
1SCienTifiC REPOrts | 7: 14382  | DOI:10.1038/s41598-017-14760-8

www.nature.com/scientificreports

A generic phase between 
disordered Weyl semimetal and 
diffusive metal
Ying Su1,2, X. S. Wang1,3 & X. R. Wang1,2

Quantum phase transitions of three-dimensional (3D) Weyl semimetals (WSMs) subject to uncorrelated 
on-site disorder are investigated through quantum conductance calculations and finite-size scaling of 
localization length. Contrary to previous claims that a direct transition from a WSM to a diffusive metal 
(DM) occurs, an intermediate phase of Chern insulator (CI) between the two distinct metallic phases 
should exist due to internode scattering that is comparable to intranode scattering. The critical 
exponent of localization length is ν  1.3 for both the WSM-CI and CI-DM transitions, in the same 
universality class of 3D Gaussian unitary ensemble of the Anderson localization transition. The CI phase 
is confirmed by quantized nonzero Hall conductances in the bulk insulating phase established by 
localization length calculations. The disorder-induced various plateau-plateau transitions in both the 
WSM and CI phases are observed and explained by the self-consistent Born approximation. 
Furthermore, we clarify that the occurrence of zero density of states at Weyl nodes is not a good 
criterion for the disordered WSM, and there is no fundamental principle to support the hypothesis of 
divergence of localization length at the WSM-DM transition.

Weyl semimetals (WSMs), characterized by the linear crossings of their conduction and valence bands at Weyl 
nodes (WNs) and the inevitable generation of topologically protected surface states, have attracted enormous 
attention in recent years because of their exotic properties and possible applications1–12. Interestingly, WSM crys-
tals are quite common instead of rare. The reason is that the most generic Hamiltonian describing two bands of a 
crystal is the direct sum of 2 × 2 matrices in the momentum space as ∪= ⊕ kH h( )k , where k is the lattice 
momentum. Thus, h(k) must take a form of ε σ+ ∑α α αk kI h( ) ( )0 , where I, σα, and hα (α = x, y, z) are respectively 
the 2 × 2 identity matrix, Pauli matrices, and functions of k characterizing materials. The two bands cross each 
other at a WN of k = K when hα(K) = 0. This can happen in three dimensions (3D) because three conditions 
match with three variables, and the level repulsion principle can at most shift the WNs. Moreover, WNs must 
come in pairs with opposite chirality according to the no-go theorem13, and the band inversion occurs between 
two paired WNs, resulting in the topologically protected surface states and accompanying Fermi arcs on crystal 
surfaces. The only way to destroy a WSM is the merging of two WNs of opposite chirality or via 
superconductivity11.

How does the above picture based on the lattice translational symmetry change when disorders are presented 
and the lattice momentum is not a good quantum number anymore? This is an important question that has been 
investigated intensively with conflicting results14–31. Disorder can greatly modify electronic structures, resulting 
in the well-known Anderson localization. One expects that disorder has much more interesting effects to a WSM 
than that to a normal metal. For example, electrons with linear dispersion relations around the WNs (Dirac 
nodes) are governed by the effective Weyl (massless Dirac) equation. Weyl electrons cannot be confined by any 
potential due to the Klein paradox32. Early theoretical studies ignored internode scattering and predicted that the 
WSM phase featured by vanishing density of states (DOS) at WNs is robust against weak disorder and under-
goes a direct quantum phase transition to the diffusive metal (DM) phase as disorder increases14–19. The diver-
gence of the bulk state localization length at the WSM-DM transition was conjectured16,20 and was used in recent 
numerical studies26–28 to support disordered WSMs in a wide range of disorder and direct WSM-DM transitions. 
Strangely, the evidences of the transition resemble the conventional Anderson localization transitions at which 
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the localization lengths of different sample sizes cross at the same point, and the uncorrelated on-site disorder is 
used in these studies so that internode scattering is comparable to intranode scattering and should be significantly 
important. However, a real WSM has at least two WNs of opposite chirality, and disorder can mix two nodes 
by internode scattering so that the Anderson localization can happen as shown in the disordered graphene33. 
Therefore, the applicability of the direct WSM-DM transition conjectured by theories of a single WN14–19 for real 
disordered WSMs is questionable. The predicted vanishing DOS at WNs have also attracted many numerical 
studies20,25,27,31, and recent works concluded that zero DOS cannot exist at nonzero disorder due to rare region 
effects and no WSM phase is allowed at an arbitrary weak disorder if zero DOS at WNs is demanded21,31.

