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Abstract

Detecting high-collision-concentration locations based solely on collision frequency may

produce different results compared to those considering the severities of the collisions. In

particular, it can lead government agencies focusing sites with a high collision frequency

while neglecting those with a lower collision frequency but a higher percentage of injury and

fatal collisions. This study developed systematic ways of detecting reproducible fatal colli-

sion locations (R) using the naïve Bayes approach and a continuous risk profile (CRP) that

estimates the true collision risk by filtering out random noise in the data. The posterior proba-

bility of fatal collisions being reproducible at a location is estimated by the relationship

between the spatial distribution of fatal-collision locations (i.e., likelihood) and the CRP (i.e.,

prior probability). The proposed method can be used to detect sites with the highest proxy

measure of the posterior probability (PMP) of observing R. An empirical evaluation using 5-

year traffic collision data from six routes in California shows that detecting R based on the

PMP outperform those based on the SPF-based approaches or random selection, regard-

less of various conditions and parameters of the proposed method. This method only

requires traffic collision and annual traffic volume data to estimate PMP that prioritize sites

being R and the PMPs can be compared across multiple routes. Therefore, it helps govern-

ment agencies prioritizing sites of multiple routes where the number of fatal collisions can be

reduced, thus help them to save lives with limited resources of data collection.

Introduction

The Fixing America’s Surface Transportation Act [1] requires that the Highway Safety

Improvement Program (HSIP) [2] and federal aid programs establish data-driven and
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performance-based approaches to reduce traffic fatalities and serious injuries on all public

roadways. Under HSIP, state agencies that receive federal funding are required to develop a

statewide coordinated plan to improve the safety of their roadways through the Strategic High-

way Safety Plan (SHSP) [3]. In developing guidelines for the SHSP, state agencies are man-

dated under Title 23, U.S.C. Section148 HSIP (d)(1)(B) (Public Law 109–59) to consider the

locations of fatalities and serious injuries. Title 23, U.S.C. Section 148 HSIP also states that the

state agency must utilize a safety-data collection system with a method for detecting sites with

a high frequency of fatal and serious injuries.

HSIP provides no explicit guidelines for determining high collision concentration locations

(HCCL) considering severity. However, by requiring state agencies to consider the locations of

fatal collisions, it is implicitly assumed that these locations are reproducible. When this

assumption does not hold, it can result in the suboptimal allocation of limited government

resources as the method used by a government agency to detect HCCLs essentially dictates

how the agency’s resources are allocated to improve the safety of the roadway system it

manages.

Fig 1 shows the annual collision trend in California freeway from 2005 to 2017. Since 2005,

the number of collisions has declined until 2013 and then increases again to 2017. In compari-

son between 2005 and 2017, the number of total collisions was quite higher in 2017, the ratio

of injury collisions was slightly higher in 2017, and the ratio of the fatal collision was slightly

lower in 2017 [4]. This trend indicates that both fatal and injury collisions are still issues to be

addressed in spite of advances in vehicle safety systems, roadway design, and various traffic

safety-countermeasures [5]. The investigation of every site where fatal collisions occur can be

cost-prohibitive, considering that state agencies often struggle to cope with the long list of sites

to be investigated for safety improvement [6]. As such, it is important to differentiate the sites

where fatal collisions are likely to occur in the near future from those where fatal collisions are

not likely to occur again.

If the percentages of fatal, serious injury, and property damage only (PDO) collisions

remain unchanged or comparable across sites, the detection of HCCLs based solely on colli-

sion frequency may produce results comparable to those for HCCLs after weighting collisions

with respect to severity. However, in practice, this is often not the case as sites that are plagued

by recurrent freeway bottlenecks can report a high frequency of PDO collision but a low fre-

quency of fatal and serious injuries. As traffic moves at slow speeds, collisions occurring in

congested traffic conditions typically involve PDO or minor injuries. In contrast, collisions

that occur while traffic is moving in a free flow state can result in a higher percentage of serious

and even fatal injuries. Therefore, a procedure detecting HCCL that can differentiate the sever-

ity levels in traffic collision data must be used to efficiently reduce the number of fatal

collisions.

The Federal Highway Administration [7] and California Department of Transportation

(Caltrans) [8] provides general guidelines in detecting the HCCLs in the Highway Safety Man-

ual (HSM), based on a safety performance function (SPF) that statistically predicts the

expected frequency of collisions. HCCLs can be determined by comparing traffic collision data

obtained for pre-defined short roadway segments, i.e., 0.1–1.5 km for homogeneous sections

regarding the average annual daily traffic (AADT) [9, 10] with the expected collision frequency

estimated using the SPF. While the SPFs estimate the average collision frequency for all colli-

sions, the HSM suggests a procedure to estimate the collision frequency by crash severity. For

instance, the number of fatal or injury collisions can be estimated by separating the estimated

total crash frequencies as distributions of crash severity calibrated by local data. SPFs directly

calibrated by fatal and injury (FI) collisions [11, 12] or fatal collisions [13] have also been

developed in previous studies. Although such procedures can be used to estimate the expected
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number of fatal collisions in sites that are segmented by roadway attributes, the infrequency of

fatal collisions causes a bias in safety measures, such as the potential for safety improvement

(PSI), due to the extremely low number of expected and observed values. Therefore, compared

with the PSI values for the FI or total number of collisions, which are well established and for

which procedures have been verified [7, 14], the reliability of the PSI value for fatal collisions

may be significantly worse.

To remedy this situation, researchers [15–17] have proposed a method for assigning different

weights to collisions based on their severity level to identify sites that may experience low colli-

sion frequency but a high percentage of serious injuries. These authors have proposed weighting

collision frequencies with respect to collision severity based on the associated economic loss.

