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Abstract: The aim of the present study was to investigate the effects of Lycium barbarum 

polysaccharides (LBP) on cisplatin-induced hair cell damage in the organ of Corti explant. 

The neonatal (P2-3) rat organ of Corti explant was exposed to cisplatin (20 μM; 48 h) with 

or without LBP pretreatment (150 and 600 μg/mL; 24 h). Hair cell loss was indicated by 

FITC-labeled phalloidin staining. The level of reactive oxygen species (ROS) and 

alteration of mitochondrial membrane potential (ΔΨm) in hair cells were analyzed using 

fluorescent probes 2′,7′-dichlorofluorescein diacetate and JC-1, respectively. The results 

showed that LBP significantly attenuated hair cell loss (p < 0.01). Hair cells pretreated with 

LBP showed significant reduction in ROS production and the decline of ΔΨm compared with 

cisplatin alone group (p < 0.01), indicating the protective effect of LBP on cisplatin-induced 

hair cell loss. Taken together, these results indicate that LBP was effective in attenuating 

cisplatin-induced hair cell loss by reducing the production of ROS and maintaining 

mitochondrial ΔΨm. 
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1. Introduction 

Cisplatin, an anti-neoplastic agent, has been widely used to treat a broad spectrum of malignant 

tumors; however, the administration of cisplatin is limited by its side effects, including ototoxicity and 

nephrotoxicity [1–3]. Increased documentation demonstrated that the generation of reactive oxygen 

species (ROS), which interferes with the antioxidant defense systems of the cochlea, played an 

important role in the pathophysiology of cisplatin-induced ototoxicity [4,5]. In the inner ear, the 

increased ROS caused by cisplatin can induce apoptosis in the cochlear hair cells as well as in the 

neurons of the spiral ganglion. Some in vitro and in vivo studies reported the protective effect of 

antioxidants against cisplatin-induced hair cell death [6,7]. 

Lycium barbarum, a traditional Chinese herbal medicine, which is widely consumed by oriental 

people, has exhibited anti-cancer and immuno-enhancing activities [8–10]. Recently, L. barbarum has 

been reported to have protective effect against oxidative damage [11–13]. Polysaccharides are the 

main components isolated from L. barbarum. Cheng et al. [14] reported that L. barbarum 

polysaccharides (LBP) significantly ameliorated liver injury, prevented the progression of  

alcohol-induced fatty liver and improved the antioxidant functions in liver. Lin et al. [15] indicated 

that at high concentration, most polysaccharide fractions were effective in scavenging superoxide 

anion, 2,2-diphenyl-1-picrylhydroxyl as well as hydroxyl radicals. In animal models, some studies 

suggested that the administration of antioxidants, including cisplatin, protects against hearing loss 

caused by noise and drugs [16,17]. 

In our previous study LBP attenuated mitochondrial swelling in spiral ganglion cells in rats treated 

with cisplatin. Given its antioxidant property, it is conceivable that LBP may be effective in preventing 

cisplatin-induced hair cell damage. Therefore, this study was aimed to investigate the effects of LBP 

on cisplatin-induced hair cell damage in the organ of Corti explant. 

2. Results and Discussion 

2.1. LBP Protection Against Cisplatin-Induced Hair Cell Death 

To assess the toxicity of cisplatin on hair cells, the organ of Corti explant was exposed to the 

cisplatin (20 μM) for 48 h. The density of hair cells was analyzed. Figure 1A shows the orderly 

arrangement of inner hair cells (IHCs) and outer hair cells (OHCs) in the control group, with the 

arrangement of OHC stereocilia in a V-shaped pattern. Our previous experiment demonstrated that 

exposure to LBP (600 μg/mL) for 72 h had no damage on hair cells (Figure 1B). Cisplatin exposure for 

48 h resulted in substantial loss of OHCs and IHCs compared with the control group (p < 0.01; Figure 1C). 

LBP pretreatment (150 and 600 μg/mL) significantly attenuated hair cell loss in comparison to 

cisplatin alone group (p < 0.01; Figures 1D,E). The number of hair cells shown in Figure 1F suggests 

that LBP can protect against cisplatin-induced hair cell loss in a dose-dependent manner. 



