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Abstract
Statistical mechanics provides the link between microscopic properties of many-particle

systems and macroscopic properties such as pressure and temperature. Observations of

similar “microscopic” quantities exist for the motion of zooplankton, as well as many species

of other social animals. Herein, we propose to take average squared velocities as the defini-

tion of the “ecological temperature” of a population under different conditions on nutrients,

light, oxygen and others. We test the usefulness of this definition on observations of the

crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested
with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D.
pulicaria under light exposure have a significantly greater ecological temperature, which

puts them at a greater risk of detection by visual predators. In a second set of experiments,

we observe D. pulicaria in cold and warm water, and in darkness and under light exposure.

Overall, our ecological temperature is a good discriminator of the crustacean’s swimming

behavior.

Introduction
Statistical thermodynamics and ecology share at the fundamental level interest in the following
question: what are the relations between “macroscopic” properties of a system, such as a vol-
ume of gas or an ecosystem and the behavior of its “microscopic” constituents, such as atoms,
molecules or species and individuals. It is therefore not surprising that concepts from this
branch of physics have found their way into the practice of ecology since the seminal works of
Kerner [1] and Margalef [2] about half a century ago, see also [3] for a recent contribution. The
challenges faced by this approach are formidable [4]. Unlike in physics, where macroscopic
quantities such as pressure or temperature of a gas are easily measurable, macroscopic quanti-
ties for large scale ecosystems with a multitude of interacting agents are difficult to measure or
sometimes even to define. As examples one can think of the production of organic compounds
from atmospheric or aqueous carbon dioxide, nutrient cycling or the biodiversity of coral reefs
and tropical rain forests. Striving to avoid these difficulties, herein we will work with more
manageable observations of few individuals, small numbers of species and small observational
volumes.
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The vast majority of animals must move to find food, escape from predators, mate and
spread into new habitats. Even sessile species such as bivalves and corals are motile in their
early developmental stages. In some situations there are external sources of guidance (such as
the sun, the earth’s magnetic field, acoustic or visual cues), but more often, an animal or a com-
munity of animals are searching for a specific target without knowledge of the target’s location.
Millions of years of evolution have resulted in search strategies that are optimal with respect to
minimal energetic cost and maximal energetic or proliferative gain. Biologists have studied the
motion of countless species of the animal and protist kingdoms. There is a wealth of two-
dimensional and three-dimensional positional data, both for individuals and communities of
animals. Despite groundbreaking work by Okubo and others [5], it is still a challenge to analyze
and interpret such data at the population level bearing in mind the important requirement of
scale invariance [6]. Guided by the connections between observations on large and on small
scales in physics, here we propose to apply the formalism of statistical mechanics to observa-
tions of animal motion. Our particular area of interest is zooplankton which forms a critical
link between autotrophic phytoplankton and higher organisms in aquatic food webs world-
wide. Earlier works studying the behavior of the crustacean Daphnia pulicaria [7, 8] have used
power spectra of velocity autocorrelation functions and fractal dimensions [9] of trajectories to
characterize swimming behavior under different environmental conditions, such as tempera-
ture, light, and possible infestation with pathogens. Although this approach allows to detect
clear distinctions in motion patterns, these notions are difficult to define, to compute and often
also to interpret. The goal of this work is to provide a simple method to process positional data
of animal movements.

A common observational approach is to determine distance distributions for moving indi-
viduals. These are the lengths or travel times of more or less straight movements between sub-
sequent turns. Beginning with the work [10] (in albatrosses), it has been reported in many
cases that these distributions p(l) of jumps of length l follow power laws, that is for some con-
stant μ> 0

pðlÞ / l�m; ð1Þ

for large jump sizes, see for example [11, 12] and the references therein. The defining feature of
such Lévy flights, a term coined by Mandelbrot in [13], is that the mean squared displacement
hx2(t)i of the walker grows faster than linear with respect to time t, namely

hx2ðtÞi / tb;

where β> 1. This is in contrast to “standard” random walk, Brownian motion, where β = 1.
(The number H with 2H = β is commonly known as the Hurst exponent.) The Lévy flight is
more efficient than standard Brownian motion in dilute and patchy environments, since it
increases the chance of leaving a largely empty region [12, 14]. On the other hand, in an envi-
ronment uniformly rich in targets (for example a high concentration of algae for a feeding
copepod), the walkers are observed to return to the Brownian walk [15]. It is easy to see that
environmental factors such as target density and the density of the searchers critically influence
the behavior of the organisms.

