified three hub genes as independent molecular markers to predict the prognosis 
of patients with IPF and constructed a prognostic model that may be helpful in promoting therapeutic 
gains for IPF patients. 
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Introduction 
Idiopathic pulmonary fibrosis (IPF) is a chronic 

and progressive interstitial lung disease (ILD) 
characterized by unexplained lung’s scarring and 
extensive remodeling[1, 2]. Although IPF is a rare 
disease, its incidence is increasing annually, and it 
primarily affects men aged > 50 years[3], which may be 
related to an aging population and increased 
awareness. Studies have shown that the incidence of 
IPF is approximately 2–30 cases per 100,000 
person-years, with a prevalence of approximately 10–
60 cases per 100,000 people[4]. Because of its rapid 
clinical progression, IPF usually has a poor long-term 
prognosis, with a median survival of only 2–3 years 
after diagnosis[5, 6]. Given the lack of effective 
molecular markers, the prognostic risk of IPF is often 
difficult to assess accurately. Therefore, it is necessary 
to develop predictive models for clinical treatment of 
IPF. 

IPF is typically radiographically characterized by 
a peripheral distribution of bilateral fibrosis, more 
pronounced at the base, and it can be confirmed by 
lung biopsy when the diagnosis is uncertain[7, 8]. In 
recent years, some studies have used molecular 
biomarkers to assess the clinical course of IPF and 
achieved certain results[9]. However, most studies 

have used lung biopsies, which are invasive and not 
readily available for diagnosis. Bronchoalveolar 
lavage (BAL) is a technique in which sterile saline is 
pumped into the lungs, and the infusion is aspirated 
for analysis. It is a useful adjunct in the diagnostic 
evaluation for patients with ILD and can be used to 
identify infection and other inflammatory diseases[10, 

11]. As a noninvasive and convenient detection 
method, BAL is more feasible for identifying 
molecular biomarkers from the gene expression 
profile of bronchoalveolar lavage cells (BLCs) to 
predict the prognosis of IPF. 

In this study, we aimed to apply weighted gene 
co-expression network analysis (WGCNA)[12] to 
identify biomarkers associated with IPF prognosis in 
BLCs. First, we downloaded mRNA expression 
profiles and corresponding clinical information from 
the Gene Expression Omnibus (GEO). Then, WGCNA 
and differential expression analysis were used to 
identify prognostic gene set. Next, enrichment 
analysis was conducted to identify the important 
biological pathways affected. Finally, we constructed 
and verified prognostic models and compared the 
different pathways between different risk groups. We 
believe that our results may help with the diagnosis 
and treatment of IPF. 

 

 
Figure 1. The flow chart of our study. 



Int. J. Med. Sci. 2022, Vol. 19 
 

 
https://www.medsci.org 

1419 

Methods 
Dataset collection and processing 

All data are available on the GEO dataset 
GSE70866, which contains 196 bronchoalveolar lavage 
fluid (BALF) samples consisting of 20 control 
individuals and 176 IPF patients[13]. Twenty control 
individuals and 112 IPF patients, analyzed using 
GPL14550, were divided into the training cohort, and 
the other 64 patients, analyzed using GPL17077, were 
divided into the testing cohort. Our study was not 
subject to review by the relevant ethics committee, 
because the information was obtained directly from a 
public database. Figure 1 shows the research process 
used in this study. 

Screening of DEGs and construction of 
co-expression network 

Firstly, we used R package “limma” for data 
normalization and identification of DEGs between IPF 
and healthy individuals in the training cohort[14]. The 
absolute value of log2 fold change (FC) was greater 
than 1, and the adjusted p-value (adj.P) was less than 
0.05, as thresholds were used to define DEGs, which 
contained a total of 382 genes. 

