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A B S T R A C T   

Background and purpose: Treatment planning of radiotherapy for locally advanced breast cancer patients can be a 
time consuming process. Artificial intelligence based treatment planning could be used as a tool to speed up this 
process and maintain plan quality consistency. The purpose of this study was to create treatment plans for locally 
advanced breast cancer patients using a Convolutional Neural Network (CNN). 
Materials and methods: Data of 60 patients treated for left-sided breast cancer was used with a training, validation 
and test split of 36/12/12, respectively. The in-house built CNN model was a hierarchically densely connected U- 
net (HD U-net). The inputs for the HD U-net were 2D distance maps of the relevant regions of interest. Dose 
predictions, generated by the HD U-net, were used for a mimicking algorithm in order to create clinically 
deliverable plans. 
Results: Dose predictions were generated by the HD U-net and mimicked using a commercial treatment planning 
system. The predicted plans fulfilling all clinical goals while showing small (≤0.5 Gy) statistically significant 
differences (p < 0.05) in the doses compared to the manual plans. The mimicked plans show statistically sig-
nificant differences in the average doses for the heart and lung of ≤0.5 Gy and a reduced D2% of all PTVs. In 
total, ten of the twelve mimicked plans were clinically acceptable. 
Conclusions: We created a CNN model which can generate clinically acceptable plans for left-sided locally 
advanced breast cancer patients. This model shows great potential to speed up the treatment planning process 
while maintaining consistent plan quality.   

1. Introduction 

Worldwide, breast cancer is the most common type of cancer with 
over 2.2 million incidences in 2020, with a predicted increase to more 
than 2.4 million incidences by 2025 [1]. Postoperative radiotherapy of 
the breast is part of the breast-conserving treatment, while radiation of 
the regional lymph nodes is indicated in some patients with lymph node 
metastases with the aim of preventing a locoregional recurrence and 
improving survival [2,3]. Treatment planning of these patients can be 
time-consuming and this time and also the quality of the plan may 
depend on the experience of the treatment planner [4,5]. 

In order to decrease treatment planning time and inter-treatment 
planner variations, different methods are used to automate the 

treatment planning process for breast cancer patients. There are several 
studies focusing on specific hard-coded algorithms which can automate 
the planning process [6–8]. Other types of studies are focusing on 
methods that are using previously obtained treatment plans in order to 
predict dose volume histograms (DVHs) [9], dose distributions [10,11] 
or even generate clinically deliverable plans [12]. Many of these studies 
are using artificial intelligence (AI) involving convolutional neural 
networks (CNNs) to generate these predictions. 

All aforementioned studies showed possible solutions for automating 
the (breast) planning process, but most CNN based studies focus only on 
the DVH or dose prediction itself without converting the solution into a 
clinically deliverable plan and performing an evaluation on the clinical 
acceptability of these plans. During an earlier study from our institution 
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this challenge was tackled by creating a CNN model for the dose pre-
diction of left-sided node negative breast cancer patients and combining 
it with a dose mimicking algorithm to transform this prediction into a 
clinically deliverable plan [13]. 

However, this model was not optimized for locally advanced breast 
cancer patients. Besides that, its 2D nature resulted in less spatial in-
formation during the prediction phase and mimicking lead to higher 
average and maximum doses to the regions of interest (ROIs) compared 
to the clinical dose. Therefore, the purpose of this study was to create 
clinically deliverable plans for left sided locally advanced breast cancer 
patients using a new CNN model in combination with a dose mimicking 
algorithm. 

