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Abstract: A kriging modeling method is proposed to conduct the temperature uncertainty analysis
of an injection mechanism in squeeze casting. A mathematical model of temperature prediction with
multi input and single output is employed to estimate the temperature spatiotemporal distributions
of the injection mechanism. The kriging model applies different weights to the independent variables
according to spatial location of sample points and their correlation, thus reducing the estimation
variance. The predicted value of the kriging model is compared with the sample data at the
corresponding position to investigate the influence of the temperature uncertainty of the injection
mechanism on the injection process including friction. The results indicate that the significant error
is observed at a few sample points in the early injection due to the impact of the uncertainty facts.
The variance mean and standard deviation obtained by the model calibrated by experimental samples
reduce largely in comparison to those obtained from the initial kriging model. This study indicates
that model calibration produces more accurate prediction.

Keywords: uncertainty; injection mechanism; squeeze casting; kriging modeling; numerical
simulation; friction

1. Introduction

In squeeze casting, the temperature and deformation of injection mechanism are two significant
parameters of the injection process. Numerical simulation methods have been widely applied
in the research and a state-of-the-art literature review of relative research has been conducted in
our previous work [1]. In these studies, however, it is observed that the model and boundary
conditions are simplified based on the assumption of deterministic parameters under ideal conditions.
Many uncertainty factors impact the injection process, such as temperature non-uniformity of shot
sleeve, punch and metal melt; structural asymmetry of shot sleeve; manufacturing and assembling
error of shot sleeve and punch; non-uniformity of friction coefficient and heat transfer coefficient, and
testing data error. The error between numerical and actual results may largely impact the prediction
accuracy of numerical models. Quantitative assessment of uncertainty factors and model modification
under uncertainties have become two significant issues in the optimal design and reliability analysis
of squeeze casting using numerical simulation or experimental methods.

Uncertainty analysis methods have been broadly employed in different applications such as
numerical data optimization, product lifetime prediction, and mechanical optimization design [2–6].
The uncertainty is usually classified into aleatoric and epistemic ones. The former is irreducible, as in
inherent variability, such as statistically distributed properties and manufacturing variability, while
the latter is potentially reducible uncertainty due to lack of knowledge, such as model form and initial
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and boundary condition approximations. Recently, uncertainty modeling and optimization of the
casting process has also attracted a considerable number of researchers (e.g., [7–14]). Tao et al. [7]
proposed a reliability-based multidisciplinary optimization model through finite element analysis of
the die-casting process, in which the evidence theory is used to represent the epistemic uncertainty.
Hardin et al. [8] conducted casting simulation with a reliability based design optimization (RBDO)
software that considers uncertainties in both the input variables as well as in modeling of itself. The
riser design in the casting process example was optimized. Fezi et al. [9] performed uncertainty
quantification and sensitivity analysis on a transient model of transport phenomena during the
solidification of grain refined Al-Cu alloy, and investigated the effect of various uncertainties in
microstructural model parameters, thermal boundary conditions and material property inputs on
macrosegregation levels and solidification time. Plotkowski et al. [10] employed the PRISM uncertainty
quantification framework to investigate the effect of input uncertainty on the output of grain attachment
models for the equiaxed solidification of multicomponent alloys. Wang et al. [11] improved the
measurement accuracy of heat transfer coefficients under uncertainty and large disturbance by using
an integrated approach to predict the solidified shell thickness of billets. Wu et al. [12] addressed
uncertainties due to model parameters and assumptions in multiphase solidification simulations
including a unidirectional solidification and a cylindrical ingot casting. Carlson et al. [13] addressed
uncertainties in the casting simulation through developing an iterative method to promote the material
parameter accuracy. Sakalli et al. [14] handled the aleatory and epistemic uncertainties simultaneously
in a blending optimization problem for brass casting and transformed the possibilistic uncertainties
into probabilistic ones. Clearly, to reduce errors while improving model reliability and accuracy of
the injection mechanism, the uncertainty of various parameters and data should be modeled and
quantitatively analyzed by introducing the uncertainty analysis method. In addition, it is necessary to
quantitatively evaluate the model and calibrate the model parameters with experimental results so as
to control the uncertainty and improve the injection mechanism design.