Co-expression modules were constructed using 
via WGCNA, an analysis method to analyze gene 
expression patterns of multiple samples. WGCNA can 
cluster genes with similar expression patterns and 
analyze the association between modules and specific 
traits and phenotype. The gene expression levels of 
112 IPF patients were sequenced according to the 
order of median absolute deviation, and the top 5000 
genes were selected to construct the expression 
matrix. After seven outlier samples were deleted, 
standard scale-free network analysis was performed 
on the remaining 105 samples. When we defined 0.85 
as the scale-free fitting index, the soft thresholding 
power was 5 (Figure 2D). The topological overlap 
matrix (TOM) was transformed by an adjacency 
matrix and corresponding dissimilarity (1-TOM) 
values were computed. We used dynamic tree cut 
method to identify the module. The lower limit of 
gene number of modules 30 and the height cut-off 
value 0.25 were selected as the criteria to distinguish 
modules. Pearson correlation analysis was used to 
assess the correlation between clinical characteristics 
(including age, sex, survival time and survival status) 
and gene modules. Prognostic modules were defined 
as modules that were significantly associated with 
both survival time and survival status. 

Screening of prognostic hub genes 
We selected target genes from gene sets included 

in both prognostic modules and DEGs. Genes 
significantly associated with prognosis were defined 
as DEGs with gene significance (GS) > 0.4 and 
weighted correlation index of module members (MM) 
> 0.7. Next, we performed further analyses of these 
genes in 112 IPF samples from the training cohort. 
Lasso Cox regression was conducted to search for key 
genes using the R package “glmnet”[15]. Hub genes 
were identified using multivariate Cox regression 
analysis to further confirm the best prognostic DEG 
signature. 

Construction of prognostic model and 
nomogram 

The risk score formula for IPF patients is as 
follows: 𝑅𝑖𝑠𝑘 𝑆𝑜𝑟𝑐𝑒 = ∑(𝐸𝑎𝑐ℎ 𝑔𝑒𝑛𝑒’𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ×
 𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) . Based on the median 
risk score, we divided all patients into low- and 
high-risk groups, and time-dependent receiver 
operator characteristic (ROC) curves were used to test 
the risk score. A nomogram was constructed to 
predict the survival probability of IPF patients with 
age, sex, and hub genes using R package “rms”. The 
performances of the risk score and nomogram were 
verified in the testing cohort. 

Enrichment analysis 
The Metascape database and online tools were 

used to identify the functional annotation of all DEGs 
in the OS-related module[16]. Analysis thresholds were 
set as minimum counts > 3, enrichment factors > 1.5, 
and p-value < 0.01. Then, in order to search for the 
potential differential expression pathways in different 
risk groups, the gene set enrichment analysis (GSEA) 
was performed from R package “clusterProfiler”[17]. 
We chose the c5.go.v7.4.entrez.gmt and 
c2.cp.kegg.v7.4.entrez.gmt (from Molecular 
Signatures Database) as the reference gene sets and 
adj.P < 0.05 as the cut-off criteria.  

Comparison of immune cell infiltration 
To compare the heterogeneity of immune cell 

infiltration in patients with different risk groups, 
CIBERSORT algorithms were used to calculate the 
proportions of immune cell subtypes in the R 
platform[18]. Finally, Spearman analysis was used to 
evaluate the correlation between the degree of 
infiltration of immune cell subtypes and the 
expression levels of the prognostic hub genes.  

Statistical analysis 
Most analyses were performed using the 

software R4.1.1. If not otherwise specified, a p-value < 
0.05 was considered statistically significant. 
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Figure 2. Identification of the prognostic module using WGCNA. (A) Differences in gene expression levels between IPF group and control group. (B) The expression 
of the top 30 upregulated DEGs and the top 20 downregulated DEGs in the training cohort. (C) 105 IPF samples were included in WGCNA analysis. (D) The soft thresholding 
power was five when 0.85 was defined as the related coefficient standard. (E) Cluster dendrogram and network heatmap for modules from WGCNA. Twelve modules were 
identified, with each color representing one module. (F) Black and blue modules were significantly correlated with both survival time and status. The red color represents positive 
correlation, and the blue color represents negative correlation. IPF, idiopathic pulmonary fibrosis; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression 
network analysis. 