Strictly speaking, because the lattice momentum is not a good quantum number in a disordered WSM, 
k-space is only an approximate language although the concepts of band and DOS are still accurate. Thus, the 
validity of DOS ρ(E) ∝ E2 from 3D linear dispersion relations as a signature of disordered WSMs is doubtful. The 
distinct property of a WSM is the existence of topologically protected surface states that do not necessarily rely 
on the linear crossing of two bands and zero DOS at WNs, and should be robust against disorder, at least against 
the weak one. Therefore, a disordered WSM is defined as a bulk metal with topologically protected surface states 
in this work. Since both the WSM and DM are bulk metals, bulk states of them are extended and no theoretical 
basis supports the hypothesis of the divergence of localization length at the WSM-DM transition. Focusing on the 
previously proposed quantum critical point between the WSM and DM phases26–28, we show that the so-called 
direct WSM-DM transition actually corresponds to two quantum phase transitions and a narrow Chern insulator 
(CI) phase (which is also called the 3D quantum anomalous Hall phase in ref.26) exists between the two distinct 
metallic phases. The critical exponent of localization length takes the value of 3D Gaussian unitary ensemble 
of the conventional Anderson localization transition34–37. Nontrivial topological nature of the CI phase is con-
firmed by Hall conductance calculations that show well-defined quantized plateaus in the bulk insulating phase. 
Furthermore, the disorder-induced various plateau-plateau transitions between different quantized values of Hall 
conductance can be well explained by the self-consistent Born approximation (SCBA).

Results
Model.  In order to compare directly with previous studies, we consider a tight-binding Hamiltonian on a 
cubic lattice of unity lattice constant that was used in refs2,26,
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† † †c c c( , )i i i, ,  and ci are electron creation and annihilation operators at site i. x̂, ŷ, ẑ are unit lattice vectors 

in x, y, z direction, respectively. σx,y,z are Pauli matrices for spin. The Hamiltonian Eq. (1) can be block diagonal-
ized in the momentum space as = ∑ † kH c c( )k k k0 0 , where σ σ= − − + +k m t k m k k( ) ( cos ) (cos cos )z z z x y z0 0

σ σ+t k k(sin sin )x x y y . The dispersion relation of the Hamiltonian is ε = ± ∆ + +± k k t k k( ) ( ) (sin sin )x y
2 2 2 2  

with ∆ = − − +k m t k m k k( ) cos (cos cos )z z x y0 . In this study, = .m t2 10 , identical to that in ref.26, is used. 
Model parameter mz  is the tunable variable to control different phases. The energy band gap closing requires 
∆ =k( ) 0 at =k 0x y,  or π±  that gives the WSM phases of the model: (1) − ≤ ≤ +m t m m t2 2z0 0  with the WNs 
located at = ± −−k m t m t(0, 0, cos ( / 2 / ))z

1
0 ; (2) − − ≤ ≤ −t m m t m2 2z0 0 with the WNs located at 

π π= ± ± ± +−k m t m t( , , cos ( / 2 / ))z
1

0 ; (3) − ≤ ≤t m tz  with the WNs located at k m t(0, , cos ( / ))z
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and π± ± − m t( , 0, cos ( / ))z
1 . Otherwise, the two energy bands are gapped. The conditions of the CI phase of the 

model are: (1) t m t m2z 0< < − + ; (2) − < < −t m m t2 z0
In order to study the disorder effect, a spin-resolved on-site disorder is included in the model,
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where σ = ↑ or ↓ and σV{ }i ,  are uniformly distributed within −W W[ /2, /2]. Here both H and H0 do not have 
time-reversal symmetry, and =σV 0i ,  and δ δ=σ σ σ σ′ ′ ′ ′V V W /12i i i i, ,
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, ,  with the bar denoting ensemble average over 

different configurations. According to the Fermi golden rule, the internode and intranode scattering around the 
WNs have the same rate of
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where ρ E( )F  is the DOS at Fermi energy and ρ ≠(0) 0 for nonzero disorder (see methods). Therefore the two 
kinds of scatterings are equally important in the disordered WSM. Moreover, because ρ E( )F  is an increasing func-
tion of | |EF  around WNs, the scattering rates increases as the Fermi energy shifts away from the WNs.