Recently, as the commonly-used metamodeling technique, the kriging model has been widely
applied in the fields of simulation validation, reliability evaluation, and optimal design [15–23].
The kriging model is an optimal Gauss interpolation process based on regression analysis of
simulation or experimental data and weighted according to spatial covariance values. It outperforms
other surrogate modeling techniques due to its unique characteristics of spatiotemporal modeling.
In particular, regarding materials forming, a lot of research based on kriging model technique has
been conducted (e.g., [24–39]). Tuo et al. [24] proposed a kriging model based on a nonstationary
Gaussian process that integrates the outputs of different mesh densities in finite element analysis
and provides approximation to the exact solution, and then applied the model in casting simulation.
Hofwing et al. [25] performed the robustness analysis of residual stresses in the brake discs casting
by Monte Carlo simulations of metamodels, considering quadratic response surfaces and kriging
approximations. Li et al. [26] presented a hybrid inverse identification approach by combining the finite
element method, kriging model, Latin hypercube sampling and multi-island genetic algorithm to deal
with material parameters of aluminum alloy. Deng et al. [27] presented a kriging surrogate modeling
strategy to substitute the computationally intensive numerical simulation of injection molding process,
with the purpose of obtaining the optimal process parameters. Li et al. [28] proposed a hybrid method
to optimize the stent microinjection molding process by combining the finite element analysis with the
kriging modeling technique. Wang et al. [29] presented a kriging model-based sequential optimization
method to reduce the warpage of three kinds of products in plastic injection molding. Kang et al. [30]
adopted a metamodel-based design optimization approach to optimally determine the design variables
of injection molding process, using kriging models to replace time-consuming numerical simulations.
Dang et al. [31] compared several commonly-used optimization approaches, such as kriging model,
response surface model, artificial neural network, etc. and proposed a meta-modeling optimization
framework for simulation-based optimization of injection molding process parameters. Gao et al. [32]
developed the stepwise searching method based on kriging metamodels of defect indexes to determine
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the forming limit, considering defects in the transitional region during local loading forming of
Ti-alloy large-scale rib-web components. Ambrogio et al. [33] designed a metamodelling technique
by integrating the design of the experimental statistical method and the kriging one and validated
the feasibility of the proposed method for the crucial problem of localized thinning in the sheet metal
forming process. Abebe et al. [34] applied an ordinary kriging model-based prediction technique
to find the wrinkling and dimple occurrence limit on metallic alloys multi-point dieless forming.
Tutum et al. [35] employed the kriging surrogate method for thermochemical simulation of the
pultrusion process. Kusiak et al. [36] compared the effectiveness of three metamodelling techniques:
kriging method, response surface methodology and artificial neural network, in the optimization of
laminar cooling of rolled Dual Phase (DP) steel strips. Meng et al. [37] presented a kriging based
multi-objective optimization methodology for the theoretic pareto optimal front in the forging process
problem. A two-step forging problem of an aeronautic component is employed to show the efficiency
of the proposed methodology. Roux et al. [38] dealt with the optimization of the clinching process
using a global optimization technique based on the kriging meta-model. Its purpose is to optimize the
mechanical strength for tensile loading and shear loading of the clinched component. An et al. [39]
used the kriging model to optimize the loading parameters in constraint handling of a pre-bending
process prior to hydroforming.

In this paper, on the basis of the numerical and experimental results in the previous work [1],
the kriging modeling methodology is developed to establish the uncertainty analysis model of
injection mechanism in squeeze casting. According to the spatiotemporal distribution characteristics
of temperature variable in the injection mechanism, a multiple-inputs-single-output (MISO) predictive
mathematical model is established. Different weights are assigned to independent variables by making
full use of the spatial location of sample points and their correlation to minimize estimation variance.
The comparison study between the model prediction and sample data indicates that the kriging
modeling method is feasible in uncertainty analysis of injection mechanism.

2. Kriging Modeling Methodology of Injection Mechanism

2.1. Meta-Modeling Method

The accurate mathematical model y = f (x) is often difficult to obtain for a complex system.
An approximate surrogate model is usually established from the fitting algorithm [40] by using the
input/output sample data

{
xi} and

{
yi} obtained from the test or simulation method, given as follows:

ŷ = g(x), (1)

where ŷ is the output of the meta-model. The relationship between ŷ and the actual output y is:

y = ŷ + ε, (2)

where ε represents the approximate and random errors in the meta-modeling.
The kriging method is adopted to establish the uncertainty meta-model of injection mechanism.

The objectives are as follows:

1. Avoid time-consuming simulation and reduce the iteration time;
2. Filtering out the possible numerical noise produced by the original analysis model;
3. Estimate the response relationship between input and output parameters;
4. Avoid the local optimal solution effectively; find the global solution using numerical algorithm

and shorten the optimization period;
5. Form better optimization strategy with other algorithms, such as Design of Experiments (DOE),

Optimization, Robust Design and so on.
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2.2. Uncertainty Problem Description of Injection Mechanism Based on Meta-Model

The spatiotemporal predictive model is MISO, i.e., given coordinates (x, y, z), time (t) and friction
condition (I f ), the model predicts the temperature T at different locations of the shot sleeve and the
punch under uncertain conditions. The mathematical expression is given as follows:

T = f (x, y, z, t, I f , Is), (3)

where I f is the friction condition index, indicating friction (=1) or not (=0); Is is the position index,
indicating the punch (=1) or the shot sleeve (=2). The coordinates of the sample points are shown
in Figure 1, which shows the thermocouples 1–6 installed on the inner wall of the shot sleeve. Section A,
which has the same altitude as the top surface of the punch, is also the lowest surface of the melt.
Sections B and C are below and above a proper distance of section A. Refer to You et al. [1] for details
about the squeeze casting process and the experimental measurement.
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Figure 1. Thermocouples placement in 3D Cartesian coordinates.