2. Materials and methods 

2.1. Patient database 

The patient database consisted of 60 patients treated for locally 
advanced (stage III) left-sided breast cancer including patients treated 
for lymph nodes level 1 and 2 (30) and level 1, 2, 3 and 4 (30). All pa-
tients were treated with step-and-shoot IMRT to a total dose of 40.05 Gy 
in 15 fractions (15 × 2.67 Gy). Two tangential IMRT beams were used 
with at least one open segment per direction which combined deliver at 
least 200 MU to be robust to small breast shape changes. An additional 
four IMRT beams were added with gantry angles of 30◦, 330◦, 290◦ and 
190◦ (for right sided plans). These angles could be adjusted depending 
on patient anatomy. A total of 20 IMRT segments per plan was allowed. 
In cases where the D98% clinical goal for the PTVp was not fulfilled after 
mimicking, the dose was scaled to exactly fulfil this clinical goal. The 
mean age was 61 years with a range of 45–86 years and all patients were 
treated between 2018 and 2020 in our institution. Ethical approval was 
granted by the local ethics committee. From each patient, the relevant 
ROIs and a manually created treatment plan were used for training 
purposes. The target volumes were delineated according to the ESTRO 
guidelines [14]. The manual treatment plans were optimized in such a 
way that all clinical goals were fulfilled including as much as possible 
reduction of the dose to the organs at risk (OARs) with a focus on the 
mean heart and lung doses. An overview of the clinical goals and the 
relevant ROIs is shown in Table 1. All the ROIs and plans were checked 
by experienced planners and approved by radiation oncologists to 
ensure optimal plan quality. The TPS used in this study was RayStation 
9B (RaySearch Laboratories AB, Sweden). 

For training the CNN model, the dataset was split into a training, 

validation and test set (36/12/12). This split was balanced in such a way 
that the two different patient groups used in this study were divided 
equally among the different subsets (lymph nodes level 1 and 2 and level 
1, 2, 3 and 4). Furthermore, a 4-fold cross validation method was used to 
create different splits in the training and validation data during the 
training phase. 

2.2. Deep learning model 

The deep learning network used within this study was an enhanced 
2D hierarchically, densely connected (HD) CNN. The input channels for 
this model consisted of all relevant ROI contours, which were also used 
during the manual planning process. These ROIs were represented by 2D 
transversal slices of the patient. In total, five different ROI contours were 
used as an input: PTV (combined PTVp, PTVn1n2 and PTVn3n4), Heart, 
Lungs, Humerus_PRV10 and External-PTV. All other ROIs were not used, 
because they were not used during the manual planning process so they 
should not influence the plan outcome. The five ROI contours were 
represented by Euclidean distance maps, which are matrices of voxels 
containing distance information about the ROI. These Euclidean dis-
tance maps were used to keep proximity information about the ROIs in 
the craniocaudal direction, thereby preventing the need for a full 3D 
model. Mathematically, these Euclidean distance maps can be written 
as: 

D(xi) =

{
d(xi, ∂Ω) forxi ∈ Ω
− d(xi, ∂Ω) forxi ∕∈ Ω  

where D(xi) is the distance map value of voxel xi, d(xi, ∂Ω) the Euclidean 
distance between voxel xi and the boundary of the ROI, ∂Ω, and Ω 
represents the ROI itself. Figure 1 shows a visualization of the Euclidean 
distance map transformation. The batch size during the training phase 
was 24, by selecting 8 slices per 3 different patients. The slice selection 
was done through Gaussian sampling to select the more important 
central slices containing the PTVs. The Gaussian scheme had a standard 
deviation that was equal to one-third of the distance from the central 
slice to the end slice as previously used by Bakx et al. [13]. 

The CNN model was based on a hierarchically, densely connected U- 
net architecture (HD U-net) which has been used earlier for head and 
neck cancer patients by Nguyen et al. [16]. A schematic representation 
of the network is shown in Figure 2. All model parameters were initially 
a combination of the parameters used by Bakx et al. [13] and the HD U- 
net from Nguyen et al. [16]. Different models with varying parameters 
were tested to find an optimal working model for our particular patient 
group [17,18]. Eventually, the model represented in Figure 2 was 
compiled with a mean squared error (MSE) loss function and an Adam 
optimizer with a learning rate of 0.0001. The model was trained for 800 
epochs using a 4-fold cross validation. Model construction and training 
was done by using Keras API with the TensorFlow backend (v2.2.0) in 
Python 3.6. Training was done on a NVIDIA V100 GPU with 16 GB RAM 
and took approximately 4 h. More details about the construction of the 
model itself can be found in the Supplementary material. 