Localization length.  To investigate various quantum phase transitions in the model, we evaluate the locali-
zation length by standard transfer matrix method38,39. Here we consider a bar of size × ×M M Mx y z  with 

=M 10z
5 and = =M M Mx y . Periodic boundary conditions are applied in both x and y directions in order to 

eliminate surface effects. We fix = .m m2 19z 0 in the WSM phase since it was reported that the system undergoes 
a WSM-DM transition as disorder increases26. For =E 0F , the normalized localization length λΛ = M M( )/  ver-
sus W  for various M is shown in Fig. 1(a). Very similar to early studies26–28, two phase transition points b and c of 
Λ =d dM/ 0 seem appear. Zooming in on these transition regions, the normalized localization length are shown 
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in Fig. 1(b,c) for b and c, respectively. Apparently, the normalized localization length curves of different M cross 
at a single critical disorder Wc in Fig. 1(b) that separates a region of Λ >d dM/ 0 of a metallic phase for <W Wc 
from a region of Λ <d dM/ 0 of an insulating phase for >W Wc. However, there is a narrow insulating phase 
characterized by Λ <d dM/ 0 for < <W W Wc c1 2 around c, separating two distinct metallic phases ( Λ >d dM/ 0 
for <W Wc1 and >W Wc2), as shown in Fig. 1(c).

Finite-size scaling.  To substantiate the criticality of transitions occurring at =W W W W, ,c c c1 2, we employ 
the finite size scaling analysis for these bulk state localization lengths. For the transition at b, the single-parameter 
scaling hypothesis is applied as ξΛ = f M( / ), where ξ | − | ν−~ W Wc  diverges at the transition point. The scaling 
functions from both metallic (upper branch) and insulating (lower branch) sides are shown in Fig. 1(d). The 
perfect collapse of the data points in Fig. 1(b) into the smooth curves supports our claim of the quantum phase 
transition. The analysis yields = . ± .W t/ 21 81 0 02c  and ν = . ± .1 31 0 02, consistent with the previous numerical 
and experimental results34–37 for 3D Gaussian unitary ensemble. For the quantum phase transitions at critical 
points Wc1 and Wc2 shown in Fig. 1(c), the crossing of different curves is less perfect as it often happens in 3D sys-
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Figure 1.  (a) The normalized localization length as a function of W t/  for various system sizes and with the 
parameters specified in the text. b and c indicate the possible quantum phase transition points. (b,c) The 
close-up shots of the possible transition regions around (b and c) in (a). (d) The scaling function obtained by 
collapsing data points around the critical point Wc in (b) into the smooth curves. (e,f) The scaling functions 
obtained from the corrections to the single-parameter scaling ansatz by collapsing data points around the 
critical points Wc1 and Wc2 in (c) into the smooth curves, respectively.
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tems when the system size is limited by the computer resources. We therefore follow the more accurate analysis 
used in ref.40 to include the contributions of the most important irrelevant parameter to the scaling function

ψ φΛ = ν µF M M( , ), (4)1/

where ψ is the relevant scaling variable with ν > 0 and φ is the irrelevant scaling variable with µ < 0. Using 
ν = .1 30 for the 3D Gaussian unitary class and by minimizing χ2, we fit the data points around the two transition 
points shown in Fig. 1(c) to the scaling function Eq. (4) (see methods). Indeed, the perfect scaling curves in 
Fig. 1(e,f) with = . ± .W t/ 5 81 0 06c1  and = . ± .W t/ 6 58 0 19c2  support our analysis. The chi square of the two 
fittings are χ = .78 802  and .82 49 with the degrees of freedom =N 86d  and 88 (the number of data points minus 
the number of fitting parameters), respectively. The reduced chi square of the two cases are χ χ= = .N/ 0 92dred

2 2  
and 0.94, quite satisfactory numbers. We also calculate the localization length for various mz (see Fig. 2) and EF 
(see Figs 3 and 4) in the WSM phase. It is shown that the insulating phase between the two distinct metallic phases 
is generic, as shown in Fig. 2. A phase diagram is constructed in the −m m W t/ /z 0  plane for =E 0F  and will be 
discussed below. As EF increases from zero energy (see Fig. 3), the intermediate insulating phase expands initially 
(see Fig. 4) since the internode scattering rate increases with EF according to Eq. (3). Further increase of EF, the 
linear dispersion relation fails and the system becomes a conventional 3D metal with Fermi energy deep inside 
the conduction band, as shown in Fig. 4. Moreover, in a recent work, it was shown that the intermediate CI phase 
becomes more apparent for tilted WNs41. This is consistent with our scattering analysis, since tilting WNs 
increases the density of states around WNs so that the internode scattering rate is enhanced.