In this study, 1219 original sample points are collected from the experimental and numerical data.
The sample data points are divided into two parts: training and testing samples for model building
and testing, respectively. Considering the integrity of the data in modeling, the data segmentation
is randomly selected from six locations. In addition, 548 simulation data are collected from the
six positions shown in Figure 1, among which 478 sample data are utilized for kriging meta-modeling,
and the others are used for model testing. Furthermore, 553 experimental data points are used to
calibrate the kriging model, and the other 118 sample data points are used to quantitatively validate
the calibration model.

2.3. Kriging Meta-Modeling of the Injection Mechanism

2.3.1. Mathematical Model

In this study, the squeeze casting machine is regarded as a system and each component such as
punch, shot sleeve, etc. is considered as a subsystem. The kriging modeling includes the following
three steps:

1. According to the test requirements, determine the position of the sample point xi (i = 1, 2, . . . , n),
where xi = [x1, x2, . . . , xm] is an m-dimensional point;

2. Obtain the response value yi at sample point xi by numerical simulation or experiment to form
complete sample data {(xi, yi), i = 1, 2, . . . , n}, where yi = [y1, y2, . . . , yq] is a vector representing
the q-dimensional response values;

3. Using partial sample data, build the appropriate kriging model f (x) to make f (xi) and yi fit well.
Then, check and calibrate the model with the other sample data. Thereafter, iterative computations
are performed until the calibration model meets the precision requirements. The flow chat is
shown in Figure 2.
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Figure 2. Implementation process of kriging meta-modeling.

By Equation (3), each sample point has six independent variables, so xi = [x1, x2, . . . , xm] is
a six-dimensional space sample point, namely, m = 6. The response value yi = [y1, y2, . . . , yq]

is one-dimension, i.e., q = 1. Moreover, n = 1219 complete sample data {(xi, yi), i = 1, 2, . . . , n}
are collected.

The kriging model can be defined as the combination of a regression model and
a stochastic process:

y(x) = F(β, x) + z(x), (4)

where F(β, x) = f(x)T
β = ∑

p
k=1 βk fk(x) is a regression model of providing the global approximation

in the design space, in which f(x) =
[

f1(x), f2(x), . . . , fp(x)]T is a polynomial of x, with the regression
coefficients β = [β1, β2, . . . , βp]

T. The function z(x) provides the approximation of local deviation for
the random function, which is assumed to follow a normal distribution with the mean of 0 and the
variance of σ2

z . Its covariance is expressed as:

cov[z(xi), z(xj)] = σ2
z R([R(θ, xi, xj)]), (5)

where R(θ, xi, xj) is the correlation function with the parameter θ for any two sample data points xi
and xj. It represents the spatial correlation of the sample points xi and xj and plays an important role
in the model accuracy.

The kriging method makes full use of the spatial location of the sample points and their correlation,
applying different weights to the response values of each sample so as to minimize the estimated
variance [18]. Based on the assumption of model (4), a linearly weighted combination of the response
values Y = [y1, y2, . . . , yn] of the known sample point S = [x1, x2, . . . , xn] is used as the response
estimate of any test point xnew.

ŷ(xnew) = cTY, (6)

where c = [c1, c2, . . . , cn]
T is the weight coefficient vector to be determined.
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The prediction error of the model is

ŷ(xnew)− y(xnew) = cTY− y(xnew)

= cTZ− z + (FTc− f)T
β

, (7)

where F = [f1, f2, . . . , fn] and y(xnew) are the true value; Z = [z1, z2, . . . , zn]
T is the error of the known

sample points.
In order to ensure the unbiasedness of the simulation, assuming that Equation (7) is equal to zero,

we obtain:
FTc− f = 0. (8)

Thus, the predictive variance of the Equation (6) is the mean square error (MSE) expressed by:

σ2(xnew) = E[(ŷ(xnew)− y(xnew))
2]

= E[(cTZ− z)2
]

= E[z2 + cTZZc− 2cTZz]
= σ2

z (1 + cTRc− 2cTr)

, (9)

where r(x) = [R(θ, xnew, x1), R(θ, xnew, x2), . . . , R(θ, xnew, xn)]
T indicates the correlation between the

test points xnew and the sample points S.
For the requirement of minimal variance, a Lagrangian multiplier is introduced to solve the

weight coefficient c in Equation (6):

L(c,λ) = σ2
z (1 + cTRc− 2cTr)− λT(FTc− f)

L′c(c,λ) = 2σ2
z (Rc− r)− Fλ

. (10)

Assuming L′c(c,λ) = 0, we have:{
λ̃ = − λ

2σ2
z
= (FTR−1F)−1

(FTR−1r− f)

c = R−1(r− Fλ̃)
. (11)

Substituting Equation (11) into Equations (6) and (9), respectively, the prediction value and its
variance of the test point xnew can be obtained as:

ŷ(xnew) = f(xnew)
T
β∗ + r(xnew)

T
γ∗, (12)

where β∗ = (FTR−1F)−1FTR−1Y is solved by the generalized least squares estimation of the regression
problem Fβ∗ ∼= Y; γ∗ is solved by the margin expression Rγ* = Y−Fβ*:

σ2(xnew) = σ2
z (1 + uT(FTR−1F)

−1
u− rTR−1r), (13)

where u = FTR−1r−f; σ2
z = (Y−Fβ*)

T
R−1(Y−Fβ*)/n represents the variance of the corresponding

components of the multidimensional output response.
Equations (12) and (13) constitute the kriging model based on the sample data points (S,Y), which

can be used to calculate the predicted value and its variance at any point. For a given sample space,
after determining the regression model and the correlation model, the correlation matrix R and the
derived β∗ and σ2

z are all dependent on parameter θ, and different θ values will generate different
kriging models. The optimal θ value is determined by the method of defining the likelihood function.
The optimal kriging model is obtained by solving the unconstrained nonlinear optimization problem
of the Equation (14):

n ln(σ̂2
z ) + ln|R|

2
. (14)
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2.3.2. Selection of Regression Function

Polynomial regression model intends to simulate the global approximation in the design space,
where the polynomial generally consists of the constant, linear and quadratic polynomial items.
In the injection process, because of the high nonlinearity of the uncertain temperature variation of the
components, the quadratic polynomial is used as the regression model:

p = 1
2 (n + 1)(n + 2)

f1(x) = 1, f2(x) = x1, . . . , fn+1(x) = xn

fn+2(x) = x2
1, . . . , f2n+1(x) = x1xn

f2n+2(x) = x2
2, f3n(x) = x2xn . . . , fp(x) = x2

n

. (15)

2.3.3. Selection of Correlation Function R

In the kriging surrogate model, the random distribution function provides the simulated
approximation of the local error. The errors that follow the random distribution are not independent
but correlated spatially. The correlation between two sample data is related to the distance between
the two points, thus yielding the following relation:

R(θ, xi, xj) =
m

∏
k=1

Rk(θk, dk) , dk =
∣∣∣xk

i , xk
j

∣∣∣, (16)

where m is the dimension of design variables; xk
i and xk

j represent the k-dimensional components in the
sample vectors xi and xj, respectively; θk is the regression coefficient of the k dimensional component;
and the function Rk(θk, dk) has various forms, whose kernel functions include exponential function,
Gauss function, linear function, spherical function, three-order function, spline function and so on.

The Gauss function exp(−θkd2
k) is a parabolic one commonly used in continuous differentiable

object due to its high computational efficiency, thus chosen as the correlation function in this study.
Then, Equation (16) can be expressed as:

R(θ, xi, xj) = exp
[
−∑ m

k=1θk

(
xk

i − xk
j

)2
]

. (17)

Additionally, Equation (14) can be equivalent to a minimization problem:

min
θ>0

{
|R|

1
n σ2

z

}
. (18)

From the Gaussian function curves shown in Figure 3, the correlation between sample points
shows a downward trend with the increase of distance. It is observed that the larger the θ value is,
the smaller the correlation area, namely, the faster the correlation declines. For the smaller θ value,
the correlation between two points is greater when the distance (dk) increases, which means that the
response values of two points farther apart show an insignificant difference. Therefore, θ is generally
regarded as a measure of the importance of independent variables, whose selection directly affects the
accuracy of the model.

For the multidimensional model, the dimension of θ should be the same as the number of
independent variables, i.e., the dimension of x. The parameter θ values may be the same or different in
all directions, corresponding to isotropic or anisotropic problems, respectively. Parameter θk represents
the weight of the corresponding variable xk, which means the influence of xk on its response value.
Hence, the importance of variables may be determined by θ. It is observed that the effects of the
six independent variables on the temperature response are varying, implying that the θ value is
anisotropic in this study.
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Figure 3. Curves of the Gaussian correlation function.

According to the spatiotemporal temperature distribution of the injection mechanism in the
injection process, we make full use of the space location of sample points and their correlation and
apply different weights to the sample response values in the establishment of the kriging model.
The establishment and solution of the kriging model is programmed in Matlab toolbox DACE (R2014a,
The MathWorks, Inc., Natick, MA, USA).

3. Results Analysis and Discussion

Two assumptions are made in this study, as follows:

1. Both experiments and simulations are carried out accurately. The main difference between them
results from the inaccuracy of material properties, the load transformation and the errors of the
numerical model;

2. Data reconstruction is performed on the error points at the six measurement positions. The kriging
model is fitted by using the existing points, and then calibrated with the error points.

3.1. Kriging Model Related Parameters

According to the procedure of Figure 2, the kriging model is established by using simulated
data, and model parameters are obtained by the nonlinear optimization method. Thereafter, the
original kriging model is further calibrated and validated. In the kriging surrogate model, the number
of parameter θ is 6, the same as the dimension of the independent variable x. There are p = 7
regression coefficients, β = [β1, β2, . . . , βp]

T. Table 1 shows the obtained 13 parameters of the kriging
model before and after calibration. The output parameters of the original kriging model, Krig_θ and
Krig_β, are used as the initial values of the calibrated model parameters. The parameters Calib_θ and
Calib_β of the kriging calibration model are then obtained through calibration with a set of new data.
Moreover, the variance values of the original kriging model and calibration model are calculated as
σ2

z_krig = 1.125× 1013 and σ2
z_calib = 2.150× 1012, respectively.