Blincoe et al. reported that the average economic loss associated with fatal collisions in 2000 was

1,330 times higher than that of PDO collisions [18]. Therefore, weighting collisions based on

their associated economic loss can result in problems when some of the fatal collisions that

occur randomly over extended roadway segments are solely the fault of the driver (i.e., driving

under the influence (DUI) and suicide). When this occurs, it can increase both the false-positive

rate (i.e., flagging a site as an HCCL when it is not) and the false-negative rate (i.e., not detecting

a true HCCL). Robustness and consistency are important performance measures in the identifi-

cation of HCCLs [19], and a comparative analysis of HCCL identifications revealed that safety

evaluations for which the severity of collisions is weighted based on the associated economic

loss are subject to inconsistency over repeated observation periods [16].

To address these issues, in the present study, systematic methods for detecting reproducible

fatal collision locations were developed using Bayes’ rule and the continuous risk profile

(CRP) [20–22]. While the Bayes’ rule have been used for SPF-based approaches to improve the

model performance using past evidence from other SPF as a prior [23], this study used the

CRP as a prior for detecting reproducible fatal collision locations. The performance of the pro-

posed method was empirically evaluated using traffic collision data from freeway routes in Cal-

ifornia. This method can assist government agencies in improving the safety of traffic

corridors even when the end-points of routes to be investigated have been determined by

other external factors (such as funding requirements, local jurisdiction boundaries, or other

conflicting projects). The proposed method also can help agencies to prioritize funding for

reducing the number of fatal collisions by identifying reproducible fatal collision locations.

The findings from our empirical evaluation show strong promise for the systematic detection

Fig 1. Annual collision trend in California from 2005 to 2017.

https://doi.org/10.1371/journal.pone.0251866.g001
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of reproducible fatal collision locations. The following section describes the data used in this

study. A description of the proposed method together with the results obtained by its applica-

tion to the empirical data are presented in the next section. Subsequently, we report the find-

ings based on the evaluation of the proposed method. Brief concluding remarks and future

research plans are provided at the end of the paper.

Site and data

All the traffic collision data used in this study are based on State Wide Integrated Traffic Rec-

ords Systems (SWITRS) that are open-source database published by California Highway Patrol

[24]. The SWITRS database records all vehicle collisions occurred on a public road-way.

Among the traffic collision in SWITRS database, Traffic Accident Surveillance and Analysis

System (TASAS) collected the collision data that occurred on a road that is managed by Cal-

trans, and this study used the TASAS collision data. The traffic collision data used was col-

lected between 2004 and 2008 from 390 miles of six freeway routes in the San Francisco bay

area, including I-80W, I-80E, I-580W, I-580E, I-880N, and I-880S. These routes share similar

features, i.e., they are all multi-lane, interstate, urban freeways with high traffic volume. The

purpose of the study is to evaluate the reproducibility of fatal collision locations on freeways

based on the collision occurrence data and not depending on the influential factors that are

changed over time such as vehicle safety systems, roadway conditions, and traffic conditions.

Therefore, to evaluate our method by comparing carefully calibrated previous method, we

used these datasets applied in the previous studies [14] rather than recent data. Over the five

years of the study, 49,159 collisions occurred on the six routes and those data were uploaded as

the supporting information in S1 Dataset.

Table 1 shows the total number of collisions for each route by collision severity and year.

The length of each route ranged from 50 to 80 miles. The average number of collisions per

mile per year for each route varied from 15 to 32. The annual number of collisions for each

route decreased over the study period. Table 1 shows the proportions of collision severity levels

for each route by year. Since the percentages of fatal, injury, and PDO collisions changed over

the years or across routes, HCCL identification based on the total number or number of injury

collisions would be different from the identification of reproducible fatal collision locations.

Table 2 shows the results of a chi-square test conducted to determine whether there is a sig-

nificant association between the proportions of collision severity levels and the year or the

route. The left side of Table 2 indicates that there is a significant association between the year

and proportions of collision severity levels on all routes. The right side of Table 2 also shows a

statistically significant association between the routes and proportions of collision severity lev-

els in all years. In particular, these results indicate that the proportion of fatal collisions would

be varied significantly in terms of ratio from year to year in all routes, and from route to route

in all years. This tendency indicates that collision severity levels should be considered in identi-

fying the reproducible fatal collisions to evaluate the safety of the site properly.

Methodology

The objective of the proposed method is to identify sites where fatal collisions are likely to

occur within the next few years among sites where a fatal collision had already occurred. Using

the naïve Bayes approach, the proposed method only evaluates the proxy measure of posterior

probability (PMP) of additional fatal collisions occurring within subsequent years in the vicini-

ties of the fatal collisions reported in the reference year (i.e., reproducible fatal collision loca-

tions). This section describes the reproducible and non-reproducible fatal collision sites and

the procedure used for estimating PMP.
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Reproducible (R) and non-reproducible (N) fatal collision site

To evaluate the performance of the proposed method, the reproducible (R) and non-reproduc-

ible (N) fatal collision sites were empirically classified based on the occurrence of additional

fatal collisions in subsequent years (i.e., validation year) near where a fatal collision had

occurred in the reference year. Fig 2 shows the R and N at I-80W for which the reference year is

Table 1. Total number of collisions for each route by collision severity and year.