2.3. Dose mimicking 

The voxel-wise dose prediction predicted by the HD U-net, was used 
as input for the mimicking algorithm in RayStation. The mimicking al-
gorithm used the dose prediction and pre-set ROI goals as inputs. The 
outcome of this iterative mimicking algorithm is a clinically deliverable 
plan which best reproduces the predicted dose. 

This method was implemented by RaySearch and improved 
throughout the years [19]. The main purpose of the mimicking algo-
rithm was to approximate the predicted dose distribution. The pre-set 
ROI goals were similar to the used clinical goals in Table 1 and were 
equal for all patients. The beam energy and gantry angles were copied 
from the manual plans of the corresponding patients. The outcome of 

Table 1 
Overview of all clinical goals used for the optimized plans in this study. Per-
centages are indicating the relative volume of the ROI and goals are set with a 
prescription dose of 40.05 Gy. The ROI names follow the nomenclature ac-
cording to AAPM TG 263 [15]. The clinical goals are based on the consensus 
statement of the Dutch society for radiation Oncology [18].  

ROI Description Goal 

PTVp PTV of the whole left breast cropped with 5 
mm from external 

D98% ≥ 38.0 Gy 
D2% ≤ 42.8 Gy 
39.6 Gy ≤ Dmean ≤

40.4 Gy 
PTVn1n2 PTV of lymph nodes level 1&2 cropped with 

5 mm from external 
D98% ≥ 38.0 Gy 
D2% ≤ 42.8 Gy 

PTVn3n4 PTV of lymph nodes level 3&4 cropped with 
5 mm from external 

D98% ≥ 38.0 Gy 
D2% ≤ 42.8 Gy 

Heart Heart ROI Dmean ≤ 2.5 Gy 
Lungs Lungs ROI Dmean ≤ 6.0 Gy 

V5Gy ≤ 50% 
External-PTV Full patient body, without all PTVs V42.85y ≤ 10 cm3 

Humerus- 
PRV10 

Humerus ROI with uniform expansion of 10 
mm 

V38Gy ≤ 2 cm3 

Breast_CL Contralateral breast Dmean ≤ 1 Gy 
Thyroid Thyroid ROI V30Gy ≤ 50% 
Esophagus Esophagus ROI V30Gy ≤ 5%  
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this mimicking algorithm was a treatment plan in the form of actual 
machine parameters and a dose distribution, which made the mimicked 
plan clinically deliverable. The mimicking was done in a research 
version of RayStation (v8.99). RayStation versions 9 and 8.99 were used 
for clinical and mimicked dose respectively. The two versions have a 
type b dose calculation algorithm. For both versions, the same clinical 
and mimicked dose grid (3 mm3) was used. More details about the 
mimick settings are given in the supplementary material. 

2.4. Model evaluation 

The evaluation of the model has been performed based on the clinical 
goals in Table 1. However, not all clinical goals in Table 1 were 
considered to be equally relevant. The reason for this was that some of 
the clinical goals were very specific for our own institution and are not 
commonly used in other studies or institutes. The most relevant clinical 

goals were set to be; all PTV goals, the average heart dose, the average 
lung dose, and the external-PTV clinical goal. An evaluation of all 
clinical goals from Table 1 was added in Table S1 of the Supplementary 
material. Besides an evaluation on the clinical goals, the actual obtained 
DVH values were evaluated as well. A comparison has been made be-
tween the manually optimized doses, the predicted doses and the 
mimicked doses. To find significant differences between the predicted 
and mimicked doses compared to the manually optimized doses, a 
Wilcoxon signed rank test was used to determine the p-values. A p-value 
of <0.05 was considered to be significant. 