Table 1. Kriging model parameters obtained from simulation and calibration data.

Symbol 1 x1 x2 x3 x4 x5 x6

Independent Variable x Axis y Axis z Axis t If Is

Krig_β (×103) 8.416 0.341 −2.673 −1.325 −1.647 −7.556 0.557
Krig_θ — 4.573 0.125 0.001 0.100 10.219 1.015

Calib_β (×103) −2.721 1.003 1.103 −0.198 0.485 2.562 −0.923
Calib_θ — 7.476 0.0625 0.001 0.100 10.219 1.008
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3.2. Analysis of Temperature Prediction

The response values of sample points and test points are predicted by the kriging model. Figure 4
shows the comparison of the predicted values, the numerical simulation and the experimental data.
It is observed that the predicted results are consistent with the trend of the simulation and experimental
data, but there is a significant difference between the prediction and experimental data in some sample
points. Furthermore, the average error between the predicted values and the simulation data is less
than 1 ◦C and its variance is less than 1. In particular, the model prediction agrees very well with the
simulated data after 100 s, with the temperature error of less than 1 ◦C and its relative errors below 1%.
However, due to the data uncertainty in the beginning, the model shows a significant prediction error
before 30 s, up to 7.8 ◦C. This implies that model calibration using the experimental data is needed.
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Figure 4. Sample data and kriging model prediction.

In order to investigate the difference between the simulation and experimental data, a comparison
study of prediction and measurement data is conducted. Figure 5 shows the temperature responses of
the full sample points and the corresponding predicted values from both the initial and calibration
kriging models. Figure 5a,b compare the predicted values of the two kriging models with the
corresponding training samples. Similar to Figure 4, the prediction values of the two kriging models
show better continuity and consistency with the sample data. However, from Figure 5a, it is clearly
observed that the consistency of a few points data in the first 50 s is relatively low, and the maximum
temperature error is 7.8 ◦C. Figure 5b is the predicted curve of the calibrated model. It is observed
that the average temperature error and variance are less than 0.5. Also in comparison to the initial
kriging model data shown in Figure 5a, the calibrated model produces less individual errors in the
first 30 s with the maximum temperature error of 3.9 ◦C. This study demonstrates that the accuracy of
the kriging surrogate model has been improved by calibration with experimental samples.
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Figure 5. Sample data and kriging model prediction. (a) kriging prediction and training sample data;
(b) calibrated kriging prediction and training sample data; (c) kriging prediction and test sample data;
(d) calibrated kriging prediction and test sample data.

Figure 5c,d illustrate the predicted results of the kriging model with the new test sample points.
Figure 5c shows the predicted results for 70 test samples. Its temperature average error and maximum
error is 0.27 ◦C and 1.15 ◦C, respectively, and its maximum relative error is less than 1%. Figure 5d
shows the predicted results of the calibrated kriging model for 118 test samples. Its temperature
average error and maximum error is 0.028 ◦C and 1.02 ◦C, respectively, and its maximum relative error
is less than 1%. Obviously, the accuracy of the kriging model can be improved through calibrating
with new experimental samples.

3.3. Variance Analysis of Predicted Values

The variance of the model prediction partly results from the uncertainty of the corresponding
sample points and the sample sparsity. The smaller variance indicates the less uncertainty, namely,
the model prediction may be more accurate in this region.

According to Equation (13), the variance values of model prediction at 70 simulated test samples
and 118 experimental samples are obtained, as shown in Table 2. From the table, the mean and
standard deviation of the variance values from the initial kriging model values are 0.2939 and 0.1196,
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respectively. It is observed that the mean and standard deviation values from the calibrated model
prediction are much smaller, i.e., 0.0428 and 0.0253, respectively. In addition, the maximum variance of
the calibration model is 0.1337, still less than the minimum variance 0.1798 obtained from the initial
kriging model. Figure 6 shows the histogram of the two models’ variances, in the range of 0 and 0.6.
It is indicated that all the variance values of the calibrated model are smaller than those from the initial
kriging model. Therefore, the calibrated model provides more accurate prediction results than the
initial kriging model.

Table 2. Statistics of variance for kriging and calibrated models.

Model Data Point Mean Value Standard
Deviation

Minimum
Value Median Maximum

Value

Krig_Testing 70 0.2939 0.1196 0.1798 0.2116 0.5369
Calib_Testing 118 0.0428 0.0253 0.0134 0.0375 0.1337
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3.4. Comparison of Friction Results

The comparison of the experimental results and simulation data in previous work [1] indicate
that the friction plays a significant role in the injection process. Here, based on the predicted results of
the kriging model, the influence of the friction on the temperature change of the injection mechanism
is further investigated.

