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Abstract

Assessments of genomic prediction accuracies using artificial intelligent (AI) algorithms (i.e., machine and deep learning methods) are
currently not available or very limited in aquaculture species. The principal aim of this study was to examine the predictive performance of
these new methods for disease resistance to Edwardsiella ictaluri in a population of striped catfish Pangasianodon hypophthalmus and to
make comparisons with four common methods, i.e., pedigree-based best linear unbiased prediction (PBLUP), genomic-based best linear
unbiased prediction (GBLUP), single-step GBLUP (ssGBLUP) and a nonlinear Bayesian approach (notably BayesR). Our analyses using
machine learning (i.e., ML-KAML) and deep learning (i.e., DL-MLP and DL-CNN) together with the four common methods (PBLUP, GBLUP,
ssGBLUP, and BayesR) were conducted for two main disease resistance traits (i.e., survival status coded as 0 and 1 and survival time,
i.e., days that the animals were still alive after the challenge test) in a pedigree consisting of 560 individual animals (490 offspring and
70 parents) genotyped for 14,154 single nucleotide polymorphism (SNPs). The results using 6,470 SNPs after quality control showed that
machine learning methods outperformed PBLUP, GBLUP, and ssGBLUP, with the increases in the prediction accuracies for both traits by
9.1–15.4%. However, the prediction accuracies obtained from machine learning methods were comparable to those estimated using
BayesR. Imputation of missing genotypes using AlphaFamImpute increased the prediction accuracies by 5.3–19.2% in all the methods and
data used. On the other hand, there were insignificant decreases (0.3–5.6%) in the prediction accuracies for both survival status and survival
time when multivariate models were used in comparison to univariate analyses. Interestingly, the genomic prediction accuracies based on
only highly significant SNPs (P<0.00001, 318–400 SNPs for survival status and 1,362–1,589 SNPs for survival time) were somewhat lower
(0.3–15.6%) than those obtained from the whole set of 6,470 SNPs. In most of our analyses, the accuracies of genomic prediction were
somewhat higher for survival time than survival status (0/1 data). It is concluded that although there are prospects for the application of ge-
nomic selection to increase disease resistance to E. ictaluri in striped catfish breeding programs, further evaluation of these methods should
be made in independent families/populations when more data are accumulated in future generations to avoid possible biases in the
genetic parameters estimates and prediction accuracies for the disease-resistant traits studied in this population of striped catfish
P. hypophthalmus.
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Introduction
Genomic selection has been increasingly practiced in genetic im-
provement programs for farmed animals and plants, using a
range of different statistical methods from genomic-based best
linear unbiased prediction (GBLUP) and its extension known as
single-step GBLUP (ssGBLUP) to nonlinear Bayesian approaches
(BayesA, BayesB, BayesC, BayesC-p, and notably BayesR)
(VanRaden 2008; Daetwyler et al. 2013; Moser et al. 2015; Lourenco
et al. 2020). Recently, there has been a growing interest in using

artificial intelligent (AI) algorithms (i.e., machine learning or deep
learning) to choose optimal genome-wide models without prior
consumptions to determine genomic prediction accuracies for
quantitative complex traits, especially for disease resistance (tol-
erance or resilience). Examples using simulated and real animal
and plant data showed that the prediction accuracies (r) using
machine learning were 10% greater than linear (i.e., GBLUP) and
1.3% greater than nonlinear methods (i.e., BayesR), for instance,
r¼ 0.732–0.758 for binary and continuous traits using GBLUP vs
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0.801–0.832 (Yin et al. 2020). Likewise, machine learning (i.e., lin-
ear bagging) increased 20–70% the prediction accuracy for disease
resistance to photobacterium in gilthead sea bream (Bargelloni
et al. 2021). To date, however, no (or very limited) studies have
used both machine and deep learning methods to estimate geno-
mic breeding values for aquaculture species.

Almost all studies in aquatic animal species have employed
GBLUP, ssGBLUP, or Bayesian methods to examine genomic pre-
diction accuracies for two main groups of traits, i.e., body weight
and disease resistance. A synthesis of the published information
shows that the genomic prediction accuracy ranged from 0.38 to
0.89 for growth-related traits (Houston et al. 2020). On the other
hand, the predictions of genomic breeding values for disease re-
sistance varied with studies, pathogens, populations, and meth-
ods used, with the estimates ranging from 0.2 (Silva et al. 2019) to
0.8 or greater (Barrı́a et al. 2018). For both growth and disease
traits, the majority of the studies demonstrated that either linear
(GBLUP, ssGBLUP) or nonlinear Bayesian methods increased the
prediction accuracies of animal breeding values relative to
Pedigreed-based BLUP (PBLUP) by 22–24% (Houston et al. 2020). In
addition to growth and disease traits, three recent studies per-
formed genomic predictions for meat quality in banana shrimp
(Nguyen et al. 2020) or Portuguese Oyster (Crassostrea angulata)
(Vu et al. 2021) as well as behavior traits (i.e., cannibalism) in
Asian seabass (Nguyen and Khang 2021).