Int. J. Mol. Sci. 2011, 12 8984 

 

 

Figure 1. Effects of L. barbarum polysaccharides (LBP) on the cisplatin-induced hair cell 

loss (mean ± SD). The basal turn of cochlea was used to investigate the effect of LBP on 

cisplatin induced hair cell loss. * p < 0.01 compared with the control group; # p < 0.01 

compared with the cisplatin alone group. Scale bar, 20 μm. 
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2.2. LBP Reduced the Generation of ROS in Hair Cells 

The generation of ROS plays a pivotal role in the pathophysiology of cisplatin-induced hearing  

loss [4,5]. Mitochondria are the important sources for ROS in cisplatin-mediated auditory cell  

damage [18,19]. Mitochondrial ROS burst is an early upstream apoptotic signal. Oxidative damage to 

mitochondria causes the impairment of mitochondrial function and subsequently leads to cell death via 

apoptosis and necrosis [20–22]. Therefore, we investigated the level of ROS in organ of Corti explant 

using DCFH-DA. Figure 2 shows the alteration of fluorescent intensity in organ of Corti explant 48 h 

after cisplatin addition. Exposure to cisplatin (20 μM) for 6 h induced a detectable increase of 

fluorescent intensity for ROS in hair cells (data not shown). Cisplatin exposure for 48 h caused more 

than a two-fold increase in fluorescent intensity for ROS production in hair cells (p < 0.01).  

A significantly decreased level of fluorescence intensity was discovered in organ of Corti explant 

pretreated with LBP compared with the cisplatin alone group (p < 0.01). The results indicate that LBP 

can reduce generation of ROS in organ of Corti treated with cisplatin. Our results further confirm that 

LBP has a protective effect against oxidative damage. 

Figure 2. Effects of LBP on the generation of reactive oxygen species (ROS) in hair cells 

(mean ± SD). * p < 0.01 compared with the control group; # p < 0.01 compared with the 

cisplatin alone group. 

 

2.3. Effects of LBP on Mitochondrial ΔΨm 

An enhanced ROS will cause a decrease of mitochondrial membrane potential, which alters cellular 

energy production and starts mechanisms for the execution of apoptosis [23]. In our study, we found 

that cisplatin caused mitochondrial ΔΨm decline in hair cells and that the decline of ΔΨm can be 

attenuated by LBP (p < 0.01). As shown in Figure 3, the ratio of orange-red/green fluorescent density 

in cisplatin alone group declined by 43.5% in comparison to the control group and no significant 

difference in ΔΨm was found between control group and LBP pretreated groups. The results 

demonstrate that LBP can inhibit the decline of ΔΨm in hair cells treated with cisplatin. Our results indicate 

that LBP protects against cisplatin-induced hair cell damage by maintaining the ΔΨm in hair cells. 
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Figure 3. Effects of LBP on mitochondrial ΔΨm in hair cells (mean ± SD). * p < 0.01 

compared with the control group. # p < 0.01 compared with the cisplatin alone group. 

 
2.4. Discussion 

The application of cisplatin resulted in progressive and irreversible hearing loss, which is the main 

limiting factor of the cisplatin dosage in current clinical therapeutic strategies. Ototoxicity is a  

dose-limiting side effect of chemotherapeutic treatment with cisplatin. Cisplatin-induced ototoxicity is 

initiated by its uptake into the hair cells and neurons. ROS generation in cisplatin-treated hair cells was 

closely correlated with its ototoxicity. An increased ROS will cause a decrease of mitochondrial 

membrane potential, which alters cellular energy production and starts mechanisms for the execution 

of apoptosis [20,23]. Our results showed that exposure to cisplatin (20 μM) for 6 h increased the 

generation of ROS in hair cells and about a two-fold increase in ROS production 48 h after  

cisplatin exposure. 

Many antioxidants have been used to prevent cisplatin-induced hearing loss. D-methionine was 

reported to protect cochlear antioxidant enzyme levels from cisplatin-induced decrements [24]. 

Systemic administration of D-methionine was proved to have a potential oto-protective role [25]. 

Sodium thiosulfate has also been described as a protective agent against cisplatin toxicity. Wang et al. 

reported that local application of sodium thiosulfate into the cochleae of guinea pigs prevented 

cisplatin-induced hearing loss and that a minimal loss of outer hair cells in the organ of Corti was 

found, indicating the protective effect of sodium thiosulfate against cisplatin toxicity [26]. Neuwelt et al. 

reported that sodium thiosulfate was significantly protective against cisplatin-induced ototoxicity 4 h 

after cisplatin administration [27]. 

Increasing evidence indicates that LBP has protective effect against oxidative damage [11–15]. 

Previous studies have demonstrated that LBP possessed biological activities including anti-aging,  

anti-tumor, and immune-stimulatory [8,9,28]. To the best of our knowledge, there are only a few 

studies concerning the effect of LBP on the cisplatin ototoxicity. Our current findings showed that 

LBP attenuated hair cell loss induced by cisplatin. To investigate the underlying mechanism of the 

protective effect, we further analyzed the ROS generation in hair cells treated with cisplatin with or 
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without LBP. Our findings indicated that LBP reduced cisplatin-induced intracellular ROS in hair cells 

treated with cisplatin. 