 

Results 
Demographic data 

In the training cohort, the mean age of the 112 
IPF patients was 68 years, and that of the 20 healthy 
subjects was 61.9 years. The mean age of the 64 
patients with IPF in the testing cohort was 68.3 years. 
IPF was most common in men in both the training and 
testing cohorts (83% men patients vs 17% women in 
the training cohort and 80% men patients vs 20% 
women in the testing cohort). Table 1 presents the 
demographic data used in this study. 

Identification of DEGs and modules related to 
the prognosis 

A total of 382 DEGs were identified in this 
dataset, which contained 208 upregulated and 174 

downregulated genes. Figure 2(A) is a volcano map of 
all gene expressions, and Figure 2(B) shows a 
heatmap of the top 30 upregulated genes and the top 
20 downregulated genes. 

 

Table 1. The demographic data of training and testing cohorts 

 Training cohort Testing cohort 
 Normal IPF IPF 
N 20 112 64 
Age(years) 61.9±7.6 68.0±10.0 68.3±8.5 
FVC predicted value (%) 96±19 66.4±21.3 78±18 
Sex (%)    
Male 16(80) 93(83) 51(80) 
Female 4(20) 19(17) 13(20) 
Time to death (days) NA 698.1±553.4 701.4±451.3 
Survival status (%)    
alive NA 36(32) 40(63) 
death NA 76(68) 24(37) 
Data are presented as mean ± SD; FVC stands for forced lung capacity. 
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Figure 3. Identification of three prognostic hub genes using Lasso Cox regression analysis and multivariate Cox regression analysis. (A) A total of 153 DEGs 
located in the prognostic modules. (B) Partial likelihood deviance of the tuning parameter (λ). We chose the largest λ at which the mean square error was within one standard 
error of the minimal criteria, and it was represented by a dotted line on the right. (C) Lasso coefficient profiles of the 38 important genes. Different colored curves represent 
different genes. The upper x-axis represents the number of non-zero coefficients in the model. (D) The result of multivariate Cox regression analysis and the forest plot of four 
key genes related to prognosis. The expression levels of TPST1 (E), MRVI1 (F), and TM4SF1 (G) between the IPF group (n = 112) and the control group (n = 20). Kaplan-Meier 
survival curve of TPST1 (H), MRVI1 (I), and TM4SF1 (J) in training cohort. ***P < 0.001. 

 
WGCNA analysis was performed on the 

differential gene expression profiles of 105 IPF 
patients with age, sex, survival time and survival 
status (Figure 2C). Twelve modules were identified by 
consensus (Figure 2E). The DEGs between the black 
and blue modules were most significantly associated 
with both survival time and survival status (Figure 
2F). Therefore, we identified black and blue modules 
as key modules associated with prognosis, which 
consist of a total of 764 genes. 

Identification of prognostic hub genes 
Figure 3A showed a total of 153 DEGs contained 

in the prognostic modules. 38 genes with GS > 0.4 and 
MM > 0.7 were defined as important prognostic genes 
in the turquoise and brown modules (Table 2). TPST1, 
HS3ST1, TM4SF1, SOD3, MRVI1, and STAB1 were 
identified as key genes by Lasso Cox regression 
analysis (Figure 3B–C). Finally, according to the 
multivariate Cox regression analysis of six key genes, 
TPST1, MRVI1, and TM4SF1 were identified as hub 
genes (Figure 3D). The violin plot showed that the 
expression of TPST1, MRVI1, and TM4SF1 in the IPF 
group was visibly higher than that in the control 
group (Figure 3E–G). Kaplan-Meier (KM) survival 

curves showed that these three genes were closely 
related to the prognosis of IPF. Patients with high 
expression of three hub genes had shorter survival 
times and worse prognoses than those with low 
expression (Figure 3H–J). 