Despite the economic importance of the striped catfish in
aquaculture, e.g., valuing 2.36 billion USD that accounts for 1%
GDP of Vietnam, there has been a paucity of knowledge in using
genomic information in breeding programs for high growth (Vu
et al. 2019b) or increased disease resistance, especially Bacillary
Necrosis of Pangasius (Vu et al. 2019a). The Bacillary Necrosis of
Pangasius (BNP) due to Edwardsiella ictaluri has been the main
contributor to 56–92% mortality during larval and fingerling rear-
ing in this species (V~u et al. 2017). Our earlier studies showed that
there is a heritable genetic component for E. ictaluri resistance,
but the heritability for this trait was low, around 0.10 across sta-
tistical methods used (Vu et al. 2019a; Dinh Pham et al. 2021;
Pham et al. 2021a, 2021b). While these results suggest there are
prospects for genetic improvement of resistance to E. ictaluri us-
ing conventional selective breeding, the pathogen test has posed
substantial challenges in terms of biosecurity issues, times, costs,
and environmental impacts (Nguyen 2014; Dinh Pham et al.
2021). Due to these limitations, genomic selection has emerged
as an alternative option to increase the resistance of striped cat-
fish to E. ictaluri, one of the most severe diseases that has caused
significant economic loss for the sector world-wide.

Therefore, the principal aim of this study was to assess geno-
mic prediction accuracies of machine and deep learning methods
for two main disease resistance traits (i.e., survival status and sur-
vival time) and to make comparisons with four common methods
(PBLUP, GBLUP, ssGBLUP, and BayesR). In addition, we explored if
imputation of missing genotypes, multiple traits analyses and sig-
nificant genome-wide markers could improve the prediction accu-
racies for the disease-resistant traits. Our results open new
opportunities for genome-based selection to increase the animal
resistance to E. ictaluri in striped catfish as well as other aquacul-
ture species infected by this highly infectious pathogen.

Materials and methods
Ethical statement
All the methods and experimental protocols of this study were
performed in accordance with guidelines and regulations

approved by the animal ethics committee of the University of the
Sunshine Coast, Australia (approval number ANE1826).

Fish and challenge test
The animal samples used in this study originated from a selective
breeding program for improved disease resistance of striped cat-
fish to E. ictaluri (Vu et al. 2019a). In 2020, the first generation was
produced based on a nested mating design with a ratio of one
male to two females. A total of 166 families (32 full- and 134 half-
sib families) were successfully produced following the breeding
protocol as detailed in Van Sang et al. (2012) and Vu et al. (2019b).
Fry of each family was kept in separate fiber glass tanks up to
3 weeks before they were transferred to stock in net hapa
installed in earthen pond. When the fingerlings reached an aver-
age body weight of 15–20 g, a random sample of 100 fish per fam-
ily was individually identified using passive integrated
transponder (PIT) tag. After tagging, a half of each family was
sent to ponds for performance testing and another half was used
in pathogen challenge tests for E. ictaluri resistance.

The challenge test involved a total of 5328 individuals from
166 families (averaging 32 individuals per family). The experi-
mental fish were initially acclimatized in cement tanks for about
2 weeks. Then the same number of fish from each family was
randomly allocated to six cement tanks (10 m3) for the challenge
test using cohabitant method (Vu et al. 2019a). The cohabitant
fish (16.7 6 6.1 g) were firstly inoculated with the bacteria E. icta-
luri pathogen (106 CFU/0.2 ml per fish). Two days after the injec-
tion, they were released into the cement tanks to rear with the
experimental fish with a ratio of 1–3 (or roughly 30% cohabitant
fish in each tank). The bacteria were added to the experimental
tanks at day 4 at a dose of 105 CFU/ml to retain the bacterial den-
sity for disease infection. The experiment was conducted over a
period of 23 days when no death fish was recorded. During this
period, the feeding rate was reduced to 1.5% of the total biomass
in tank. Mortality was highest in day 5 and dead fish were sam-
pled for laboratory PCR test to verify that their death symptoms
(white spots in spleen, liver, and kidney) were due to E. ictaluri
pathogen. At the conclusion of the experiment, all alive fish were
biosecure-buried, following the regulations of the national veteri-
nary authority (Department of Animal Health, Vietnam).