A major difficulty in studying searching behavior pointed out by Viswanathan et al. [12] is
that distance distributions are difficult to determine over a sufficiently wide range such that
scaling laws such as (1) can be safely established. As Viswanathan et al. write [12] “For biologi-
cal systems in general and foraging dynamics in particular, even 2 orders of magnitude of scaling
can be a luxury.”. In this work, we look at positional data in a way that avoids the issue of distri-
butions on short supports. We average the squared velocities and define the “ecological
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temperature”, following an early suggestion by Margalef in [16]. We propose that this ecologi-
cal temperature reacts to different environmental conditions and further to changes in environ-
mental conditions. As an example for our paradigm, we study the behavior of the crustacean
Daphnia pulicaria [7, 8] in cold and warm water, under conditions of light and darkness and
with possible infestation by the parasite Vibrio cholerae. Many parasites are known to induce
behavioral changes in their hosts to further their spread [17]. V. cholerae as the causative agent
of cholera is of course a pathogen with important implications on human health. Here we
review briefly important concepts from statistical mechanics and thermodynamics, focusing
on the Ideal Gas Law and the equivalence of temperature and average kinetic energy. We apply
these concepts to existing positional data of D. pulicaria [7, 8]. Finally, we discuss our results
and further analogies with the thermodynamic formalism.

Statistical Mechanics and Thermodynamics
Statistical mechanics derives macroscopic properties of a multi-particle system such as temper-
ature and pressure from the microscopic motion of its constituents [18]. The pioneering work
is connected with names such as Robert Boyle, Joseph Louis Gay-Lussac and Amadeo Avoga-
dro. Between the seventeenth and early nineteenth centuries, these scientists established the
various proportionality relations that are summarized in the empirical Ideal Gas Law

PV ¼ nkBT: ð2Þ
Here P, V and T are the pressure, volume and absolute temperature, respectively of an ideal gas
of nmolecules. The constant kB is called Boltzmann’s constant. In the 1860s, James Clerk Max-
well and Ludwig Boltzmann finalized the theory of thermodynamics. In the simplest model of
a monatomic gas, n identical molecules of massm are moving in a fixed volume V subject only
to elastic binary collisions. Under the assumption that velocity components in the three direc-
tions are independent, it can be derived that the average kinetic energy of the gas particles is
proportional to the temperature,

1

2
mhv2i ¼ 3

2
kBT: ð3Þ

A great achievement of statistical mechanics is precisely the connection between the macro-
scopic empirical law (2) and the microscopic average kinetic energy in (3). Thus, if there were
no thermometers to measure the temperature of a gas, Eq (3) would give an alternative method:
measure the average squared velocity of the particles. The question now is, can we use this
analogy for other agents?

It bears repeating that the Eq (3) was derived under certain well-defined conditions. These
are that the particles follow the laws of classical Newtonian physics, so neither quantum nor
relativity theory are needed. The gas has to be in equilibrium near the standard conditions of a
temperature of 273 K and a pressure of 100 kPa. This implies large numbers of particles, of the
order of Avogadro’s constant NA = 6.02 � 1023 mol−1. However, these conditions are not restric-
tive and from this derives the importance of the “Naturkonstante” kB (so called by Max
Planck). A more detailed treatment would include that kinetic energy can also be contained in
vibrations and rotations of chemical bonds between atoms. In a non-equilibrium state of the
gas there can be heating or cooling or a motion of the center of mass. This leads to the formula-
tions of First and Second Laws of Thermodynamics.