Quantum transport.  In order to investigate the chiral surface states and topological nature of the intermediate 
insulating phase identified above, we calculate the quantum conductance of a four-terminal Hall bar of size 

× ×80 40 8 marked by blue color in Fig. 5(a). The bar is described by the Hamiltonian Eq. (2), and the periodic 
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2.40, respectively. =E 0F  and = .m t2 10  are fixed.
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boundary condition is applied in the z direction while the open boundary condition is applied in the x and the y direc-
tions. Four semi-infinite metallic leads marked by orange color are connected to the bar as shown in Fig. 5(a). One can 
view the system as coupled multiple two-dimensional subsystems of = ∑k h k k( ) ( , )k k x y0 z z

  with π=k n2 /8z , where 
the integer ∈ −n [ 4,4) labels allowed kz within the first Brillouin zone (BZ). For ≠k Kz z (WNs), two-dimensional 
Hamiltonians h k k( , )k x yz

 are gapped whose Chern number C k( )z  is | | < | | =C k K( ) 1z z  and | | > | | =C k K( ) 0z z  for 
− < < +m t m m t2 2z0 0

26. Thus, a chiral surface state must exist for each allowed ∈ −| | | |k K K( , )z z z , and contrib-
ute a quantized Hall conductance of e h/2 . Therefore, the total Hall conductance from the surface states is 

π= ∑ = | |G e h C k e K M h/ ( ) /( )H k z z z
2 2

z
. The Hall conductivity is σ π= = | |G M M M e K M h M/( ) /( )H H x y z z x y

2 . 
Moreover, in the CI phase, = ±C k( ) 1z  for all the kz

26. Thus, the Hall conductance is = ±G M e h/H z
2 .

The Hall conductance in the absence of contact resistance can be calculated from the formula42

≡ = −G I V e
h

T T/ ( ), (5)H 13 24

2

12 14

where Tij  is the transmission coefficient from lead j to lead i, and current Ii  in lead i is given by the 
Landauer-Büttiker formalism = ∑ −≠I e h T V T V( / ) ( )i j i ji i ij j

2  where the voltage on lead i is Vi
43,44. For the clean 

system, the Hall conductance as a function of m m/z 0 is shown in Fig. 5(b). As expected, the Hall conductances in 
the normal insulator (NI) and CI phases are respectively 0 and e h8 /2 . In the WSM phase, there are various 
plateau-plateau transitions between quantized Hall conductances ∈G e h(0, 8 / )H

2 . Because the change of mz shifts 
WN positions of k m t m t(0, 0, cos ( / 2 / ))z

1
0= ± −− , the transition from +n e h(2 1) /2 -plateau to −n e h(2 1) /2

-plateau occurs whenever π= +m m t n2 cos(2 /8)z 0 , where =n 1, 2, 3 in the current case. The density plot of 
Hall conductance (ensemble average over 20 configurations) at =E 0F  in the m m/z 0 − W t/  plane is shown in 
Fig. 5(c). For ∈ . .m m/ [2 1,2 4]z 0 , the clean system is a WSM whose Hall conduction at WNs is from the surface 
states and is quantized at a value determined by mz as mentioned early. Interestingly, at a fixed mz (along a vertical 
line in Fig. 5(c)), the Hall conductance can jump from one quantized value into another as disorder increases.

Self-consistent Born approximation.  In order to understand these transitions, we use the SCBA to see 
how the disorder modifies the model parameters26,45,46. The self-energy at the Fermi energy due to the disorder is

∫Σ = + −+ −k km W W
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12

[ 0 ( , , )] ,
(6)z F z

2

BZ BZ

3 1

where π=S 8BZ
3 is the volume of the first BZ and = + Σk km W m W( , , ) ( ) ( , )z z0   is the effective 

Hamiltonian. For =E 0F , one has σΣ = Σz z since  has the particle-hole symmetry47. The dispersion relation of 
the effective Hamiltonian  is then ε = ± ∆ + Σ + +± k k t k k( ) [ ( ) ] (sin sin )z x y

2 2 2 2 . Equation (6) is solved 
numerically and Σ m W( , )z z  is shown in Fig. 5(d). Apparently, Σ <m W( , ) 0z z  and is a monotonically decreasing 
function of W. Consequently, the modified mass term = + Σ∼m mz z z  decreases and the WNs at 