Phenotype data
During the challenge test, death fish were collected every 3 h and
their clinical symptoms were also recorded. The data were used
to calculate two measures of E. ictaluri resistance, i.e., survival
status and survival time. Survival status was expressed as a bi-
nary trait in which dead fish were designated as zero (0) and alive
animals at the end of the challenge test were assigned a number
1. Furthermore, survival time was defined as the continuous trait
from the start of test until the animal death in day. Both survival
status and survival time were analyzed using linear mixed model
by ASReml 4.1 (Gilmour et al. 2014) to estimate breeding values
(EBVs) for all individuals (5328) and families (166) in the pedigree,
with common environmental effect—c2 (i.e., accounting for differ-
ences due to separate rearing of families until tagging) fitted in
the model. The linear mixed model comprised the fixed effects of
spawning batch (7 levels) and challenge tanks (2 levels) and a co-
variate of age from birth to tagging. Estimated heritability and
common full-sib effect obtained from this dataset using the
above linear mixed models were 0.09 6 0.06 and 0.06 6 0.03 for
survival status and 0.11 6 0.08 and 0.13 6 0.04 for survival time.
Based on the EBVs ranking, 20 highest resistance families and 20
lowest resistance families were chosen from 166 families. Only
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families with the number of offspring greater than 9 were se-
lected to ensure that the EBVs were estimated with a high level of
reliability. Next, we randomly collected fin tissue samples of 12–
15 fish per family per disease resistance group for genome se-
quencing using Diversity Arrays Technology (DArTseqTM).

Genotyping and quality control
A total of 564 DNA samples (from 564 individual fish) were sent
to a commercial service provider in Canberra, Australia for geno-
typing by sequencing using DArTseqTM technology. The
DArTseqTM was based on the genome complexity reduction
method in combination with high throughput next-generation
sequencing using Illumina platform. The sequencing protocol in-
cluding choice of restricted enzymes and library preparation was
optimized for striped catfish (Pangasianodon DarTseq 1.0) using
96 independent DNA samples of striped catfish in our earlier
study (Vu et al. 2020). Briefly, the PstI-SphI method (Kilian et al.
2012) was used and the compatible adaptors were designed to in-
clude Illumina flow-cell attachment sequence, sequencing
primer sequence, and capturing variant length of barcode regions
(Elshire et al. 2011). Then, only mixed fragments (PstI-SphI) were
amplified in 30 rounds of PCR, followed by sequencing on
Illumina Hiseq2500 (77 cycles per single read). Next, sequences
generated in each plate with 96-well microliter were processed by
proprietary DArT analysis protocol. The genotype callings were
partially described in our previous studies (Nguyen et al. 2018,
2020). The average variant call-rate was 99% and the sample call-
ing rate was 92%. With this quality control, four out of 564 sam-
ples were discarded, and 560 samples (490 offspring and 70
parents) and 14,154 single nucleotide polymorphisms (SNPs)
remained for further quality control by dartR package (Gruber
et al. 2018). In this data, average read depth in each locus ranged
2800–122,106 sequences, reads count from 1410 to 81,949
sequences. The quality control of the genotype data in the dartR
package (Gruber et al. 2018) was filtered for loci call-rate (<0.05,
4665 SNPs removed) and individual call-rate (<0.9, 2 individuals
removed), monomorphic SNPs (0 SNP removed), minor allele fre-
quency (<0.05, 2830 SNPs removed) and significant SNPs depar-
ture from Hardy-Weinberg Equilibrium (<0.05, 0 SNP removed).
The retaining 6,659 SNPs were blasted to the nonredundant
nucleotide striped catfish genome database GENO_Phyp_1.0,
https://www.ncbi.nlm.nih.gov/assembly/GCF_009078355.1 (Kim
et al. 2018) which matched 6470 SNPs to the genome chromosome
information using Blast2GO (Conesa et al., 2005). The genotype
data of 6470 SNPs and the phenotypes of 488 individuals were
used for subsequent analyses.