We propose to determine experimentally the average squared velocity for autotrophic and
heterotrophic plankton communities. Led by the analogy with Eq (3) we call this the “ecologi-
cal temperature”. To begin with, we consider populations that have constant conditions of
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nutrient supply, light and water temperature and can therefore be regarded to be in an equilib-
rium state.

Materials and Methods

Experimental Design
Daphnia pulicaria were observed with and without infestation with Vibrio cholerae in an exper-
imental aquarium of 80mL at water temperature of 22°C. For a detailed description of the
experiments we refer to [8]. Under every combination of the conditions, ten animals were
observed, except in the case of infested individuals under light, where only nine animals were
observed for 15min at a frame frequency of 30Hz. This results in 39 data sequences, each of
length N� 2.7 � 104. In a second set of experiments [7], D. pulicaria are placed in lake water at
3°C and at 22°C, while the light condition is also varied. Five observations are made in each of
the four cases. The original data are available as supporting information to this paper.

Data Analysis
We assume that a population consists of n identical individuals and that (initially at least) the
conditions are spatially uniform and do not change during the course of the observation. The

data are given in form of sequences ðXk
i ÞNk

i¼1 where k = 1, . . ., n denotes the index of the sequence
(the animal), and X denotes a point (x, y) or (x, y, z). Sequences can be of different lengths. For
sake of simplicity we will consider the case that the positional data are two-dimensional, with
the obvious modifications for three-dimensional data. The sampling rate is f and τ = f−1 is the
time between two frames. We compute the squared velocities

ðVk
i Þ2¼

ðxkiþ1 � xki Þ2 þ ðykiþ1 � yki Þ2
t2

; i ¼ 1; . . . ;Nk; k ¼ 1; . . . n:

Then we compute the orbit averages along a trajectory of a fixed animal

ð �VkÞ2 ¼ 1

Nk

XNk

i¼1

ðVk
i Þ2; k ¼ 1; . . . ; n: ð4Þ

We obtain an empirical distribution of values for the different individuals, under the same
experimental condition. Here we make the hypothesis of ergodicity of the population: Every
individual experiences the environment in the same way and so the orbit averages are manifesta-
tions of a variable that characterizes the population.We average again and define the ecological
temperature

ð �V Þ2 ¼ 1

n

Xn
k¼1

ð�VkÞ2 ð5Þ

of the population under a certain environmental condition.
To test for differences between populations under different experimental conditions, we use

the Kolmogorov-Smirnov test [19]. For a given set of values x1, . . ., xm (these are not to be con-
fused with the positions of animals used earlier), we define the empirical cumulative distribu-
tion function

FðxÞ ¼ 1

m
jfxi : xi � xgj: ð6Þ

Denoting by F1 and F2 the cumulative distribution functions under the different experimental

Statistical Mechanics of Zooplankton

PLOS ONE | DOI:10.1371/journal.pone.0135258 August 13, 2015 4 / 12



conditions 1 and 2, respectively, the value of the Kolmogorov-Smirnov statistic is

D ¼ sup
x

jF1ðxÞ � F2ðxÞj:

Let

QðlÞ ¼ 2
X1
j¼1

ð�1Þj�1 exp ð�2j2l2Þ;

this is a monotone decreasing function with

Qð0Þ ¼ 1; and lim
l!1

QðlÞ ¼ 0:

The significance of an observed value of D as a disproof of the null hypothesis

H0 : The two distributions F1 and F2 are equal:

is given by

PðD > observedÞ ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

m1 þm2

r !
;

wherem1 andm2 are the number of data points in each distribution (the number of animals
observed under each condition). The significance of this test arises from large numbers of
observationsm1 andm2.

Results
Daphnia are crustaceans that feed on suspended materials (e.g. algae and organic detritus) in
freshwater environments [20]. We use existing two-dimensional observations of D. pulicaria as
presented in Nihongi et al. [8]. Here the differences in environmental conditions are light
(light vs. dark) and a possible infestation with Vibrio cholerae, giving a 2 × 2-matrix of
conditions.