Construction of prognostic model 
Multivariate Cox regression was used to 

calculate the corresponding regression coefficients for 
TPST1, MRVI1, and TM4SF1, and the risk model was 
established accordingly. Figure 4(A) shows the 
formula for calculating the risk score. The 112 patients 
in the training cohort and 64 patients in the testing 
cohort were divided into high- and low-risk groups, 
based on the median risk score. KM survival curves in 
both cohorts showed that patients in the high-risk 
group had a more ominous prognosis than those in 
the low-risk group (Figure 4B–C). Time-dependent 
ROC curves were generated to detect the accuracy of 
prediction of the one-, two-, and three-year survival 
rates in both cohorts. The areas under the curve 
(AUC) were 0.862, 0.885, and 0.833, respectively, in 
the training cohort and, AUC in the testing cohort 
were 0.795, 0.782, and 0.794, respectively (Figure 4D–
E). 
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Table 2. 38 genes associated with prognosis in the turquoise and brown modules 

Gene Symbol Module Color GS.OS p.GS.OS MM p.MM 
ADM blue -0.47864 2.41E-07 0.923084 1.53E-44 
CCL2 blue -0.5694 2.32E-10 0.860735 5.69E-32 
HTRA1 blue -0.50464 4.04E-08 0.849588 2.23E-30 
S100A12 blue -0.44701 1.75E-06 0.846673 5.54E-30 
HAMP blue -0.41311 1.19E-05 0.844997 9.28E-30 
PLA2G7 blue -0.50116 5.17E-08 0.844173 1.19E-29 
IER3 blue -0.44526 1.94E-06 0.840448 3.64E-29 
FAM20A blue -0.52378 9.83E-09 0.835115 1.72E-28 
RGL1 blue -0.46221 6.92E-07 0.834371 2.12E-28 
CCL7 blue -0.51522 1.87E-08 0.82302 4.74E-27 
DYSF blue -0.41709 9.59E-06 0.819783 1.1E-26 
FAM198B blue -0.44442 2.04E-06 0.815487 3.31E-26 
MERTK blue -0.54821 1.42E-09 0.813605 5.3E-26 
CXCL1 blue -0.43614 3.31E-06 0.81167 8.56E-26 
IL1R2 blue -0.46862 4.62E-07 0.811009 1.01E-25 
TPST1 blue -0.53923 2.94E-09 0.801859 8.95E-25 
STEAP4 blue -0.40392 1.93E-05 0.788823 1.67E-23 
MRVI1 blue -0.46954 4.35E-07 0.771104 6.46E-22 
STAB1 blue -0.56304 4.05E-10 0.761484 4.12E-21 
SPP1 blue -0.46175 7.12E-07 0.751431 2.6E-20 
ARAP3 blue -0.40622 1.71E-05 0.744483 8.86E-20 
HS3ST1 blue -0.5059 3.69E-08 0.737415 2.96E-19 
MATK blue -0.45653 9.84E-07 0.732764 6.4E-19 
MMP7 blue -0.40206 2.12E-05 0.723649 2.78E-18 
TM4SF19 blue -0.51477 1.93E-08 0.713353 1.36E-17 
SH3RF1 blue -0.45904 8.43E-07 0.701761 7.51E-17 
CYR61 black -0.48367 1.72E-07 0.93291 1.73E-47 
MUC21 black -0.42503 6.2E-06 0.896113 4.02E-38 
SFTPB black -0.50103 5.22E-08 0.888367 1.33E-36 
TM4SF1 black -0.50926 2.9E-08 0.882091 1.89E-35 
CEACAM7 black -0.52107 1.21E-08 0.85679 2.16E-31 
SOD3 black -0.46694 5.14E-07 0.836578 1.13E-28 
MUC1 black -0.41214 1.25E-05 0.817737 1.87E-26 
SFN black -0.44782 1.67E-06 0.811948 7.99E-26 
TUBB3 black -0.43214 4.16E-06 0.800136 1.33E-24 
EMP1 black -0.50598 3.67E-08 0.770788 6.88E-22 
PRSS8 black -0.48262 1.85E-07 0.745873 6.96E-20 
S1PR3 black -0.44095 2.5E-06 0.730392 9.43E-19 