Genotype imputation
The missing genotypes were about 10.0% in this study. They were
imputed using AlphaFamImpute (Whalen et al. 2020). The impu-
tation was based on offspring-parent (i.e., pedigree) information.
Specifically, this method used parental genotypes to impute the
missing values of offspring genotypes and then, the offspring
genotypes were used to fulfill the missing values of their parents
(Whalen et al. 2020). The pedigree used in our analysis was traced
back to the base population, including four generations.

Estimation of heritability using genotype data
Variances components of the two studied traits (survival status
and survival time) were estimated using linear mixed model un-
der the best linear unbiased prediction (BLUP) framework in
AIREMLf90 sub-program of the BLUPF90 family package (Misztal
et al. 2002). AIREMLf90 uses Average Information-Restricted

Maximum Likelihood method that requires less computational
resources and higher accuracy of variance estimates (Masuda
et al. 2014). The models included the fixed effects of spawning
batch (four levels, 1–2 weeks interval between successive spawn-
ing batches) and pathogen challenge test tanks (two levels) and
the random effect of additive genetics of the individual fish in the
pedigree. Age from birth to tagging (124–167 days) was also fitted
as a linear covariate. The SNP heritability (h2) was calculated as a
ratio of the additive genetic variance (r2

a) to total phenotypic vari-
ance ðr2

p), where r2
p ¼r2

a þr2
e (r2

e ¼ environmental variance).
Based on the logarithmic likelihood ratio test (LRT), the common
environmental effect (c2) was not significant (P> 0.05) and hence,
this effect was omitted from the statistical models used to esti-
mate genetic variances and prediction accuracy.

Statistical methods
Accuracies of genomic prediction for the disease resistance traits
(survival status and survival time) were estimated using BLUP-
family methods (PBLUP, GBLUP, and ssBLUP), BayesR, machine
learning (i.e., ML-KAML), and deep learning (i.e., DL-MLP and DL-
CNN).

PBLUP, GBLUP, and ssGBLUP (using BLUPF90 program):
The mixed model used in PBLUP, GBLUP, and ssGBLUP is written
in a matrix notation as follows:

y ¼ Xbþ Zaþ e (1)

where y is the vector of phenotypic values (survival status or sur-
vival time), b is the vector of fixed effects (i.e., spawning batches
and experimental tanks and a linear covariate of age from birth
to tagging), a is the vector of the random term (i.e., the additive
genetic effect of individual fish in the pedigree). X and Z are the
incidence matrices related to the fixed and random effects. The
letter e refers to residual variance or error of the estimates corre-
sponded to each phenotypic value.

The main difference among BLUP-family methods (PBLUP,
GBLUP, and ssGBLUP) relates to relationship matrices (A, G, or H)
used to solve the mixed model Equation (1) above.

PBLUP: In PBLUP (Henderson 1985), a is the additive genetic ef-
fect of each individual fish with its corresponding matrix Z fol-
lowing a normal distribution �N(0, Ar2

a), with A is the numerator
relationship matrix calculated from the pedigree records and r2

a

is the additive genetic variance.
GBLUP: In GBLUP (Meuwissen et al. 2001), a is the random ad-

ditive genetic effect underlying polygenic effects of SNPs with a
normal distribution � N(0, Gr2

g) where genomic relationship ma-
trix G was generated by VanRaden method (VanRaden 2008) from
6470 SNPs and genomic variance r2

g. The GBLUP method assumes
that each SNP has small and equal contribution to phenotypic
variance of the traits studied.

ssGBLUP: In ssGBLUP (Misztal et al. 2009; Lourenco et al. 2020),
A and G matrices are blended to produce realized matrix H
(Aguilar et al. 2010). The inverse of H matrix is expressed as be-
low:

H�1 ¼ A�1 þ
h 0 0

0 G�1 �A�1
22

i
(2)

where A�1 and G�1 are the inverse of matrices A and G as de-
scribed above. A�1

22 is the inverse of matrix of genotyped individ-
uals only.
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The three BLUP methods (PBLUP, GBLUP, and ssGBLUP) were
implemented in BLUPF90 package (Misztal et al. 2002). For sur-
vival status, we used generalized (threshold) mixed model in
THRGIBBF1f90 (Tsuruta and Misztal 2006) known as threshold
Gibb Sampling method, whereas survival time was analyzed us-
ing linear mixed models in AIREMLf90 (Masuda et al. 2014). In the
Gibbs sampling, we used 200,000 iterations with 20,000 iterations
as burn-in for univariate analysis. The convergence of the param-
eters estimates was checked using POSTGIBBSf90 program.