Figure 7 shows the temperature variation of the punch and the shot sleeve in section A predicted
by the kriging surrogate model, where No. 3 and No. 5 represent the temperature variation of the
shot sleeve, and No. 4 represents the temperature variation of the punch. Comparing the overall
temperature curve of the punch and the shot sleeve, it is observed that the temperature of the shot
sleeve is higher than that of the punch, and the former increases faster than the latter. This would
be attributed to the different material properties and thermal conductivity of the two components.
Under friction, the predicted values of the shot sleeve temperature are in good agreement with the
experimental data. However, when ignoring friction, the maximum relative error is about 15%, which
is much bigger than the value under friction, i.e., 5% at about 150 s. The similar observations are
obtained from the punch temperature prediction. This study further indicates the influence of friction
on the injection process.

Figure 8 shows the temperature curves of the punch in section B. It is observed that the
temperature variation trend of all six curves is consistent. Considering friction, the predicted values are
more in agreement with the experimental data than those without considering friction. Similarly, at the
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beginning of the injection process, there is a significant temperature error between the predicted and
experimental data, and then the relative error decreases gradually with the value close to 1%.Materials 2017, 10, 1319  12 of 14 
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4. Conclusions

According to the temperature spatiotemporal distributions of the injection mechanism in the
injection process of squeeze casting, a MISO mathematical model is presented to investigate the
uncertainty based on the kriging method. The model is employed to predict the temperature response
values at different sample points. By comparing the predicted data with the sample data, the following
conclusions are obtained:

1. The prediction results of the kriging surrogate model show that there are a few significant error
values between the predicted and simulated data in the early injection stage, and, thereafter,
the error decreases gradually. This phenomenon indicates the impact of the uncertainty on the
temperature distribution of the injection mechanism in the injection process.

2. The variance mean and standard deviation obtained from the calibrated model are relatively
smaller, which indicate that the calibration model is improved in terms of the prediction accuracy.

3. By a comparison study, the influence of friction on injection forming is further verified.
By considering friction, the relative error between the model prediction and the experimental
data at section A is obviously smaller than that obtained by ignoring friction.

In future research, the uncertainty quantification and its impact on the results will be investigated
with real-world application scenarios.



Materials 2017, 10, 1319 13 of 14

Acknowledgments: The authors acknowledge the support of the Natural Science Foundation of Guangdong
Province, China (Grant Nos. 2017A030313320 and 2015A030312003).

Author Contributions: Dongdong You conceived and designed the experiments; Xiaomo Jiang and Xueyu Cheng
built the kriging model; Dehui Liu and Xiang Wang performed the kriging model calculation and experiments;
Dongdong You, Xiaomo Jiang and Xueyu Cheng analyzed the data; Dongdong You, Xiaomo Jiang and Xiang Wang
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. You, D.D.; Wang, X.; Cheng, X.Y.; Jiang, X.M. Friction modeling and analysis of injection process in squeeze
casting. J. Mater. Process. Technol. 2017, 239, 42–51. [CrossRef]

2. Nannapaneni, S.; Mahadevan, S. Reliability analysis under epistemic uncertainty. Reliab. Eng. Syst. Saf. 2016,
155, 9–20. [CrossRef]

3. Zhao, F.Q.; Tian, Z.G.; Zeng, Y. Uncertainty Quantification in Gear Remaining Useful Life Prediction through
an Integrated Prognostics Method. IEEE Trans. Reliab. 2013, 62, 146–159. [CrossRef]

4. Bilionis, I.; Zabaras, N.; Konomi, B.A.; Lin, G. Multi-output separable Gaussian process: Towards an efficient,
fully Bayesian paradigm for uncertainty quantification. J. Comput. Phys. 2013, 241, 212–239. [CrossRef]

5. Xiao, H.; Wu, J.L.; Wang, J.X.; Sun, R.; Roy, C.J. Quantifying and reducing model-form uncertainties
in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach.
J. Comput. Phys. 2016, 324, 115–136. [CrossRef]

6. Sankararaman, S. Significance, interpretation, and quantification of uncertainty in prognostics and remaining
useful life prediction. Mech. Syst. Signal. Process. 2015, 52–53, 228–247. [CrossRef]

7. Tao, Y.R.; Duan, S.Y.; Yang, X.J. Reliability modeling and optimization of die-casting existing epistemic
uncertainty. Int. J. Interact. Des. Manuf. 2016, 10, 51–57.

8. Hardin, R.A.; Choi, K.K.; Gaul, N.J.; Beckermann, C. Reliability based casting process design optimization.
Int. J. Cast. Met. Res. 2015, 28, 181–192. [CrossRef]

9. Fezi, K.; Krane, M.J.M. Uncertainty quantification in modelling equiaxed alloy solidification. Int. J. Cast
Met. Res. 2017, 30, 34–49. [CrossRef]

10. Plotkowski, A.; Krane, M.J.M. Quantification of Epistemic Uncertainty in Grain Attachment Models for
Equiaxed Solidification. Metall. Mater. Trans. B 2017, 48, 1636–1651. [CrossRef]

11. Wang, Y.; Luo, X.C.; Yu, Y.; Yin, Q. Evaluation of heat transfer coefficients in continuous casting under large
disturbance by weighted least squares Levenberg-Marquardt method. Appl. Therm. Eng. 2017, 111, 989–996.
[CrossRef]