3. Results 

The training and validation losses are converging adequately and 
there is no sign of overfitting as the results all folds stabilize after a few 
hundred epochs (Figure 3). The differences in the training losses 

Figure 1. Visualization of the Euclidean distance map transformation. This example shows one slice of the primary PTV (PTVp) as a binary mask (left) and the 
distance map transformation (right). Voxels within the PTVp have positive values, voxels outside the PTVp have negative values. 

Figure 2. Schematic representation of the used deep learning architecture: a HD U-net. The black numbers above the feature maps indicate the number of features in 
that particular layer. The red numbers alongside the feature maps indicate the dimension of the layers in that row. 
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between the different folds were very small, compared to the differences 
in the validation losses. Fold 1 was chosen for further testing of the 
model, because it had the lowest validation loss of all folds. 

An evaluation on the DVH values of the relevant clinical goals was 
performed using 12 test patients. For illustration purposes, the visuali-
zation of the evaluated plans (manual, predicted and mimicked) for one 
test patient is shown in Figure 4. 

Manual optimized plans and AI test results were for some DVH pa-
rameters significantly different (Table 2). The predicted plans showed a 
significant higher D98% for all PTVs while the D2% was significantly 
lower for all PTVs. Additionally, the average heart dose and the 
External-PTV clinical goal showed statistically significant higher values. 
The predicted plans fulfilled all clinical goals for all 12 test patients. For 
the mimicked plans, significant lower values for the D2% of all PTVs and 
higher average doses for the heart and lungs were observed. In total, 10 
out of the 12 test patients fulfilled all relevant clinical goals. Full data of 
all test patients was added in the Supplementary material (Table S1). 

4. Discussion 

A CNN model has been developed that is able to create dose pre-
dictions which fulfil all relevant clinical goals for locally advanced left- 

sided breast cancer patients. Next to that, it is established that the 
mimicking algorithm is able to create clinically acceptable plans in 10 
out of the 12 cases with the use of these dose predictions. One of the 
treatment plans that failed one clinical goal had an average PTVp dose of 
40.5 Gy which was only slightly higher than the maximum allowed 
average dose of 40.4 Gy. 

The Dutch society for radiation oncology recently reached a 
consensus about dose evaluation criteria for breast cancer radiotherapy. 
We based most of our criteria on this consensus statement where the 
average PTV dose should be within 1% of the prescribed dose. It was 
conceived as a variation that could be achieved in clinical practice based 
on a treatment planning benchmark. Currently, there is some discussion 
about the maximum average dose allowed and maybe the 1% might 
prove to be a little too stringent in clinical practice. Another treatment 
plan exceeded the allowed volume for the external clinical goal with 
18.8 cm3 at a dose of 42.9 Gy instead of the maximum of 10 cm3. The 
reason for this can be sub-optimal mimick settings, as these were not 
optimized for the individual patient. 

Although there are small differences in the OAR doses between the 
mimicked plans and the manual plans, it is unlikely that these differ-
ences in mean heart and lung dose of 0.1 to 0.4 Gy on average are 

Figure 3. Training and validation loss of the HD U-net model for all different folds. All folds show a convergence in the losses while no sign of overfitting is shown.  

Figure 4. Visualization of the evaluated plans (manual, predicted and 
mimicked) for one test patient. The colors indicate the relative dose with 
respect to the prescription dose of 40.05 Gy. Left: PTVp, right: lymph node 
regions (PTVn1n2 and PTVn3n4). Black contours are indicating the 
target volumes. 

Table 2 
Manual optimized planned and AI based test results. The bold values indicate a 
significant higher dose and the italic values indicate a significant lower dose 
compared to the optimized plans (p < 0,05, Wilcoxon signed rank test). All 
values are in Gy except for the External-PTV clinical goal, which is in cm3.  