Nonlinear Bayesian method (BayesR):
BayesR assumes that SNP effects bi follow a four-component nor-
mal mixture and the effect of SNP i is assumed to be distributed
as:

bi � p1ðbi ¼ 0Þ þ p2Nð0:0001r2
gÞ þ p3Nð0; 0:001r2

gÞ
þ p4Nð0; 0:01r2

gÞ (3)

where r2
g as defined above, r2

g represents the total additive ge-
netic variance (i.e., the cumulative variance of all SNP effects)
and p ¼ ðp1; p2; p3; p4Þ the mixing proportions such thatP4

i¼1 pi ¼ 1. The mixing proportions p are assumed to follow a
Dirichlet prior, p � Dirichlet ðaþ bÞ, with a representing a vector
of pseudo counts and b the cardinality of each component. In
this study, we used a flat Dirichlet distribution, with a ¼ ð1; 1; 1; 1Þ
for the prior. As suggested by Moser et al. (2015), r2

g is assumed to
be a random variable following an Inverse—v2 distribution.

The analysis of BayesR (https://github.com/syntheke/BayesR)
was run for 50,000 steps with 20,000 steps discarded as burn-in.
We used predicted phenotypes (computed in AIREMLf90 using
Equation 1), as this package does not allow fitting covariates in
the model. Also, genotypes executed in BayesR were converted
using PLINK software (Purcell et al. 2007) together with mapping
file in the previous step (see Section 2.3).

Machine learning and deep learning methods:
KAML (Kinship Adjusted Multiple Loci):

KAML is a machine learning-based method that incorporates
cross-validation, multiple regression, grid search, and bisection
algorithm to improve genomic prediction accuracy for complex
quantitative traits (Yin et al. 2020). KAML extends linear mixed
model (Equation 1) by incorporating quantitative trait nucleoti-
des—QTNs (e.g., traits controlled by genes with large and moder-
ate effects) as covariates and a SNP-weighted trait-specific
kinship matrix as the (co)-variance assumption corresponding to
the random effect. The selections of QTNs and SNP weights are
optimized by machine learning. In a matrix notation, Equation 1
becomes:

Y ¼ Xbþ Qqþ Za � þe with a� � Nð0; Kwr2
gÞ; e � Nð0; Ir2

gÞ (4)

where r2
g and r2

e are as described above; Q is covariates matrix of
QTNs detected throughout multiple regression analyses; q is a
vector of fixed effect of each QTN corresponding to Q and Kw is
SNP-weighted Kinship that is optimized by grid search and bisec-
tion procedure. The implementation of KAML included two main
steps, i.e., define Q and Kw and then predicting genomic breeding
values of the validation set. In the training step, KAML optimized
parameters for determining QTNs and SNPs weights which used
all testing subset data provided throughout cross-validation.
Next, in the prediction step, the optimized parameters were used
to predict genomic breeding values of each individual in

validation set. A detailed description of the step-wise procedures
and the underlying algorithms of KAML is given in Yin et al.
(2020). In our analyses, we used PLINK (Purcell et al. 2007) to con-
vert the genotype data into the right format to be analyzed in
KAML (https://github.com/YinLiLin/KAML) in R environment (R
Core Team 2015). KAML utilized adjusted phenotypes (i.e., pheno-
typic y-hats) for testing sets and masked (i.e., “NA” values) pheno-
types of validation sets. To define the best parameters (i.e.,
pseudo QTNs, the optimal SNPs weights, the optimal Log value
and the optimized kinship matrix) for mixed models of each test-
ing set, we used fivefold cross-validation with 100 replications (to
obtain stable parameters over subsets, i.e., QTNs and Log values).

Deep learning—Multilayer Perceptron (DL-MLP):

For deep learning analysis, we used DeepGP package (https://
github.com/lauzingaretti/deepGP). A detailed description of the
theoretical framework is given in Zingaretti et al. (2020) and
Pérez-Enciso and Zingaretti (2019). In our analyses, we used two
different algorithms of deep learning: multilayer perceptron and
convolutional neural network.