 

Functional annotation of prognosis-associated 
DEGs 

To identify the potential biological pathways of 
genes in the prognostic modules, the software 
Metascape was used for enrichment analysis of all 153 
prognosis-associated DEGs. Figure 5(A–C) shows the 
enriched top 20 prognosis-related pathways, and 
Table 3 shows the specific information of the top five 
pathways. We found that biological processes, such as 
the cell chemotaxis (GO:0060326, P < 0.001), secretory 
granule lumen (GO:0034774, P < 0.001), humoral 
immune response (GO:0006959, P < 0.001), 
extracellular matrix ( GO:0031012, P < 0.001), and 
negative regulation of hydrolase activity 
(GO:0051346, P < 0.001), were likely to influence 
disease progression in patients with IPF. GSEA was 
conducted in the different risk groups (Figure 5D–E). 
In contrast to the low-risk group, biological processes 
including cell chemotaxis, leukocyte chemotaxis, and 

migration were more active in the high-risk group. In 
addition, the pathways involved in high-risk groups 
included the cytokine-cytokine receptor interaction, 
focal adhesion, and ribosome.  

Immune cell infiltration 
In the enrichment analysis, we noticed that 

several pathways, such as humoral immune response, 
cytokine-cytokine receptor interaction, leukocyte 
chemotaxis, and migration, were closely related to 
immune processes. Therefore, we compared the 
proportions of different types of immune cells in 
different risk groups (Figure 6A). In contrast to the 
low-risk group, mast cells and natural killer (NK) cells 
had higher infiltration degrees in the high-risk group, 
whereas the infiltration degree of dendritic cells and 
activated CD4+ memory T cells were lower. Spearman 
correlation analysis was applied to study the 
association between immune cell subtypes and the 
expression of the hub genes (Figure 6B–M). The 
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expression of TPST1 was positively associated with 
activated mast cells (r = 0.454, P < 0.001) but inversely 
related to resting dendritic cells (r = −0.468, P < 0.001). 
The expression of MRVI1 was strongly correlated 
with activated mast cells (r = 0.311, P < 0.001) and 
activated NK cells (r = 0.302, P < 0.001), and with an 

increase in MRVI1, the degree of two kinds of cells 
infiltration was higher. Meanwhile, the expression of 
TM4SF1 was strongly related to activated mast cells (r 
= 0.450, P < 0.001) and with an increase in TM4SF1, 
the degree of infiltration of activated mast cells was 
higher. 

 

 
Figure 4. Assessment of prognostic model performance. (A) The calculation formula of risk score. (B) Kaplan-Meier survival curve based on the median risk score in the 
training cohort. (C) Kaplan-Meier survival curve based on the median risk score in the testing cohort. (D) Time-dependent ROC curve for training cohort according to the 
prognostic model. (E) Time-dependent ROC curve for testing cohort according to the prognostic model. ROC, receiver operator characteristic; AUC, area under the curve. 