Route I-80W I-80E I-580W I-580E I-880N I-880S

Length (mile) 80 80 65 65 50 50

Average Collisions/mile/year 29 25 22 15 32 30

Total Collisions 2004 2,715 2,210 1,494 1,020 1,747 1,594

2005 2,461 2,120 1,538 1,089 1,679 1,645

2006 2,421 1,955 1,481 1,005 1,556 1,496

2007 2,245 1,857 1,485 972 1,508 1,469

2008 1,907 1,763 1,131 804 1,401 1,391

Fatal Collisions 2004 0.2% 0.6% 0.4% 0.1% 0.3% 0.4%

2005 0.6% 0.4% 0.3% 1.1% 0.4% 0.3%

2006 0.4% 0.7% 0.4% 0.4% 0.3% 0.6%

2007 0.6% 0.8% 0.1% 0.6% 0.2% 0.2%

2008 0.4% 0.9% 0.7% 0.6% 0.8% 0.7%

Injury Collisions 2004 23.0% 22.6% 33.6% 34.1% 27.9% 33.1%

2005 23.3% 25.6% 31.9% 30.9% 31.2% 28.4%

2006 22.6% 27.1% 28.2% 29.5% 29.8% 30.4%

2007 26.8% 27.0% 31.0% 31.1% 30.4% 30.8%

2008 28.3% 31.4% 31.3% 29.9% 26.4% 28.4%

PDO Collisions 2004 76.8% 76.8% 66.0% 65.8% 71.8% 66.4%

2005 76.1% 74.0% 67.8% 68.0% 68.4% 71.2%

2006 77.0% 72.3% 71.4% 70.1% 69.9% 69.0%

2007 72.6% 72.2% 68.9% 68.3% 69.4% 69.0%

2008 71.3% 67.7% 68.0% 69.5% 72.8% 70.9%

https://doi.org/10.1371/journal.pone.0251866.t001

Table 2. Statistical test results for the proportions of collision severity levels over years and routes.

Chi-square test for independence

H0: There is no significant association between the

proportion of collision severity and year 2004–2008

H0: There is no significant association between the

proportion of collision severity and routes (I-80W, I-

80E, I-580W,I-580E,I-880N,I-880S)

H1: There is significant association between the

proportion of collision severity and year 2004–2008

H1: There is significant association between the

proportion of collision severity and routes (I-80W, I-

80E, I-580W,I-580E,I-880N,I-880S)

I-80W Reject H0 (p-value< 0.001) 2004 Reject H0 (p-value < 0.001)

I-80E Reject H0 (p-value< 0.001) 2005 Reject H0 (p-value < 0.001)

I-580W Reject H0 (p-value = 0.015) 2006 Reject H0 (p-value < 0.001)

I-580E Reject H0 (p-value = 0.044) 2007 Reject H0 (p-value < 0.001)

I-880N Reject H0 (p-value = 0.030) 2008 Reject H0 (p-value = 0.048)

I-880S Reject H0 (p-value = 0.019)

Note: H0 is rejected at the 5% significance level.

https://doi.org/10.1371/journal.pone.0251866.t002
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2006 and the validation years are 2007 and 2008. Fig 2 also shows a plot of the CRP, which esti-

mates the true collision risk based on spatial patterns of collisions by filtering out statistical fluc-

tuation, with the R and N. The peaks in the CRP plot indicate the locations of local-collision

concentrations. Fig 2A through 2F show plots of the CRPs constructed using traffic collision

data, CRPA, and those constructed using FI collision data, CRPFI, observed along I-80W from

2006 to 2008. The black and white circles in Fig 2A and 2D indicate the locations of fatal colli-

sions, respectively, with four of the ten fatal collisions observed during the reference year

indexed from F1 to F4. S1, S2, and S3 in the figures indicate site locations, with the site

Fig 2. Fatal collision locations with CRPA in (a) 2006, (b) 2007, and (c) 2008, and fatal collision locations with CRPFI

in (d) 2006, (e) 2007, and (f) 2008.

https://doi.org/10.1371/journal.pone.0251866.g002
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boundaries (dotted vertical lines in Fig 2) determined by selecting l/2 upstream and down-

stream of the location of the fatal collision in 2006. When another fatal collision had occurred

within l, the boundary of the site was expanded by combining the l value with respect to the

additional fatal collision. In this study, 1.0 mile was used as the l value, considering the potential

for error in the reported collision location introduced when milepost information was entered

into the traffic collision report [14] and due to the stochastic nature of the driver reaction to the

causative factor of a fatal collision [25]. With l = 1.0 mile in our study sites, the lengths of the

fatal collision sites ranged from 1 mile to 1.97 miles. We note how additional fatal collisions

occurred in subsequent years within S3, whereas no additional fatal collisions occurred within

S1 or S2, as shown in Fig 2. Based on these empirical data, sites that experienced additional fatal

collisions in subsequent years were classified as R and the others were classified as N. S’1 to S’3 in

Fig 2B and 2E indicate the locations of fatal collisions in 2007, which is not a reference year, and

additional fatal collisions that occurred in 2008. If the reference year is 2007 and the validation

years include 2008, sites S’1 to S’3 would be classified as R. In other words, the locations classified

as R and N would differ with the reference and validation years. In the later section, we evaluate

the proposed method in various combinations of reference and validation years.

Naïve Bayesian approach for detecting reproducible fatal collision sites (R)

Naïve Bayes is a simple technique for modeling classifiers that assumes conditional indepen-

dence of the observed features. In our approach, the observed features are the occurrence of fatal

collisions along the freeway route in the reference year. Therefore, our approach assumes that

the occurrence of each fatal collision is conditionally independent given D, which is a continuous

random variable indicating the locations of R. Using Bayes’ theorem, the conditional probability

(i.e., posterior probability) of a site being classified as R at D, P(DjF1:m), given the m fatal collision

locations along the route in the reference year, can be calculated as shown in Eq (1):