12. Wu, M.; Ludwig, A.; Fjeld, A. Modelling mixed columnar-equiaxed solidification with melt convection and
grain sedimentation—Part II: Illustrative modelling results and parameter studies. Comput. Mater. Sci. 2010,
50, 43–58. [CrossRef]

13. Carlson, K.D.; Beckermann, C. Determination of solid fraction-temperature relation and latent heat using
full scale casting experiments: Application to corrosion resistant steels and nickel based alloys. Int. J. Cast
Met. Res. 2012, 25, 75–92. [CrossRef]

14. Sakalli, U.S.; Baykoc, O.F. An optimization approach for brass casting blending problem under aletory and
epistemic uncertainties. Int. J. Prod. Econ. 2011, 133, 708–718. [CrossRef]

15. Kleijnen, J.P.C. Regression and Kriging metamodels with their experimental designs in simulation: A review.
Eur. J. Oper. Res. 2017, 256, 1–16. [CrossRef]

16. Tu, H.M.; Lou, W.Z.; Sun, Z.L.; Qian, Y.P. Structural reliability simulation for the latching mechanism in
MEMS-based Safety and Arming device. Adv. Eng. Softw. 2017, 108, 48–56. [CrossRef]

17. Zhu, Z.F.; Du, X.P. Reliability Analysis with Monte Carlo Simulation and Dependent Kriging Predictions.
J. Mech. Des. 2016, 138. [CrossRef]

18. Haeri, A.; Fadaee, M.J. Efficient reliability analysis of laminated composites using advanced Kriging surrogate
model. Compos. Struct. 2016, 149, 26–32. [CrossRef]

19. Dey, S.; Mukhopadhyay, T.; Adhikari, S. Stochastic free vibration analyses of composite shallow doubly
curved shells—A Kriging model approach. Compos. Part. B-Eng. 2015, 70, 99–112. [CrossRef]

http://dx.doi.org/10.1016/j.jmatprotec.2016.08.011
http://dx.doi.org/10.1016/j.ress.2016.06.005
http://dx.doi.org/10.1109/TR.2013.2241216
http://dx.doi.org/10.1016/j.jcp.2013.01.011
http://dx.doi.org/10.1016/j.jcp.2016.07.038
http://dx.doi.org/10.1016/j.ymssp.2014.05.029
http://dx.doi.org/10.1179/1743133614Y.0000000142
http://dx.doi.org/10.1080/13640461.2016.1213525
http://dx.doi.org/10.1007/s11663-017-0933-9
http://dx.doi.org/10.1016/j.applthermaleng.2016.09.154
http://dx.doi.org/10.1016/j.commatsci.2010.07.006
http://dx.doi.org/10.1179/1743133611Y.0000000023
http://dx.doi.org/10.1016/j.ijpe.2011.05.022
http://dx.doi.org/10.1016/j.ejor.2016.06.041
http://dx.doi.org/10.1016/j.advengsoft.2017.02.008
http://dx.doi.org/10.1115/1.4034219
http://dx.doi.org/10.1016/j.compstruct.2016.04.013
http://dx.doi.org/10.1016/j.compositesb.2014.10.043


Materials 2017, 10, 1319 14 of 14

20. Zakerifar, M.; Biles, W.E.; Evans, G.W. Kriging metamodeling in multiple-objective simulation optimization.
Simulation 2011, 87, 843–856. [CrossRef]

21. Echard, B.; Gayton, N.; Lemaire, M.; Relun, N. A combined Importance Sampling and Kriging reliability
method for small failure probabilities with time-demanding numerical models. Reliab. Eng. Syst. Saf. 2013,
111, 232–240. [CrossRef]

22. Xiao, M.; Gao, L.; Shao, X.Y.; Qiu, H.; Jiang, P. A generalised collaborative optimisation method and its
combination with kriging metamodels for engineering design. J. Eng. Des. 2012, 23, 379–399. [CrossRef]

23. Arendt, P.D.; Apley, D.W.; Chen, W. A preposterior analysis to predict identifiability in the experimental
calibration of computer models. IIE Trans. 2016, 48, 75–88. [CrossRef]

24. Tuo, R.; Wu, C.F.J.; Yu, D. Surrogate Modeling of Computer Experiments with Different Mesh Densities.
Technometrics 2014, 56, 372–380. [CrossRef]

25. Hofwing, M. Robustness of Residual stresses in brake discs by metamodeling. In Proceedings of the ASME
International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, Washington, DC, USA, 28–31 August 2011; The American Society of Mechanical Engineers:
New York, NY, USA, 2011; Volume 5, pp. 1115–1125.