ROI n* Clinical goals Manual Predicted Mimicked 

PTVp 12 D98% [Gy] ≥ 38.0 
Gy 

38.2 ±
0.2 

38.7 ± 
0.2 

38.2 ± 0.1 

12 D2% [Gy] ≤ 42.8 Gy 41.5 ±
0.3 

41.1 ± 0.1 41.2 ± 0.4 

12 39.6 Gy ≤ Dmean 

[Gy] ≤ 40.4 Gy 
40.1 ±
0.2 

40.3 ± 
0.1 

40.0 ±
0.2** 

PTVn1n2 12 D98% [Gy] ≥ 38.0 
Gy 

38.3 ±
0.3 

38.7 ± 
0.2 

38.4 ± 0.2 

12 D2% [Gy] ≤ 42.8 Gy 41.4 ±
0.3 

40.8 ± 0.1 40.8 ± 0.3 

PTVn3n4 6 D98% [Gy] ≥ 38.0 
Gy 

38.3 ±
0.2 

38.7 ± 
0.1 

38.3 ± 0.2 

6 D2% [Gy] ≤ 42.8 Gy 41.6 ±
0.5 

40.9 ± 0.0 40.8 ± 0.1 

Heart 12 Dmean [Gy] ≤ 2.5 Gy 1.3 ± 0.3 1.4 ± 0.3 1.3 ± 0.3 
Lungs 12 Dmean [Gy] ≤ 6.0 Gy 4.3 ± 0.6 4.4 ± 0.5 4.7 ± 0.5 
External- 

PTV 
12 V42.85Gy [cm3] ≤

10.0 cm3 
0.2 ± 0.5 0.9 ± 1.4 2.4 ± 5.8** 

*Number of patients included in the evaluation. **One patient in the test set did 
not fulfil this goal. 
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clinically relevant. Darby et al. found an excess relative risk (ERR) for 
major coronary events of 7.4% per Gy on the mean heart dose [20], 
while Taylor et al. found an ERR for cardiac mortality of 4% per Gy on 
the mean heart dose and an ERR for RT induced lung cancer of 11% per 
Gy on the mean lung dose [21]. 

To our knowledge, this is the first CNN based model for locally 
advanced breast cancer patients which makes it hard to compare this 
study with other literature. Besides that, most CNN based breast plan-
ning models, in particular for node-negative patients, are only focusing 
on dose predictions and are not generating clinically applicable plans 
[9,10,11,16]. This model was based on the HD U-net from Dan Nguyen 
et al., which was originally used for head and neck cancer patients. [16]. 
Their trained model was capable of accurately predicting dose distri-
butions with the OAR max dose within 6.3% and the mean dose within 
5.1% of the prescription dose. Our study showed that this type of CNN 
architecture is also able to successfully create dose predictions for a 
different treatment site and doing so with a 2D distance map based input 
instead of a full 3D input. 

Uncertainty quantification in deep neural networks is still an open 
issue despite advances in this area. We believe that uncertainty quan-
tification further details a model’s accuracy and facilitates a model’s 
generalizability. Different uncertainty quantification methods have 
been reported in diverse settings [22]. However, in this work we did not 
include uncertainty quantification. To the best of our knowledge, no 
study has assessed uncertainty for a HD U-net model for dose prediction. 
It requires a comprehensive literature review and testing the applica-
bility of various uncertainty methods in a trial-and-error fashion, which 
is outside the scope of the current work presented. We plan to evaluate 
several methods, including probabilistic forecasting and prediction in-
tervals, as they are the most widely used techniques in literature for 
uncertainty quantification of neural networks [22]. In general, Bayesian 
deep learning and Bayesian neural networks will be used to interpret 
model parameters. Some methods have been proposed for U-net models, 
including modifications in the original U-net model, specifically adding 
batch normalization and dropout after each convolutional layer. These 
methods will be comprehensively discussed in our future studies. 