PðDjF1:mÞ ¼
PðDÞPðF1:mjDÞ

PðF1:mÞ
ð1Þ

where P(D) is the prior probability of a site being classified as R at D, and P(F1:mjD) is the likeli-

hood of the occurrence of fatal collisions at locations F1 to Fm given R at D. Since the purpose of

the proposed method is to rank sites based their PMP values, and not to develop an unbiased

estimate of a site being classified as R, the numerator, P(D)P(F1:mjD), is used to rank sites that are

likely to be classified as R. The likelihood,P(F1:mjD), can be decomposed as shown in Eq (2) with

the assumption of the conditional independence of fatal collision occurrences:

PðDjF1:mÞ / PðDÞPðF1:mjDÞ ¼ PðDÞ
Ym

i¼1

PðFijDÞ ð2Þ

where/ indicates proportionality. The proposed method estimates the PMP of the site being

classified as R at D, P(D)P(F1:mjD), based on both the observed locations of fatal collisions, F1:m,

and the CRP of the reference year. The sites are then prioritized based on their PMP values

regarding the recommendation for in-depth investigation. The CRP is used as a prior probability

of a site being classified as R in the procedure for estimating the PMP.

Estimation of prior probability

The CRP estimates the true collision risk based on spatial patterns by filtering out statistical fluc-

tuation. The CRP can be constructed using various filtering techniques such as the weighted

moving average technique [20, 21] and ensemble empirical mode decomposition [22]. The level
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of filtering is an important parameter for constructing the CRP, which can be empirically deter-

mined by investigating the changes in the number of critical points where the CRP slope is zero

[21] or the spectral attributes of the traffic collision data [22]. In this study, the CRPs were con-

structed using the process described by Chung et al. [20], which filters out random noise as

much as possible without affecting the location of the CRP peaks. More details and numerical

examples of CRPs are presented in Chung et al. [20] and Chung et al. [21]. The shape of a CRP

indicates the underlying true risk profile, and its value measures the collision frequency per unit

distance of roadway. A continuous CRP profile can be used to consider the spatial correlation

of traffic collisions and the area under the CRP indicates the expected collision frequency con-

sidering the regression-to-the-mean (RTM) phenomenon [26].

The unit of the CRPs shown in Fig 2 is the number of collisions per 0.01 mile per year along

the route. A visual inspection of CRPA in Fig 2A–2C reveals the reproducible patterns over the

years, which are consistent with the findings from previous studies [20, 21, 26]. CRPFI in Fig

2D–2F provides a stronger indicator of fatal collisions than those constructed using PDO,

injury, and fatal collisions, CRPA (i.e., all traffic collisions), as it can lead to fatality depending

on the characteristics of the victim: injury collisions may later be changed to fatal collisions

when the injured person dies within a certain period of time after the collision [27]. However,

the overall reproducibility of CRPFI compared to CRPA (see Fig 2A–2C) is smaller. In this

study, both CRPA and CRPFI were evaluated with respect to the prior probability of a site

being classified as R. These two prior probabilities are both used in estimating the PMP of a

site being classified as R, based on the naïve Bayes approach.

Estimation of likelihood

Fatal collisions can occur without any external causative factors. However, there may also exist

factors that contribute to causing fatal collisions. If such factors exist, one would expect to see

fatal collisions occurring near the location in which there are unknown fatal-collision causative

factors. To consider the average effect of unknown causative factors (i.e., unobserved heteroge-

neity along spatial dimensions) of all fatal-collision locations on each route, we assumed the

likelihood of the occurrence of observed fatal collisions given R at D, L(D), which is a function

of the distance between fatal-collision locations (Fi) and the R location (D), as shown in Eqs (3a)

and (3b). The influence of proximity among the fatal collisions on a site being classified as R
was modeled using Eq (3b), where di is the distance between Fi and D, which indicates that the

closer D is to Fi, the greater the effect of those unknown causative factors of Fi. The value of the

likelihood function is one if the distance between Fi and D is zero, and its minimum value is

zero when Fi and D are far away from each other. Other linear and non-linear functions sharing

these properties have been applied, but they all exhibit comparable performance. Therefore, we

selected the simplest function that is easy to implement in practice, as shown in Eq (3b). The

hypothesis underlying the estimation of likelihood is that the collision rate near R may not be

high enough to be detected by other HCCL identification procedures [15], or the reproducible

fatal collision may not have a high enough concentration of collisions, as shown in Fig 2.

LðDÞ ¼
Ym

i¼1
PðFijDÞ ð3aÞ

P FijDð Þ ¼
1

1þ dai
¼

1

1þ jFi � Dja
ð3bÞ

The likelihoods of the observed fatal collisions occurring at locations F1 to F10 are estimated based

on D, which is the location of R. This can be further explained with reference to Fig 3A–3D. F1 to

F10 in Fig 3 show the fatal-collision locations that occurred on I-80W in 2006, and P(FjD = 10) is
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the likelihood of a fatal collision occurring at F when the assumed location of R is 10. Therefore,

the peak in Fig 3A representing P(F | D = 10) at F = 10 is 1 by definition. Likewise, Fig 3B and 3C

show the likelihood of the fatal collision occurring at F for locations R = 40 and 60, respectively.

The likelihood of all fatal collisions along the entire route, L(D), were estimated by combin-

ing the individual likelihood of the fatal collision,
Ym

i¼1
PðFijDÞ, where m is the total number

of fatal collisions in 2006, i.e., the reference year (see Eq (3a)). D is incremented by 0.01 mile

and ranged over the entire route. Fig 3D shows
Y10

i¼1
PðFijDÞ according to D over the entire I-

80W route. The α (see Eq (3b)) determines how much distance between fatal collisions and D
influences P(Fi | D). A higher value of α results in a stronger likelihood of D being near F. A

lower value of α indicates a diminished effect of the distance from a reproducible fatal-collision

location in determining P(Fi | D). Fig 4 shows how different values of α affect the shape of P(Fi
| D). When α = 0, the shape of P(Fi | D) remains horizontal. Higher values of α bring the shape

of P(FijD) to a wide peak near D and the value of P(FijD) drops sharply if the distance from D
become more than Lc, whereas lower values of α bring the shape of P(FijD) to a narrow peak

and the value of P(FijD) drops gently even if the distance from D is larger than Lc. The black

circles in Fig 4 show the value of P(FijD) at the postmile = 26 according to α, which indicates

that the high value of α makes the value of P(FijD) more sensitive to the distance from D.