Previous studies demonstrated that epicatechin extracted from the green tea significantly inhibited 

cisplatin-induced intracellular ROS generation in a cochlear organ of Corti-derived cell line, HEI-OC1. 

Also, epicatechin treatment prevented cisplatin-induced reduction in ΔΨm by 40% [29]. To investigate 

if the LBP can maintain the stability of ΔΨm in hair cells, we monitored the alterations of ΔΨm in hair 

cells treated with cisplatin, with or without LBP. Our results revealed that LBP inhibited the decline of 

ΔΨm in hair cells treated with cisplatin, suggesting that LBP played an important role in maintaining 

the stability of ΔΨm in hair cells. 

Our findings indicated the protective effect of LBP against cisplatin ototoxicity. The limitation in 

the present study, however, was that the protective effect of LBP against cisplatin ototoxicity in 

organotypic culture may not occur in the in vivo model. So, further research needs to be done in animal 

models to assess the protective effect of LPB. 

3. Experimental Section 

3.1. LBP Extract Processing 

The dried wolfberries (700 g) were grounded to fine powder, extracted with pure water in reflux for 

3 times (800 mL, 700 mL, 700mL) and then concentrated to a volume at 350 mL under vacuum. The 

concentrated extract was precipitated using 95% ethanol. After centrifugation and several rinses with 

absolute ethanol, the resulting precipitate was extracted with 6 times volume of 95% ethanol and 

centrifuged; then the precipitate was dissolved with water and deproteinized. The prepared solution was 

dialyzed against running distilled water for 24 h. After centrifugation with absolute ethanol, the resulted 

precipitate was vacuum-dried at 40 °C to yield a brown powder Wolfberry extract-LBP (1.8 g) [11]. The 

content of LBP was determined as 82.1% by phenol-sulfuric acid method. 

3.2. Animals and Dissection 

Newborn Sprague-Dawley rats (P2-3) were used to prepare cochlear organotypic cultures. All 

experimental procedures in this study were conducted according to current institutional guidelines for 

laboratory animal care. 

The dissection procedure is similar to that described by Zhang et al. [30]. After decapitation, the 

heads were cleaned with 75% ethanol. The scalp was removed and the skull was transected along  

mid-sagittal plane. The brain was removed to expose the posterior fossa. The temporal bones were 

freed from the posterior hemi-skulls and transferred into Petri dishes containing 4 °C PBS. The 

following procedures were performed on ice. Under a stereomicroscope, the tympanic membrane and 

annulus were laterally peeled away and the surrounding cartilages were removed to expose the 

cochlear capsule. The cochlear capsule was carefully removed away. The stria vascularis and spiral 

ligament were stripped away from the base to the apex, and the organ of Corti was separated away 

from the modiolus. Our previous experiments in adult rats indicated that the cisplatin caused hearing 

loss at frequencies of 8, 16, 24 and 32 kHz. So, in the present study, the basal turn of cochlea was used 

to investigate the effect of LBP on cisplatin induced hair cells loss. 
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3.3. Organ of Corti Culture 

A drop (50 μL) of cool, DF12 + 10% FBS was placed in the center of a 24 × 24 mm glass coverslip 

precoated with 10 μg/mL poly-L-lysine (PLL, MW 70,000–150,000, Sigma-Aldrich, St. Louis, MO, 

USA) and placed in a 35 mm diameter culture dish (Corning, Lowell, MA, USA) and the organ of 

Corti was immersed in the DF12 + 10% FBS. Close attachment of the organ of Corti to the glass 

coverslip was established by aspirating DF12 + 10% FBS. The dish containing the cochlear explant 

was placed on the ice for half an hour, and then 1.5 mL of DF12 + 10% FBS was added to the dish. 

The organ of Corti explant was maintained at 37 °C in a 5% CO2 incubator with humidity. 

3.4. Cisplatin and LBP Treatment 

The organ of Corti explants were divided into four groups (n = 7 per treatment condition): (I) the 

organ of Corti explants cultured in DF12 + 10% FBS for 72 h as the control; (II) the organ of Corti 

explants cultured in control medium with LBP (150 μg/mL) for 24 h and subsequently exposed to 

cisplatin (20 μM) for 48 h; (III) the organ of Corti explants cultured in control medium with LBP  

(600 μg/mL) for 24 h and subsequently exposed to cisplatin (20 μM) for 48 h; (IV) the organ of Corti 

explants were cultured for an initial 24 h in control medium and then exposed to cisplatin (20 μM) for 

the next 48 h. 