This study used data from 60 patients which is a relatively small 
cohort. This is due to the limited availability of suitable data from locally 
advanced breast cancer patients available within our institution. Pa-
tients treated before 2018 were considered to be unusable because of 
differences in clinical goals and ROI margins compared to current pa-
tients. Besides that, all patients were treated for left-sided locally 
advanced breast cancer, which means that cases that differ from this 
patient group (e.g., right-sided, node negative etc.) will likely be not 
suitable for this model. An extension of the database, in numbers and 
different patient groups, may result in a more accurate and widely 
applicable model. Besides that, the dose mimicking algorithm was only 
used with a focus on creating clinically deliverable plans, without trying 
to obtain optimal plans per individual patient. The vendor has already 
improved the mimick software in a newer software version, meaning 
that a future study may look into the optimization of new mimick set-
tings for this particular model. This should result in creating mimicked 
dose distributions that are even better at sparing OARs. Finally, a more 
elaborate study that focuses on direct machine parameter optimization 
seems useful. Right now, our CNN model is able to create a voxel-wise 
dose prediction which is not directly clinically applicable without the 
use of dose mimicking and pre-set gantry angles. A model which predicts 
the actual machine parameters could replace the used two-step 
approach and directly predict a clinically applicable plan to decrease 
computation time and model complexity. 

As a next step a clinical study will be performed to investigate the 
clinical implementation of AI based treatment planning. During this step 
focus will be on the time use of manually made versus automated 
treatment planning to investigate whether the latter already offers time 
benefits in daily clinical practice. Furthermore, this study will include a 
qualitative review by physicians, to better investigate clinical 

applicability. 
In conclusion, we have developed a method for automatic treatment 

plan generation for locally advanced left-sided breast cancer patients 
using a combination of a CNN model with a dose mimicking algorithm. 
The resulting treatment plans showed that this method is able to create 
clinically acceptable treatment plans based on the patient’s anatomy. 
Further improvements like an extension of the patient database, un-
certainty quantification, a more optimized mimicking algorithm and a 
focus on direct machine parameter prediction could enhance the per-
formance and applicability of this method. The current results show 
great potential for AI based locally advanced breast cancer treatment 
plan generation. 
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for assisting in creating and checking the clinical treatment plans. 
Furthermore, we would like to thank Mats Holmström and Hanna 
Gruselius from RaySearch for their feedback and support and RaySearch 
for funding the PdEng position of Nienke Bakx. Lastly, we would like to 
thank Carola van Pul from Eindhoven University of Technology (TU/e) 
for providing capacity to train the model. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.phro.2021.11.007. 

References 

[1] Global Cancer Observatory. https://gco.iarc.fr/ [accessed 13 January 2021]. 
[2] Early Breast Cancer Trialists’ Collaborative Group. Effect of radiotherapy after 

breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: 
meta-analysis of individual patient data for 10 801 women in 17 randomised trials. 
The Lancet 2011;378(9804):1707–16. https://doi.org/10.1016/S0140-6736(11) 
61629-2. 

[3] McGale P, Correa C, Cutter D, Duane F, Ewertz M, Gray R, et al. Effect of 
radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20- 
year breast cancer mortality: meta-analysis of individual patient data for 8135 
women in 22 randomised trials. Lancet 2014;383(9935):2127–35. https://doi.org/ 
10.1016/S0140-6736(14)60488-8. 

[4] Hizam DA, Jong WL, Zin HM, Ng KH, Ung NM. Evaluation of treatment plan 
quality for head and neck IMRT: a multicenter study. Med Dosim 2021;46(3): 
310–7. https://doi.org/10.1016/j.meddos.2021.03.003. 

[5] Wang J, Hu W, Yang Z, Chen X, Wu Z, Yu X, et al. Is it possible for knowledge-based 
planning to improve intensity modulated radiation therapy plan quality for 
planners with different planning experiences in left-sided breast cancer patients? 
Rad Oncol 2017;12(1). https://doi.org/10.1186/s13014-017-0822-z. 