In Fig 1 we show the cumulative distribution functions of the orbit averages �Vkð Þ2 in the
presence of light for both infested and uninfested D. pulicaria. The hypothesis of equality of
these distributions can be rejected at a confidence level of α = 0.1. In the other cases there was
no statistically significant difference in the cumulative distributions. In Table 1 we report the

values of �Vð Þ2 together with their standard deviations for all four scenarios. We observe the

largest value of �Vð Þ2 for infested D. pulicaria under light exposure. This is consistent with the
findings of Nihongi et al. [8] where similar findings were made based on the power spectra of
the swimming velocity fluctuations.

In Fig 2 we show an example of a distribution of nonzero jumps for one infested Daphnia
individual under light. This animal was selected for making the single longest jump of 4.2mm
(approximately four body lengths). In fact, 42% of the jumps of the individual had length zero.
It is difficult to decide about the existence of a heavy tail in this distribution since it covers a
short range of lengths.

The Gram-negative bacterium Vibrio cholerae is the cause of the endemic disease cholera
which affects an estimated 3–5 million people and causes 100,000–130,000 deaths annually
[21]. It is known to adhere to the chitin exoskeleton of zooplankton [22, 23]. Using our concept
of ecological temperature, we have provided further evidence that V. cholerae increases the
activity of its host D. pulicaria under light conditions. This contributes to the theory that such
individuals are more likely to be detected and captured by visual predators such as fish. This
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Table 1. Ecological temperature and its standard deviation under different combinations of the
conditions.

Light Infestation Status ð�V Þ2 (in mm2/s2) σ

- - 28.9 16.3

- + 27.5 12.8

+ - 25.2 13.8

+ + 33.1 14.8

doi:10.1371/journal.pone.0135258.t001

Fig 1. The cumulative distribution functions (see Eq (6)) of the orbit averages (see Eq (4)) of ten infested (red) respectively nine uninfested (blue)
D. pulicaria in presence of light. For ease of reading, the other cumulative distribution functions are not shown.

doi:10.1371/journal.pone.0135258.g001
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can be due to two reasons that are non-exclusive. First, the parasite enters the aquatic food
chain and so improves its dispersal. Second, the infested D. pulicaria are eliminated from the
population and so reduce the chance of other individuals becoming infested. In some sense,
this is a win for both the parasite and the host.

In the second set of experiments from [7], we compute the ecological temperature for D.
pulicaria individuals in cold (3°C) and warm (22°C) water in darkness and light. Since there
are only five observations in each case, we refrain from statistical hypothesis testing. However,
we can state the following, see Fig 3.

1. At 3°C, turning the light on increases the ecological temperature significantly, while at 22°C,
there is practically no difference between light and dark conditions.

2. In darkness, the individuals tend to behave much more differently from one another in cold
water than in warm water.

Fig 2. A sample jump length distribution for an infested individual under light exposure.However, 42% of the jumps had length zero. The non-zero
jumps range from only 100 μm to 4.2mm, too short to fit any distribution (exponential or power law) to it.

doi:10.1371/journal.pone.0135258.g002
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3. Under light, there is a significantly higher ecological temperature in cold water than in
warm water.

These differences in behavior can be interpreted as the result of adaptation to phytoplank-
ton availability and distribution and to predator behavior in lakes in winter and summer and
during night and day.

In future experiments we will vary the communal and environmental conditions. These are
for example

• rich or poor conditions of supplies such as nutrient, light and oxygen,

Fig 3. Cumulative distribution functions of the ecological temperature. The individuals are placed in cold and warm water and exposed to light or
darkness. In each panel we compare the cumulative distribution functions when the value of one variable changes.

doi:10.1371/journal.pone.0135258.g003
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• high or low population density,

• environmental conditions such as ambient temperature, presssure and pH,

• presence of chemicals, in particular toxins,

• presence of predators, pathogens or competing species, and

• mating searches [24].