~k m t m t(0, 0, cos ( / 2 / ))z
1

0= ± −−  are shifted towards the BZ boundary as W  increases. The plateau-plateau tran-
sitions occur at
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Figure 3.  Bulk energy bands of the clean system (with the model parameters = .m m2 19z 0 and = .m t2 10 ) 
projected onto the kz − E t/  plane. The dashed lines (from down to up) denotes the Fermi energies E t/F  = 0.1, 
0.2, 0.3, 0.4, 0.6, 0.8, 1.2, 1.8, respectively, that are used for localization length calculations, as shown in Fig. 4.
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π= +∼m m W m t n M( , ) 2 cos(2 / ), (7)z z z0

which are plotted as three black curves in Fig. 5(c) for =n 1, 2, 3 (from bottom to top), respectively. They separate 
different plateaus. The system becomes a DM at strong disorder (about >W t/ 7), where the SCBA is not expected 
to work and no quantized Hall conductance is observed.

Phase diagram.  Our results from localization length and quantum transport calculations are summarized in 
the phase diagram and the density plot of Hall conductance in the m m/z 0 − W t/  plane for =E 0F  as shown in 
Fig. 5(c). Only those mz , at which the clean system is in the WSM phase and was reported to undergo the 
WSM-DM transition as disorder increases26, are considered. The two green curves are the boundaries of the DM/
CI phases (upper line) and CI/WSM phases (lower line). The narrow CI phase region separates the WSM phase 

M=8
M=10
M=12
M=14

M=8
M=10
M=12
M=14

M=8
M=10
M=12
M=14

M=8
M=10
M=12
M=14

M=8
M=10
M=12
M=14

M=8
M=10
M=12
M=14

M=8
M=10
M=12
M=14

M=8
M=10
M=12
M=14

)d()c(

)f()e(

)h()g(

)b()a( 103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

0 2 4 6 8 0 2 4 6 8

0 2 4 6 80 2 4 6 8

0 2 4 6 80 2 4 6 8

0 2 4 6 80 2 4 6 8

Λ
Λ

Λ
Λ

W/ Wt /t

EF/t=0.1 EF/t=0.2

EF/t=0.3 EF/t=0.4

EF/t=0.6 EF/t=0.8

EF/t=1.2 EF/t=1.8

Figure 4.  (a–h) The normalized localization length as a function of W t/  for = .E t/ 0 1F , 0.2, 0.3, 0.4, 0.6, 0.8, 1.2, 
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from the DM phase. The CI phase is inferred from the fact that all bulk states are localized according to the local-
ization length calculations while the Hall conductance of a finite bar is nonzero and takes several quantized values 
(red for 5, blue for 3, and green for 1 in units of e h/2 ), as shown in Fig. 5(c). The WSM phase is defined as bulk 
metallic states (extended wavefunctions) with surface conducting channels while the DM phase has bulk metallic 
states without surface conducting channels. Both the CI and WSM phases can have well quantized Hall conduct-
ance (red, blue, and green regions in Fig. 5(c)) while quantized Hall conductance is absent in the DM phase.

Discussion
The generality of the no direct WSM-DM transition can be understood from the following reasoning. In order to 
have a direct WSM-DM transition, WNs and topologically protected surface states should be destroyed simul-
taneously. However, the two events are not exactly the same although they are related. The topologically pro-
tected surface states are due to nonzero band Chern numbers of two-dimensional slices between the two WNs. 
In general, disorder pushes the two WNs away from each other and towards the BZ boundary (as elaborated by 
the SCBA) where they can merge. As a result, the WNs are destroyed while the nonzero band Chern numbers 
of two-dimensional slices survive, resulting in the intermediate CI phase. Whether disorder can pull two paired 
WNs together and towards the BZ center so that the WNs and band Chern numbers can simultaneously be 
destroyed is an open question.