26. Li, X.Q.; He, D.H. Identification of material parameters from punch stretch test. Trans. Nonferrous Met.
Soc. China 2013, 23, 1435–1441. [CrossRef]

27. Deng, Y.M.; Zhang, Y.; Lam, Y.C. A hybrid of mode-pursuing sampling method and genetic algorithm for
minimization of injection molding warpage. Mater. Des. 2010, 31, 2118–2123. [CrossRef]

28. Li, H.X.; Wang, X.Y.; Wei, Y.B.; Liu, T.; Gu, J.F.; Li, Z.; Wang, M.; Zhao, D.; Qiao, A.; Liu, Y. Multi-Objective
Optimizations of Biodegradable Polymer Stent Structure and Stent Microinjection Molding Process. Polymers
2017, 9, 20. [CrossRef]

29. Wang, X.Y.; Li, H.X.; Gu, J.F.; Li, Z.; Ruan, S.; Shen, C.; Wang, M. Pressure Analysis of Dynamic Injection
Molding and Process Parameter Optimization for Reducing Warpage of Injection Molded Products. Polymers
2017, 9, 85. [CrossRef]

30. Kang, G.J.; Park, C.H.; Choi, D.H. Metamodel-based design optimization of injection molding process
variables and gates of an automotive glove box for enhancing its quality. J. Mech. Sci. Technol. 2016, 30,
1723–1732. [CrossRef]

31. Dang, X.P. General frameworks for optimization of plastic injection molding process parameters.
Simul. Model. Pract. Theory 2014, 41, 15–27. [CrossRef]

32. Gao, P.F.; Yang, H.; Fan, X.G. Forming limit of local loading forming of Ti-alloy large-scale rib-web
components considering defects in the transitional region. Int. J. Adv. Manuf. Technol. 2015, 80, 1015–1026.
[CrossRef]

33. Ambrogio, G.; Ciancio, C.; Filice, L.; Gagliardi, F. Innovative metamodelling-based process design for
manufacturing: An application to Incremental Sheet Forming. Int. J. Mater. Form. 2017, 10, 279–286. [CrossRef]

34. Abebe, M.; Park, J.W.; Kim, J.; Kang, B.S. Numerical verification on formability of metallic alloys for skin
structure using multi-point die-less forming. Int. J. Precis. Eng. Manuf. 2017, 18, 263–272. [CrossRef]

35. Tutum, C.C.; Deb, K.; Baran, I. Constrained Efficient Global Optimization for Pultrusion Process.
Mater. Manuf. Process. 2015, 30, 538–551. [CrossRef]

36. Kusiak, J.; Sztangret, L.; Pietrzyk, M. Effective strategies of metamodelling of industrial metallurgical
processes. Adv. Eng. Softw. 2015, 89, 90–97. [CrossRef]

37. Meng, F.J.; Labergere, C.; Lafon, P. Multi-objective optimization based on meta-models of an aeronautical
hub including the ductile damage constraint. Int. J. Damage Mech. 2014, 23, 1055–1076. [CrossRef]

38. Roux, E.; Bouchard, P.O. Kriging metamodel global optimization of clinching joining processes accounting
for ductile damage. J. Mater. Process. Technol. 2013, 213, 1038–1047. [CrossRef]

39. An, H.G.; Green, D.; Johrendt, J.; Smith, L. Multi-objective optimization of loading path design in multi-stage
tube forming using MOGA. Int. J. Mater. Form 2013, 6, 125–135. [CrossRef]

40. Kodiyalam, S.; Yang, R.J.; Gu, L. High performance computing and surrogate modeling for rapid visualization
with multidisciplinary optimization. AIAA J. 2004, 42, 2347–2354. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0037549711411964
http://dx.doi.org/10.1016/j.ress.2012.10.008
http://dx.doi.org/10.1080/09544828.2011.595706
http://dx.doi.org/10.1080/0740817X.2015.1064554
http://dx.doi.org/10.1080/00401706.2013.842935
http://dx.doi.org/10.1016/S1003-6326(13)62614-X
http://dx.doi.org/10.1016/j.matdes.2009.10.026
http://dx.doi.org/10.3390/polym9010020
http://dx.doi.org/10.3390/polym9030085
http://dx.doi.org/10.1007/s12206-016-0328-x
http://dx.doi.org/10.1016/j.simpat.2013.11.003
http://dx.doi.org/10.1007/s00170-015-7061-y
http://dx.doi.org/10.1007/s12289-015-1276-1
http://dx.doi.org/10.1007/s12541-017-0034-3
http://dx.doi.org/10.1080/10426914.2014.994752
http://dx.doi.org/10.1016/j.advengsoft.2015.02.002
http://dx.doi.org/10.1177/1056789514544481
http://dx.doi.org/10.1016/j.jmatprotec.2013.01.018
http://dx.doi.org/10.1007/s12289-011-1079-y
http://dx.doi.org/10.2514/1.1997
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Kriging Modeling Methodology of Injection Mechanism 
	Meta-Modeling Method 
	Uncertainty Problem Description of Injection Mechanism Based on Meta-Model 
	Kriging Meta-Modeling of the Injection Mechanism 
	Mathematical Model 
	Selection of Regression Function 
	Selection of Correlation Function R 


	Results Analysis and Discussion 
	Kriging Model Related Parameters 
	Analysis of Temperature Prediction 
	Variance Analysis of Predicted Values 
	Comparison of Friction Results 

	Conclusions 