 

Table 3. The top five biological pathways enriched by Metascape database 

Category Term Description Log P Log(q-value) Symbols 
GO Biological Processes GO:0060326 cell chemotaxis -10.35512264 -6.002149463 CCR3,GAS6,CXCL1,CXCL8,CCN3,S100A12, 

CCL2,CCL7,CCL13,SFTPD 
GO Cellular Components GO:0034774 secretory granule lumen -9.006327538 -5.412083655 CAMP,CDA,DEFA3,ECM1,F13A1,FCN1, 

FOLR3,GAS6,CXCL1,IGF1 
GO Biological Processes GO:0006959 humoral immune response -8.538668442 -5.08878525 C8A,C8B,CAMP,DEFA3,FCN1,CXCL1,CXCL8, 

PI3,S100A12,CCL2,CCL13,SFTPD,CXCL1 
GO Cellular Components GO:0031012 extracellular matrix -8.3298266 -5.04477331 CLC,ECM1,F13A1,FCN1,CCN1,LAMB1,MMP7, 

MMP9,MMP10,CCN3,PI3 
GO Biological Processes GO:0051346 negative regulation of 

hydrolase activity 
-8.219075562 -5.012230419 CST6,ECM1,GAS6,SFN,MMP9,PI3, 

SERPINI2,RGS2,SPINK1,TIMP3 
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Figure 5. Enrichment analysis of prognosis-associated DEGs. (A) The top 20 prognosis-related pathways were enriched based on the Metascape database. (B) The 
network layout of representative pathways from the cluster. Different clusters were represented by different colors, and the size of nodes was consistent with the proportion 
of genes in each term. (C) The color of the node is represented by p-value in the same network layout. (D) The top five GO pathways were enriched in high-risk groups via GSEA. 
(E) The top five KEGG pathways were enriched in high-risk groups via GSEA. GSEA, gene set enrichment analysis. 

 

Construction of the prognostic nomogram 
Considering that the age and sex of patients with 

IPF can also affect their prognosis, we constructed a 
nomogram with these significant clinical variables 
and three hub genes to quantify the 1-, 2-, and 3-year 
survival probabilities of patients with IPF (Figure 7A). 
Figure 7(B–D) shows the optimal prediction of the 1-, 
2-, and 3-year survival rate based on the calibration 
curve. Finally, the time-dependent ROC curves of the 
risk module and nomogram were compared with the 
prediction efficiency in the training cohort (Figure 7E) 
and the results were validated in the testing cohort 
(Figure 7F). In general, there is little difference 
between the accuracy of two methods in predicting 
the both short-term and long-term survival rates.  

Discussion 
IPF is a chronic respiratory disease with an 

estimated incidence and prevalence of 0.09–1.30 and 
0.33–4.51 cases per 10,000 persons[19]. Because of the 
short median survival time, many IPF patients 
experience varying degrees of delay in diagnosis and 
treatment, leading to poor prognosis[20]. Lamas et al. 
found that the median delay from the onset of clinical 
symptoms to the first in-hospital diagnosis was 
approximately 2.2 years, which was associated with a 
higher rate of death from IPF (P = 0.03)[21]. In the past 
few years, an increasing number of studies have 
focused on the cellular and molecular mechanisms of 
IPF, and progress has been made[22]. Several blood 
proteins, such as metalloproteases-7 (MMP7), SP-A, 
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and SP-D, can help distinguish IPF from other ILDs, 
even if they are not included in the guidelines[23-25]. In 
addition, some molecular markers, such as MMPs, 
tissue inhibitors of MMPs (TIMPs), and alpha- 
defensins, contribute to the assessment of mechani-
sms or biological pathways relevant to prognosis[26, 27]. 

The GSE70866 dataset is derived from the study 
of BLCs of patients in three independent IPF cohorts 
by Prasse et al. in 2019[13]. In this study, they used nine 
gene signatures to construct prognostic models and 
compared the predictive performance of the models 
in different cohorts. The best prediction of survival 
time was in the Freiburg cohort (C-index, 0.73; 95% 
CI, 0.69–0.77), which was still slightly worse than our 
prediction model (C-index, 0.76; 95% CI, 0.73–0.79). 
On the one hand, in contrast to using one cohort (62 