Estimation of a proxy measure of the posterior probability

The naïve Bayesian approach is used to estimate the PMP based on likelihood, L(D), and prior

probability, P(D). In other words, the combined influence of the proximity of fatal collisions at

Fig 3. Procedure for estimating the likelihood of fatal collisions occurring at locations F1 to F10 given R at D on I-80W in 2006.

(a), (b), and (c) Individual likelihoods of fatal collisions at D = 10, D = 40, and D = 60, respectively. (d) Combined likelihood of all fatal

collisions with D increasing by 0.01 mile increments along entire route.

https://doi.org/10.1371/journal.pone.0251866.g003

PLOS ONE Detecting reproducible fatal collision locations on freeway

PLOS ONE | https://doi.org/10.1371/journal.pone.0251866 May 18, 2021 9 / 21

https://doi.org/10.1371/journal.pone.0251866.g003
https://doi.org/10.1371/journal.pone.0251866


a site is used as the likelihood, with the CRP as the indicator of the prior probability. P(D)

weighted by the L(D) is used to estimate the PMP, as shown in Eq (4).

PMP ¼ PðDÞ
Ym

i¼1

PðFijDÞ ¼ PðDÞLðDÞ ð4Þ

Fig 5B and 5D show the resulting PMP estimated by L(D) with α = 0.2 and the P(D) based on

CRPA (Fig 5A) and CRPFI (Fig 5C) together with the locations of the fatal collisions in the ref-

erence year. The PMPs of S1, S2, and S3 being classified as R are determined by the mean values

of PMP within the site boundary, PMP, which consist of the areas under the curve shaded in

gray divided by the site length, as shown in Fig 5B and 5D. As shown in Fig 5B, the PMP of S3

(0.0288) estimated using CRPA is much higher than those of S1 (0.0093) and S2 (0.0187). The

PMP estimated using CRPFI exhibits the same pattern, with S3 (0.0368) having the highest

PMP value of being classified as R, as compared with S1 (0.0112) and S2 (0.0110). To determine

the sites that should be classified as R, the estimated PMP of each fatal collision site was ranked

based on the information available only in the reference year.

Comparison of PMPs for all routes

To compare the PMPs of multiple routes, the PMP of a site being classified as R for a single

route (see Eq (4)) is rescaled to PMPR, as shown in Eq (5):

PMPR ¼ ½PðDÞ � SPFðDÞ�LðDÞ=
Z D¼e

D¼s
LðDÞ ð5Þ

where s and e are the start- and end-points of the route, respectively. The P(D) value (i.e.,

Fig 4. Individual likelihoods of a fatal collision according to α when the R location is D = 30.

https://doi.org/10.1371/journal.pone.0251866.g004
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CRPA or CRPFI) indicates the number of total or FI collisions per year per 0.01 mile. The P(D)

values of different routes cannot be directly compared because the collision causative factors,

e.g., traffic volume, are different. The HSM [7] suggests use of the PSI, i.e., the difference

between the expected and observed collision frequencies, as a safety measure to consider the

collision causative factors in prioritizing sites to be investigated. This study applies an excess of

CRP that is the difference between the CRP and SPF, which indicates the PSI [14]. The CRP

can also consider the RTM phenomenon, which cause bias in estimating the benefits of safety

Fig 5. Results of naïve Bayesian approach to for I-80W in 2006: (a) CRPA-based prior probability, (b) CRPA-based

PMP, (c) CRPFI-based prior probability, and (d) CRPFI-based PMP.

https://doi.org/10.1371/journal.pone.0251866.g005
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countermeasure for HCCLs, by filtering out random fluctuations in the collision frequency

[26]. The value of L(D) is a non-increasing function of the number of fatal collisions along the

routes because P(FijD) is always less than one (see Eq (3b)). To adjust for the biases introduced

by the number of fatal collisions along each route, the PMPR is estimated based on the rescaled

likelihood, LðDÞ=
Z D¼e

D¼s
LðDÞ.

To determine whether a site can be defined as R, the PMPR value is used, i.e., the mean

value of PMPR within the site boundary. Table 3 shows the PMPR value estimated by the pro-

posed method for 22 fatal collisions associated with 19 sites on routes I-80W and I-80E in

2006, and the validation years are 2007 and 2008. Site lengths longer than 1.0 mile indicates

the occurrence of an additional fatal collision within the boundary of the site, whereas site

lengths shorter than 1.0 mile indicate that the fatal collision occurred near the start- or end-

points of the route. The rows of Table 3 are arranged in descending order with respect to the

PMPR estimated using CRPFI, with the value of α being 0.3. Of the 19 fatal collision locations,

five were classified as R, and four Rs were included in the top five PMPR values. The overall

performances of the six routes were evaluated together, and the findings are reported in the

next section.

Comparison of PMPs with SPF-based approaches

The SPF-based approach is a well-established procedures for detecting HCCLs [7, 8]. Conven-

tional SPF-based approaches apply the empirical Bayes (EB) method, which estimates the

expected number of collisions based on the dispersion of an SPF. As a safety measure, the PSI

is used, i.e., the difference between expected crash frequency based on an EB adjustment and

the SPFs [14]. In recent years, to differentiate between collision severity levels to better identify

HCCLs, researchers have proposed the calibration of SPF for FI collisions [11, 12] or fatal

Table 3. Site rankings evaluated based on the PMPR values for I-80W and I-80E.