[6] Guo B, Shah C, Xia P. Automated planning of whole breast irradiation using hybrid 
IMRT improves efficiency and quality. J Appl Clin Med Phys 2019;20(12):87–96. 
https://doi.org/10.1002/acm2.v20.1210.1002/acm2.12767. 

[7] Lin T-C, Lin C-Y, Li K-C, Ji J-H, Liang J-A, Shiau A-C, et al. Automated 
hypofractionated IMRT treatment planning for early-stage breast Cancer. Rad 
Oncol 2020;15(1). https://doi.org/10.1186/s13014-020-1468-9. 

[8] Dragojević I, Hoisak JDP, Mansy GJ, Rahn DA, Manger RP. Assessing the 
performance of an automated breast treatment planning software. J Appl Clin Med 
Phys 2021;22(4):115–20. https://doi.org/10.1002/acm2.v22.410.1002/ 
acm2.13228. 

[9] Ma M, Kovalchuk N, Buyyounouski MK, Xing L, Yang Y. Dosimetric features-driven 
machine learning model for DVH prediction in VMAT treatment planning. Med 
Phys 2019;46(2):857–67. https://doi.org/10.1002/mp.2019.46.issue-210.1002/ 
mp.13334. 

[10] Fan J, Xing L, Dong P, Wang J, Hu W, Yang Y. Data-driven dose calculation 
algorithm based on deep U-Net. Phys Med Biol 2020;65(24):245035. https://doi. 
org/10.1088/1361-6560/abca05. 

[11] Ahn SH, Kim EunSook, Kim C, Cheon W, Kim M, Lee SB, et al. Deep learning 
method for prediction of patient-specific dose distribution in breast cancer. Rad 
Oncol 2021;16(1). https://doi.org/10.1186/s13014-021-01864-9. 

D. van de Sande et al.                                                                                                                                                                                                                         

https://doi.org/10.1016/j.phro.2021.11.007
https://doi.org/10.1016/j.phro.2021.11.007
https://gco.iarc.fr/
https://doi.org/10.1016/S0140-6736(11)61629-2
https://doi.org/10.1016/S0140-6736(11)61629-2
https://doi.org/10.1016/S0140-6736(14)60488-8
https://doi.org/10.1016/S0140-6736(14)60488-8
https://doi.org/10.1016/j.meddos.2021.03.003
https://doi.org/10.1186/s13014-017-0822-z
https://doi.org/10.1002/acm2.v20.1210.1002/acm2.12767
https://doi.org/10.1186/s13014-020-1468-9
https://doi.org/10.1002/acm2.v22.410.1002/acm2.13228
https://doi.org/10.1002/acm2.v22.410.1002/acm2.13228
https://doi.org/10.1002/mp.2019.46.issue-210.1002/mp.13334
https://doi.org/10.1002/mp.2019.46.issue-210.1002/mp.13334
https://doi.org/10.1088/1361-6560/abca05
https://doi.org/10.1088/1361-6560/abca05
https://doi.org/10.1186/s13014-021-01864-9


Physics and Imaging in Radiation Oncology 20 (2021) 111–116

116

[12] Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment planning based 
on three-dimensional dose distribution predicted from deep learning technique. 
Med Phys 2019;46(1):370–81. https://doi.org/10.1002/mp.2019.46.issue- 
110.1002/mp.13271. 

[13] Bakx N, Bluemink H, Hagelaar E, van der Sangen M, Theuws J, Hurkmans C. 
Development and evaluation of radiotherapy deep learning dose prediction models 
for breast cancer. Phys Imag Rad Oncol 2021;1(17):65–70. https://doi.org/ 
10.1016/j.phro.2021.01.006. 

[14] Strnad V, Hannoun-Levi J-M, Guinot J-L, Lössl K, Kauer-Dorner D, Resch A, et al. 
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