In conclusion, we show that the claimed direct transition from a WSM to a DM do not exist under uncorre-
lated on-site disorder due to non-negligible internode scattering. Instead, there exists a intermediate CI phase that 
separates a WSM phase from a DM phase. Namely, there are actually two quantum phase transitions between the 
disordered WSM and the DM: One is from the WSM to the CI, and the other is from the CI to the DM. The crit-
ical exponent of ν . 1 3 suggests that the two transitions belong to the same universality class of the 3D Gaussian 
unitary ensemble of the conventional Anderson localization transition. The intermediate CI phase persists and 
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The four semi-infinite metallic leads are represented by the orange parts. (b) The Hall conductance as a function 
of m m/z 0 for the clean system. The shallow blue, red, and yellow regions mark the CI, WSM, and normal 
insulator (NI) phases, respectively. (c) The density plot of Hall conductance in the m m/z 0 − W t/  plane for the 
disordered system. The three black lines (from bottom to top) are plateau-plateau transition lines obtained from 
the SCBA for =n 1, 2, 3 in Eq. (7). The two green lines enclose the CI phase region according to the localization 
length calculations. (d) The Σz component of the self-energy obtained from the SCBA as a function of m m/z 0 
and W t/ .
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expands at weak disorder as the Fermi energy slightly shifts away from the WNs. Our results do not dependents 
on specific choices of lattice model since the analysis based on low-energy effective Weyl Hamiltonians is 
general.

Methods
Internode and intranode scattering rates.  The rates of internode and intranode scatterings caused by 
uncorrelated on-site disorder are derived from low-energy effective Weyl Hamiltonians in this section. For the 
model parameters m m t m t(2 , 2 )z 0 0∈ − +  studied in the manuscript, the clean system supports a pair of WNs 
at = ± −±

−K m t m t(0, 0, cos ( / 2 / ))z
1

0 . The low-energy effective Weyl Hamiltonians (to the first order in the 
momentum deviation = − ±q k K ) around the WNs at ±K  are

∑ σ=
α

α α α±
=

±q v q( ) ,
(8)x y z, ,

H �

where the Fermi velocities are = =± ±v v t/x y  and = ± − −±v t m m( 2 ) /z z
2

0
2 . The energy bands of the Weyl 

Hamiltonians are ± = ± ∑α α α
±E v qq

2 2 2 . To be concrete and without losing generality, we fix the Fermi energy 
in the conduction band =E EF q as shown in Fig. 6, and the eigenstates with the Fermi energy are

+ =











φ±

±

± ±K qc
a

b e
, ,

(9)

q

q
i q

where θ=± ±a cos( /2)q q , θ=± ±b sin( /2)q q , θ =± ±v q Ecos /q z z F , and φ =± ± ±v q v qtan /q y y x x. In the presence of disor-
der, the total scattering processes consist of two parts: the internode scattering and intranode scattering that are 
schematically shown in Fig. 6. According to the Fermi golden rule, the internode and intranode scattering rates 
are

 ∑ π δ
π ρ

Γ = + ′ +
′

− =
′

±

K q K qc V c E E W E2 , , ( ) ( )
24

,
(10)q

q F
F

inter
2

2

∑ π
δ

π ρ
Γ = + ′ +

′
− = .

′
± ±K q K qc V c E E W E2 , , ( ) ( )

24 (11)q
q F

F
intra

2
2

 

where = ∑ σ σ σ σ
†V c V ci i i i, , , ,  is the uncorrelated on-site disorder in Eq. (2) and the bar denotes ensemble average 

over different configurations. Therefore, we can conclude that the internode and intranode scattering rates are 
identical in Weyl semimetals subject to uncorrelated on-site disorder. Moreover, the scattering rates increase with 
| |EF  since the density of states is an increasing function of | |EF .

Correction to the single-parameter scaling hypothesis.  Following the more accurate analysis used in 
ref.40 to include the contributions from the most important irrelevant parameter, the scaling function becomes 
Eq. (4). Under the Taylor expansion around a transition point Wc, the scaling function is

∑ ∑φ ψ ψ ψΛ = =µ ν ν ν

= =
M F M F M M F( ), ( ) ,

(12)n

n
n n

n n
m

n
m m

nm
0

1/ 1/

0

/I R

where ψ = −b W W( )c  and φ = + −c c W W( )c0 1  up to the first order40. One can remove the contributions from 
the irrelevant scaling variable to Λ and define the corrected localization length as

EF

K+
K–

Figure 6.  Schematic diagram of internode scattering represented by the dashed arrow and intranode scattering 
represented by the solid arrows.
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∑ φ ψΛ = Λ − .µ ν

=
M F M( )

(13)c
n

n
n n

n
1

1/I

Then, the corrected localization length follows the scaling law

ξ ξΛ = ∼ − .ν−f M W W( / ), (14)c c

In our analysis, we choose = =n n 2I R  and = =F F 101 10
40.

Data availability.  All data generated or analysed during this study are included in this published article.
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