Route Site ID Beginning postmile(mile) End postmile(mile) Site length(mile) PMPRby CRPFI R

I-80E S13 21.295 22.395 1.100 0.00859 Y

I-80E S14 23.035 24.505 1.470 0.00545 Y

I-80E S12 20.095 21.095 1.000 0.00463 N

I-80E S11 17.195 18.195 1.000 0.00170 Y

I-80W S3 19.075 20.525 1.450 0.00114 Y

I-80W S4 35.515 36.515 1.000 0.00104 N

I-80W S5 40.055 41.055 1.000 0.00091 N

I-80W S7 47.335 48.335 1.000 0.00071 N

I-80E S15 35.075 36.075 1.000 0.00064 Y

I-80W S8 52.335 53.335 1.000 0.00045 N

I-80W S1 0.095 0.915 0.820 0.00035 N

I-80W S6 42.825 43.825 1.000 0.00017 N

I-80E S19 70.025 71.025 1.000 0.00016 N

I-80E S17 55.255 56.255 1.000 0.00011 N

I-80W S2 2.055 3.055 1.000 0.00008 N

I-80E S10 1.765 2.765 1.000 0.00005 N

I-80W S9 62.885 63.885 1.000 0.00004 N

I-80E S18 63.985 64.985 1.000 0.00002 N

I-80E S16 51.105 52.105 1.000 0.00001 N

https://doi.org/10.1371/journal.pone.0251866.t003
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collisions [13]. Advanced statistical models that consider the unobserved spatial heterogeneity

have also been used to improve the SPF [28, 29]. However, the infrequent occurrence of fatal

collisions causes a large variance in estimations of their frequency, with distributions of colli-

sion frequency skewing excessively toward zero, resulting in erroneous estimations [30]. This

incorrect estimation is only exacerbated when estimating PSI because the observed frequency

is also so low. Other researchers have proposed the property damage only equivalents

(PDOEs) that weight collision frequencies based on collision severity with respect to the asso-

ciated economic loss [15, 17]. They developed the SPF using PDOEs as a dependent variable,

to consider the collision severity levels.

Table 4 shows the methodological considerations of the proposed method compared with

previous approaches. Excess of CRP, i.e., the difference between the CRP and SPF, enables

consideration of both causative factors and RTM bias, which are addressed by HSM’s tradi-

tional SPF-based approach. The spatial heterogeneity due to the spatial dependence of traffic

collisions can be considered using the CRP [20]. The likelihood of the occurrence of fatal colli-

sions proposed in this study weights the CRP based on Bayes’ theorem to consider fatal colli-

sions by estimating the average effect of the unknown causative factors of fatal collisions and

this likelihood reflects their unobserved spatial heterogeneity [5] for detecting reproducible

fatal collision locations.

Findings

Performance measures

The performance of the proposed method in classifying sites as R based only on the data

observed in the reference year was compared with that of a procedure that investigates fatal

collision sites at random, i.e., the ad hoc site investigation procedure (e.g., sites may have been

Table 4. Comparison of the methodological considerations of conventional SPF-based approaches and the proposed method.

Approach Research Methodological consideration

Causative factors (method) RTM (method) USH (method) Severity (target)

SPF calibrated to all collisions [7] ✔ ✔ - -

(SPF) (EB)

[28] ✔ - ✔ -

(SPF) (GWNBR)

[29] ✔ - ✔ -

(SPF) (RPNBR)

SPF calibrated to specific severities [15,17] ✔ - - ✔
(SPF) (PDOEs)

[11,12] ✔ - - ✔
(FI)(SPF)

[13] ✔ - - ✔
(SPF) (Fatal)

SPF calibrated to all collisions with CRP method [26] ✔ ✔ ✔ -

(SPF) (CRP) (CRP)

PMPR Proposed method ✔ ✔ ✔ ✔
(CRP, Likelihood) (Fatal) (SPF) (CRP)

Note: Parentheses indicate the method or target for consideration in each column; PDOEs is property damage only equivalents; GWNBR is geographically weighted

negative binomial regressions; RPNBR is random parameter negative binomial regressions; USH is unobserved spatial heterogeneity.

https://doi.org/10.1371/journal.pone.0251866.t004
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investigated based on the order in which the fatal collisions occurred within a fiscal year or on

the number of parties involved). Fig 6 shows the performance of the proposed method in

detecting reproducible fatal collision sites for the six routes with 2006 as the reference year and

2007 and 2008 as the validation years. The x-axis represents the number of sites investigated

by the proposed method (i.e., top x sites in the order of PMP) and random selection. The y-

Fig 6. Performance in detecting reproducible fatal collision sites on six routes with α = 0.3: (a) CRPA as a prior probability

and (b) CRPFI as a prior probability.

https://doi.org/10.1371/journal.pone.0251866.g006
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axis represents the cumulative number of true Rs identified with respect to the number of sites

recommended for investigation. The dotted black line marked with x symbols in Fig 6 shows

the performance in classifying sites as R with no consideration of the likelihood and prior

probability (i.e., random selection). The solid red line with circles shows the performance in

classifying sites as R based on PMPR . The PMPR value was estimated based on the CRPA (see

Fig 6A) and CRPFI (see Fig 6B), with the likelihood function α = 0.3. The curves in Fig 6 pro-

vide information similar to the receiver operating characteristics (ROC), which are used to

evaluate classification models [31]. If there are n reproducible fatal collision sites among the N
fatal collision sites at a study site, the number of sites investigated is xi, and the corresponding

cumulative number of sites classified as R is yi, the false negative (i.e., not detecting a true R) is

n − yi, false positive (i.e., flagging a site as R when is not) is xi—yi, true positive (TP) is yi, and

true negative is N–n–xi + yi. The recall and precision are calculated as shown in Eqs (6) and

(7). Note that precision and recall vary with xi as they have a trade-off relationship. Fig 6 shows

the trade-off between precision and recall with respect to xi and the area under this curve

(AUC) indicates the overall performance of the proposed model. The fact that the AUC of the

proposed method (i.e., the dotted red lines) is larger than those obtained by random selection

(i.e., the dotted black lines) shows that the proposed method outperforms random selection.