IPF patients and 20 control individuals) to construct 
the model by Prasse et al., we combined IPF patients 
from two cohorts on the basis of eliminating batch 
differences and standardized data and expanded the 
sample size in the training set. On the other hand, we 
used WGCNA to screen hub genes on the basis of 
differential expression analysis, which narrowed the 
selection of candidate genes and enhanced their 
association with survival time. In addition, some 
studies have used the same dataset to search for 
molecular markers correlated with the prognosis of 
IPF. Li et al. built a risk model using five 
ferroptosis-related genes for prognostic prediction in 
IPF[28]. Xia et al. used a method similar to ours to 
construct a four-gene signature risk model (C-index, 
0.72; 95% CI, 0.66–0.77)[29]. However, they used 

 

 
Figure 6. Profile of immune cell infiltration and its connection to three hub genes. (A) Difference of immune cell subtypes in different risk groups in the training 
cohort. The expression levels of TPST1 were correlated with activated mast cell (B), activated NK cell (C), resting dendritic cell (D), and activated CD4+ memory T cells (E). The 
expression levels of MRVI1 were correlated with activated mast cell (F), activated NK cell (G), resting dendritic cell (H), and activated CD4+ memory T cells (I). The expression 
levels of TM4SF1 were correlated with activated mast cell (J), activated NK cell (K), resting dendritic cell (L), and activated CD4+ memory T cells (M). *P < 0.05; ***P < 0.001; 
ns, non-significant. 
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follow-up time as a screening criterion for genes 
related to prognosis, which reduced the accuracy of 
their conclusions. In our study, the 1-, 2-, and 3-year 
AUC values of the time-dependent ROC curve based 
on the prognostic model were superior to those of 
previous models (0.862, 0.885, and 0.833 vs 0.737, 
0.772, and 0.731 by Xia; 0.773, 0.774, and 0.752 by Li), 
thus demonstrating the potential applicability of our 
results. 

The results of enrichment analysis indicated that 
the inflammatory response (such as cell chemotaxis 
and migration) and immune cell infiltration were key 
pathways affecting the disease progression of IPF 
patients and that biological processes mainly occurred 
in the extracellular matrix. Most pulmonary lung 
diseases are accompanied by persistent inflammation 
of the respiratory tract[30]. Alveolar and bronchial 
epithelial cells damaged by fibrosis release 
inflammatory mediators and chemokines, which 
trigger the formation of a provisional ECM and attract 
inflammatory cells to infiltrate lung tissues. 
Meanwhile, metalloproteinases and proinflammatory 
cytokines secreted by inflammatory cells also 
aggravate apoptosis and lung inflammation[31]. 
During this process, profibrotic cytokines and growth 

factors are secreted by activated lymphocytes and 
other cells; subsequently, fibroblasts are activated. 
Prolonged inflammatory stimulation leads to 
excessive accumulation of EMC components, 
exacerbating the progression of pulmonary fibrosis[32]. 

In recent years, a growing body of research has 
confirmed that innate and adaptive immune 
mechanisms play a necessary role in the progression 
of IPF, as confirmed in our study[32]. Neutrophils and 
macrophages are the primary immune cells in the 
pathogenesis of IPF, as reported in the literature[33-35]. 
Surprisingly, the results suggest that mast cells may 
also play an important role in the prognosis of IPF. 
Research by Veerappan et al. has suggested that the 
deficiency of mast cells in bleomycin-induced mouse 
models alleviates the decline in lung compliance, and 
significant fibrosis appears after transplantation of 
mast cells[36]. In general, the concentrations of 
histamine and trypsin secreted by mast cells are 
significantly increased in the BALF of IPF patients, 
which promotes fibroblast proliferation and synthesis 
of collagen fibers[33, 37]. However, the exact mechanism 
of mast cell and IPF progression remains to be 
explored. 