3.5. Assessment of Hair Cells Death 

At the end of treatment, the specimens were fixed in 4% paraformaldehyde for 4 h in 0.1 M 

phosphate buffer (pH 7.4). Specimens were rinsed in 0.1 M PBS, incubated in 0.25% Triton X-100 for 

5 min and immersed in FITC-labelled phalloidin (1:800; Sigma-Aldrich, St. Louis, MO, USA) in PBS 

for 30 min. Labeled hair cells were observed under a fluorescence microscopy(magnification 200×; 

NIKON, Tokyo, Japan). The number of hair cells was counted at each field from a single sample. Each 

group had seven samples. The average of hair cell counts from seven samples was evaluated. 

3.6. ROS Levels in Organ of Corti Explant 

ROS production in organ of Corti explant was assayed using a fluorescent dye 2′,7′-dichlorofluorescein 

diacetate (DCFH-DA) (Beyotime Biotech, Nantong, China) after treatment with cisplatin for 48 h. 

Briefly, the supernatant of the organ of Corti explant was removed, and the specimens were washed 

twice with cold 0.01M PBS (pH 7.4) and incubated with DCFH-DA (10 μmol/L) at 37 °C for 30 min. 

After DCFH-DA treatment, the chemical was removed and the specimens were washed three times 

with PBS. The fluorescence was read at 485 nm excitation and 530 nm emission under an inverted 

fluorescence microscope. Image Pro-Plus Version 6.0 software [31] was applied for measuring the 

fluorescence intensity of at least six fields per dish. Three parallel experiments were performed. 

3.7. Measurement of Mitochondrial Membrane Potential (ΔΨm) 

Mitochondrial ΔΨm in hair cells was estimated using fluorescent probe JC-1, which exists in two 

forms: monomer and J-aggregate. JC-1, which has been widely used to assess the changes of ΔΨm, is a 
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lipophilic fluorescent cation that incorporates into the mitochondrial membrane, where it can shift 

from aggregates to monomer due to ΔΨm decrease. At low mitochondrial ΔΨm, JC-1 exists mainly in a 

monomeric form which emits green fluorescence. At high mitochondrial ΔΨm, this molecule forms 

aggregates which emit orange-red fluorescence. The dye in the healthy cells, in which mitochondrial 

ΔΨm is high, forms J-aggregates and emits orange-red fluorescence [32]. A break-down of mitochondrial 

ΔΨm is a marker of apoptosis [33,34], resulting in a decrease of orange-red fluorescence and increase of 

green fluorescence. JC-1 was excited with a 488-nm argon laser, and the shift from orange-red to green 

fluorescence indicated the decline of ΔΨm. 

After treatment with cisplatin for 48 h, the culture medium was removed, and the cultures were 

washed twice with cold 0.01M PBS (pH 7.4) and incubated with JC-1 (Beyotime Biotech, Nantong, 

China) (5.0 μg/mL) at 37 °C for 20 min. After incubation, the chemical was removed and the specimens 

were washed three times with PBS and placed in DF12. The fluorescence was read at 488 nm 

excitation and 530 nm emission for green, and at 540 excitation and 590 emission for orange-red. The 

ratios of orange-red/green JC-1 fluorescence intensity were calculated using an inverted fluorescence 

microscope. Typically, cells with a healthy population of mitochondria with a high mitochondrial ΔΨm 

have a high ratio of orange-red/green fluorescence intensity, whereas cells with declining 

mitochondrial ΔΨm have a low ratio of orange-red/green fluorescence intensity. Image Pro-Plus 6.0 

software [31] was applied to for measuring the fluorescence intensity of at least six fields per dish. 

Three parallel experiments were performed. 

3.8. Statistical Analysis 

Fluorescence intensity for ROS and mitochondrial ΔΨm was measured using Image Pro-Plus 6.0. 

All statistical analyses were performed using stata version 10.0 software [35]. Data from at least three 

independent experiments were expressed as means ± SD. Comparisons of the means of different 

groups were made using one-way analysis of variance (ANOVA) or Kruskal-Wallis test. P-value 

below 0.05 was considered to be significant. 

4. Conclusions 

In conclusion, we show for the first time that LBP has a protective effect against cisplatin induced 

hair cell damage. The antioxidant ability of LBP plays a vital role in attenuating oxidative damage in 

hair cells induced by cisplatin. In addition, we demonstrate that the mechanism of the protective effect 

of LBP against cisplatin ototoxicity is partly attributed to the role of LBP in maintaining mitochondrial 

membrane potential. 
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