Recall ¼
TP

TP þ FN
¼

yi
n

ð6Þ

Precision ¼
TP

TP þ FP
¼

yi
xi

ð7Þ

Based on the above evaluation, the practical impact of the proposed method is as follows. In

Fig 6, 11 Rs were classified out of the total 40 fatal collision sites along the six routes. Note that

if the government agency uses the proposed method with CRPA (see Fig 6A), it will have to

investigate 16 of 40 sites (40.0%) to identify 8 of the 11 reproducible fatal collision sites

(72.7%). To identify all Rs, 29 sites will have to be investigated by CRPA. Using CRPFI (see Fig

6B), the agency will also have to select 18 sites to identify 8 out of 11 Rs, but 30 sites will need

to be investigated to identify all Rs.

Comparison of performance with SPF-based approach

To compare the proposed method with the SPF-based approach that uses the EB method [32],

we applied recently developed SPFs to the study site [14] to detect reproducible fatal collision

sites. SPF-based approaches prioritize fatal collision locations using PSI, which is the difference

between the expected and observed collision frequencies. Kwon et al. [14] developed SPFs for

each type of roadway group, considering rural or urban, arterial or highway, and the number

of lanes, and their SPFs were found to better fit the data for the study sites than the SPFs cur-

rently used by Caltrans. As an explanatory variable, Kwon’s SPF uses the average annual daily

traffic (AADT) volume, although other additional variables such as shoulder width and hori-

zontal curves [11] can improve the SPF performance. This study uses Kwon’s SPF for two rea-

sons: i) Caltrans and practitioner currently uses this simple type of SPF based on AADT and

roadway group [14] because developing its own database to keep track of the values of addi-

tional roadway information is cost-prohibitive and ii) only traffic collision and AADT data are

required for practical applications like the proposed method. We used the SPF calibrated for

FI crashes in each highway group and estimated the PSI for fatal collision sites using the EB

method. Comparison results of the proposed method and SPF-based approach are provided in

the following subsections with sensitivity analyses.
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Sensitivity analysis of likelihood parameter

The sensitivity of the likelihood parameter α, which adjusts the influence of the proximity of

fatal collisions, is examined by applying α values from 0 to 0.7 for the six routes in the same ref-

erence and validation years as those in Fig 6. The sensitivity was evaluated by the area under

the receiver operating characteristics (AUROC) curve, which is a well-known performance

measure for classification models [31]. The AUROC shows the competitiveness of the classifi-

cation model as compared with random guessing, similar to the area under the red and black

lines in Fig 6.

An AUROC value higher than 0.5 means the model outperforms random guessing, with

the best score possible being 1.0. Fig 7 shows the performance evaluation with α for the CRPA

and CRPFI priors, both of which outperformed random guessing with AUROC values higher

than 0.5. The proposed method also outperforms the SPF-based approach, which obtained a

0.53 AUROC value only slightly better than random guessing. For a lower value of α, which

indicates a weak influence of fatal collision locations on the classification of sites as R, the

CRPFI outperforms the CRPA, although the CRPA performs better for a higher value of α. The

best performances were obtained by the CRPFI prior, with a 0.75 AUROC value for α = 0.3

and 0.4 and the CRPA prior with a 0.75 AUROC value for α = 0.6. The performances of CRPA

and CRPFI with various α values were comparable, which shows that the proposed method is

robust with respect to the parameter α and the prior probability.

Sensitivity analysis for reference and validation years

Reproducible fatal collision sites are classified based on the occurrence of additional fatal colli-

sions in the validation years near where the fatal collision occurred in the reference year. Since

traffic collisions are rare and random events, there could be multiple reference and validation

years. Although a multiyear time period takes advantage of the RTM phenomenon [32], it

causes within-period variation in the presence of unobserved heterogeneity [30]. To evaluate

the generalization performance of the proposed method with respect to the reference and vali-

dation years, we evaluated our method under various conditions, as shown in Table 5. For

example, sites are classified as R in Condition 1 when additional fatal collisions occurred in

Fig 7. Performances in detecting reproducible fatal collision sites for the six routes using the proposed method

according to α and CRP priors, compared to using the SPF-based approach.

https://doi.org/10.1371/journal.pone.0251866.g007
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2007 or 2008 near where the fatal collision occurred in 2006. In the case of Condition 3,

among the fatal collision locations in 2005 or 2006, sites are classified as R when additional

fatal collisions occurred at these locations in 2007 or 2008. If there are multiple reference

years, the CRP, i.e., the prior probability of sites being classified as R, is constructed from the

sum of the collisions in multiple years.

Table 5 shows the performance of the proposed method for various conditions in classify-

ing sites as R. The proposed method with the CRPFI prior was evaluated with respect to the

likelihood parameter α, and these performances were compared with those of the SPF-based

approach using the EB method. For all conditions, the proposed method outperforms the SPF-

based approach with the EB method. In condition 4, the performance of the SPF-based

approach was worse than random selection (i.e., 0.5 AUROC), which means that the SPF cali-

brated using FI collisions cannot contribute to the classification of a site as R. In each condi-

tion, the best AUROC values ranged from 0.65 to 0.75, with the likelihood parameter α values

ranging from 0.1 to 0.3. These results reveal that although the performance of the proposed

method could vary with the data used to classify sites as R, it outperforms random selection

and the SPF-based approach in detecting Rs.