 
 
 

 
Figure 7. Construction of the prognostic nomogram. (A) Nomogram constructed by age, sex, and three hub genes. The calibration curves for prediction of 1- (B), 2- (C), 
and 3- (D) year survival rate. (E) Comparison of the time-dependent ROC curves for the nomogram and prognostic model in the training cohort. (F) Comparison of the 
time-dependent ROC curves for the nomogram and prognostic model in the testing cohort. 
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In our study, three hub genes (TPST1, MRVI1, 
and TM4SF1) were identified and found to be related 
to the prognosis of IPF. MRVI1, also known as IRAG, 
is the substrate of Inositol 1,4,5-triphosphate 
receptor-associated cGMP kinase, regulating 
intracellular IP3- induced calcium release through a 
NO/PRKG1-dependent mechanism[38, 39]. As reported, 
MRVI1 plays a key role in the progression of some 
types of cancer, such as endometrial carcinoma, 
ovarian carcinoma, neurofibromatosis, and involved 
in platelet activation and aggregation[40-42]. Further-
more, activation of calcium channels in mast cells and 
fibroblasts are closely implicated to the progression of 
IPF[43] and MRVI1 is likely to be a key factor affecting 
this process. 

TM4SF1, a tumor-associated protein, is widely 
expressed in multiple human carcinomas, is localized 
at the surface of the cell membrane and late endocytic 
organelles, and plays a vital role in cell motility[44, 45]. 
CD63 is an important activation marker for mast cells 
and is highly expressed on the surface of activated 
mast cells[46]. Several experiments have demonstrated 
that the expression of CD63 is inversely correlated 
with the motility of various cell types, while the 
overexpression of TM4SF1 can decrease the 
expression levels of CD63 on the cell surface, 
suggesting a potential mechanism for the activation 
and migration of mast cells[45, 47]. In addition, the 
expression of TM4SF1 in different tumors has 
different prognostic significances. For example, high 
expression of TM4SF1 in pancreatic ductal 
adenocarcinoma indicates a good prognosis, whereas 
it indicates a poor prognosis in lung cancer[48, 49]. The 
results of our study showed that in the lung tissues of 
IPF patients, high expression of TM4SF1 may lead to a 
poor prognosis by guiding mast cell migration and 
exacerbating the inflammatory process. 

Protein-tyrosine sulfotransferase 1(TPST1), a 
member of the protein sulfotransferase family, 
catalyzes the sulfuration of tyrosine residues within 
the acidic motif of polypeptides[50]. Although the 
specific catalytic mechanism of the TPST1-induced 
tyrosine sulfation reaction is still unclear, it has been 
shown that TPST1 regulates immune and 
inflammatory responses by catalyzing the sulfation of 
tyrosine residues in some inflammatory mediators, 
such as chemokine receptors (i.e., CXCR4) and 
complement (i.e., C5a)[50, 51]. TPST1 has been reported 
to be overexpressed in bladder cancer and 
nasopharyngeal carcinoma[52, 53]. Our study showed 
that TPST1 was highly expressed in the BLAF of 
patients with IPF and was closely related to 
inflammatory cell infiltration (mast cells), suggesting 
that it could affect the prognosis of IPF. 

Our study has some limitations. First, the sample 

size of the GSE70866 dataset was less than 200, while 
it had a larger sample size and more comprehensive 
clinical characteristics than most IPF datasets. Second, 
our study was limited to the inside of the dataset and 
lacked an effective external verification. Finally, the 
results of our study were obtained by the analysis of 
bioinformatics technology, and the specific 
mechanism by which hub genes affect the prognosis 
of IPF still needs to be confirmed by further 
experiments. 

Conclusion 
In summary, our study identified three hub 

genes (TPST1, MRVI1 and TM4SF1) in BLCs that are 
closely associated with the prognosis of IPF and 
created a new prognostic model. The results of our 
study revealed that inflammation and immune 
processes were the main pathways affecting the 
prognosis of IPF, and that there was a close 
relationship between the three hub genes and 
infiltration of mast cells. Our findings can provide 
guidance for the prognosis and treatment of patients 
with IPF. 
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