Our objects of study include protists (ciliates, dinoflagellates), small multicellular zooplank-
ton (rotifers) and planktonic crustaceans (Daphnia, copepods). We will seek for differences
between repeated individual and community observations. Animals may make active moves to
avoid each other. Is there evidence for cooperation among the searchers intermediate densities,
resulting in higher ecological temperature?

Many planktonic organisms are known to display phototaxis [25, 26] and chemotaxis [27,
28]. Organisms such as Paramecium and Daphnia are also used as biological indicators to test
for toxins and nano-particles [29] in water bodies intended for human use. Current observa-
tion methods either rely on complicated properties of trajectories (velocity power spectra, frac-
tal dimensions of paths, [7, 8]) or physiological observations (heart or appendage beating
frequencies, [29]) that are often difficult to interpret or reproduce. The ecological temperature
as defined in this paper has the advantage of great conceptual and computational simplicity
and draws on the analogy with well-known concepts from statistical mechanics.

Outlook
Once a clear difference in the activity from Eq (5) has been established for different conditions,
it will be very interesting to simulate phase transitions between these conditions. For example,
if the light is turned on, how long does it take for the plankton community to adapt to it? Even
switching back and forth is feasible. This gives the possibility to study learning in some of the
95% of animal species that are invertebrates [30].

A later and more challenging setup will allow for “binary” environments. Assume that the
regions A and B are distinguished by the value of the environmental variable in them (such as
adjacent regions of light and darkness). It is possible that a trajectory often switches between
these two regions. For such a trajectory the orbit average would not be very meaningful and
therefore it should be discarded. Most interesting are the trajectories that pass the boundary
between A and B exactly once (in either direction). For such trajectories we can determine the
orbit average for each of the two segments in the different regions. How often do we see a
marked difference between these?

Concepts from statistical mechanics have been used quite frequently to understand the col-
lective behavior of animals such as schools of fish and flocks of birds [3, 31]. In future work we
will look beyond the notion of ecological temperature as it has been introduced here. The
entropy S of a physical system is proportional to the logarithm of the number of microscopic
states that realize one and the same macroscopic state (The equation S = k logW is engraved
on Boltzmann’s tombstone at the Zentralfriedhof in Vienna.). For example, consider the Ising
model of ferromagnetism with a small number of states. Assume that 6 arrows can point up
(+1) or down (-1) (these are the “microstates”), but that we are only interested their sum (this
is the “macrostate”). The macrostate 6 can be realized by only one microstate (1, 1, 1, 1, 1, 1),

whereas the macrostate 0 can be realized in
6

3

 !
¼ 20 ways, among them for example (−1, 1,

1, 1, −1, −1) or (1, −1, 1, −1, −1, 1), see Fig 4. Thus we assign the entropy 0 respectively log20 to
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both these states. The presence of the logarithm is necessary to make the entropy an extensive
property, that is, if two subsystems are united, the entropy of the resulting system is the sum of
the entropies of the subsystems. The entropy can be interpreted as a measure for the lack of
order in a thermodynamical system. The Second Law of Thermodynamics states that in a
closed system the entropy necessarily increases. Clearly, many systems in nature are not closed,
since they receive energy from external sources.

In the case of the animals, we search for an analogous measure for order respectively disor-
der in motion patterns. A well-known example is the diurnal vertical migration of zooplankton
communities. Organisms move upwards at night and downwards during the day. The causes
of this migration are manifold, such as finding regions of optimal light intensity, optimal tem-
perature and predator avoidance [32]. The general movement patterns may be disturbed by the
presence of visual or tactile predators. The conventional view has been that each individual
migrates on its own, without need for cues from conspecifics. The challenge arises whether the
statistical mechanics approach is capable to detect signs of independence or coherence in the
animal behaviors.

Supporting Information
S1 Data Files. Raw data of Daphnia pulicaria under possible infestation with Vibrio cho-
lerae under conditions of light and darkness. Information on the file contents and the data
format is contained.
(ZIP)

S2 Data Files. Raw data of Daphnia pulicaria in warm and cold water and in light and dark
conditions.
(ZIP)
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