Although the proposed method successfully detected the reproducible fatal collision loca-

tions based on the PMPR estimated by CRPA and CRPFI, the causative factors for those loca-

tions requires further exploration to apply effective countermeasures for roadway safety. We

investigated the primary collision factors for 145 fatal collisions that occurred on the six routes

from 2006 to 2008 and divided the fatal-collision sites into reproducible and non-reproducible

locations. The reference year was 2006 and the validation years were 2007 and 2008. Fig 8

shows distributions of the primary collision factors for the reproducible and non-reproducible

fatal collision locations, for which a chi-square test was conducted to determine if there is a dif-

ference in the frequency of the causative factors of these traffic collisions. Because the chi-

square test assumes that no more than 20% of the cell counts are less than five [33], we aggre-

gated three low-incidence collision factors—“Other Violations,” “Improper Driving,” and

“Other Than Driver,”—as “Other Violations.” The P-value of the chi-square test was 0.87,

which indicates no significant difference in the distributions of primary collision factors

between the reproducible and non-reproducible fatal collision locations. This may mean that

the primary collision factor cannot be used to classify reproducible fatal collision locations.

Table 5. Performance in detecting reproducible fatal collision sites on six routes with α = 0 to 0.6 with CRPFI priors for various reference and validation years.

Condition 1 2 3 4 5

Reference years 2006 2005 2005, 2006 2004, 2005 2004, 2005, 2006

Validation years 2007, 2008 2006, 2007 2007, 2008 2006, 2007 2007, 2008

Prior CRPFI CRPFI CRPFI CRPFI CRPFI

AUROC

FI-SPF approach with EB

method

0.53 0.56 0.57 0.47 0.59

α 0 0.67 0.63 0.68 0.65 0.62

0.1 0.71 0.64 0.70 0.66 0.65

0.2 0.73 0.65 0.71 0.64 0.66

0.3 0.75 0.64 0.70 0.63 0.64

0.4 0.75 0.63 0.68 0.60 0.62

0.5 0.73 0.62 0.67 0.57 0.61

0.6 0.71 0.61 0.65 0.56 0.61

https://doi.org/10.1371/journal.pone.0251866.t005
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Concluding remarks

State agencies are mandated to investigate the locations of fatalities and serious injuries. How-

ever, most of existing methods for detecting high-collision-concentration locations do not

consider the severity of the collisions, which results in agencies focusing on sites with a high

frequency of property damage only collisions while ignoring sites with higher percentages of

injury and fatal collisions. Several previous studies have proposed methods for considering the

severity of collisions by weighting them with respect to their associated economic losses or the

use of a safety performance function (SPF) calibrated to fatal or fatal and injury collisions.

However, these approaches can yield a high false-positive rate because fatal collisions that

occur randomly and rarely due to the fault of the driver can still dwarf the weight of fatal colli-

sions or cause high variance in the SPF.

To better utilize limited government resources while improving the safety of sites where

fatal collisions occur, we developed a method for estimating the proxy measure of the posterior

probability (PMP) of a site being classified as R (i.e., a site that is likely to experience an addi-

tion fatal collision in the vicinity in the subsequent year). The peaks of the continuous risk pro-

file (CRP), which are reproducible over the years, were used as indicators of the prior

probability of reproducible collision locations, and the likelihood of the occurrence of fatal col-

lision was computed by the spatial distribution function for fatal collisions. Then, the likeli-

hood and the prior values were multiplied and normalized to obtain the PMPR values, which

can be compared for different routes. The empirical evaluations indicated that the PMPR of a

site being classified as R can successfully identify sites as R compared with a random selection

of sites or the SPF-based approach with the EB method. This finding can assist a state agency

to better allocate its limited resources. A sensitivity analysis of the proposed method was also

conducted to determine its robustness to some variations of the method, such as the choice of

the prior indicator between CRPA and CRPFI, the influence parameter, α, and the data used

for classifying reproducible fatal collision locations. The results indicate that the proposed

method achieves robust performance regardless of these parameters and conditions.

Although advanced vehicle safety technology, advanced highway design, and surrogate

safety-measures have developed from the past, the number of total and fatal collisions is still

rising, which indicates that the HCCL still remains in the freeway. The proposed method does

not find the HCCL based on the complex human and environmental factors but finds the

recurrent fatal collision locations using a probabilistic approach based on the locations and

Fig 8. Distributions of primary collision factors for reproducible and non-reproducible fatal collision sites on the

six routes from 2006 to 2008.

https://doi.org/10.1371/journal.pone.0251866.g008
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number of collisions. In other words, the proposed method can be applied to the recent data

since it does not depend on the complex influential factors that change over time. Nevertheless

a comparison of the proposed method with other methods using a recent dataset would be fur-

ther research subject to verify the generalized performance. As the form of the likelihood func-

tion was assumed in the present study, evaluating the performance of different likelihood

functions will be the subject of future study. This study estimated the likelihood of fatal colli-

sion based only on the spatial distribution of fatal collision locations, which is a great advan-

tage for practical application in terms of data availability. However, if significant fatal-collision

causative factors are identified, those factors could also be considered in the likelihood func-

tion. Therefore, evaluating the impact of other causative factors such as weather, roadway

geometry, and traffic characteristics in classifying sites as R [34–37] and other likelihood func-

tions that consider those factors will be the subjects of future study. The authors also plan to

further evaluate the performance of the proposed method along rural highways or urban area

where the characteristics of fatal collisions can differ from those of this study [38].
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