Multilayer perceptron is fully connected networks consisting
of an input layer, one or several hidden layers, and an output
layer. In the context of genomic prediction, input layer receives
SNPs data (i.e., 6470 SNPs). Each of SNP information in the input
layer is transferred its value to the first neuron of the first hidden
layer by the Z function:

ZðkÞ ¼ bk�1 þWðk�1Þf ðk�1ÞðxÞ; (5)

where W is weighted SNP information, f(x) is nonlinear function
and b is bias (i.e., constant). In the case of genomic prediction, the
input layer is SNPs genotype (i.e., input variables ¼ number of
SNPs) of individual fully connected to the first hidden layers. As a
result, the value in the first neuron of the first hidden layer is the
sum effect of Z function over 6470 SNPs (

P6470
i¼1 Z). Likewise, infor-

mation in the first hidden layer is the input for transferring its
value to the second hidden layers and finally to the output layers.
The significance step in obtaining best DL-MLP model is to define
MLP structure network (i.e., number of hidden layer and neuron
of each layer) and hyperparameters which related to Equation 5.
These parameters and their values in our study include learning
rate (–lr 0.025 0.01), type of drop out (–dr 0 0.01), type of regulari-
zation (–reg 0.0001), activation function (–act linear tanh), num-
ber of hidden layer (–h 1 5), optimizer function (–optimizer Adam)
or number of epochs (–epochs 50). These scripts provided in
DeepGP (https://github.com/lauzingaretti/DeepGP) were used to
obtain hyperparameters in our DL-MLP analyses.

Deep learning—Convolutional Neural Network (DL-CNN):

Convolutional neural network comprises of 3 types of layers: (1)
convolutional layers, (2) fully connected layers, and (3) input
layers. In the context of genomic prediction, first convolutional
layer receives data of 6470 SNPs and write it to the first layer us-
ing kernel (i.e., a definite number of SNPs is grouped or com-
bined). Then, the pooling step is responsible to reduce spatial size
of SNPs data of the convolutional layer into the second convolu-
tional layer. There are two types of pooling such as max pooling
and average pooling corresponding to maximum values and
mean values of SNPs portion covered by the kernel. The process
was repeated to make update value of the last convolutional
layer. At the last convolutional layer, data were flattened (i.e.,
convert data of pooled feature of the last convolutional layer into
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single column feeding to fully connected layers). The fully con-
nected layer works similarly the MLP. The hyperparameters used
in our study are size of kernel (–ks 3), learning rate (–lr 0.025 0.01),
dropout in the first layer (–dr1 0 0.01), dropout in the hidden layer
(–dr2 0 0.1 0.2), number of pooling size (–ps 1), number of convo-
lutional layers (–ncov 1 3), number of strides (–ns 1), number of
convolutional operations (–nfilters 8). These hyperparameters
are fine-tuned under DeepGP with grid search provided in
DeepGP package (Zingaretti et al. 2020). As DeepGP cannot handle
missing values, we used imputed genotypes for all analyses.

Analysis of highly significant SNPs and multi-trait mixed
model:
ssGWAS to select significant SNPs for prediction:

Single step genome-wide association analysis (ssGWAS) was ac-
complished in BLUPF90 suite using each subset phenotype data
(i.e., see Section 2.7) for both disease resistance traits.
Theoretically, there were seven steps in performing ssGWAS in
BLUPF90 program (Lourenco et al. 2020). Practically, univariate
model of BLUPF90 was used to estimate breeding values. The in-
verse of genomic relationship matrix generated with xx_ija file
using “OPTION saveGInverse” and “OPTION snp_p_value” were
read by postGSf90 to compute SNP effect and its P-values. SNPs
panels were selected based on the P-value < 0.0001 (number of
the selected SNPs sets were presented in Supplementary Table
S2). These SNP panels were used to test the predictive perfor-
mance of six genomic prediction methods used in our study.

Multi-trait mixed model:

Multi-trait analyses are only available in BLUPF90. In this study,
two studied traits were jointly analyzed using PBLUP, GBLUP, and
ssGBLUP models in THRGIBBS1F90 (Tsuruta and Misztal 2006).
This involves using Gibbs Sampling with MCMC updates includ-
ing 1,000,000 iterations with 100,000 burn-in steps.

Fivefold cross validation
The predictive performances of all seven methods (PBLUP,
GBLUP, ssGBLUP, BayesR, ML-KAML, DL-MLP, and DL-CNN) used
in this study were evaluated using repeated fivefold cross valida-
tion. The procedure involved a random partitioning of the full
data into 5 subsets (each subset has 97–98 individuals including
representatives of all the families). The phenotypes of one subset
were masked and GEBV/EBV (Genomic/Estimated Breeding
Value) of this set were predicted using the information from the
other four subsets. This means one phenotype was used once in
the validation process of one repetition. Each analysis was re-
peated 5 times, giving 25 validation sets in total and the correla-
tion coefficient was averaged over 25 values. To compute
evaluation metric in each validation set, the GEBV/EBVs of the
predicted phenotypes were correlated to the actual phenotype.
We chose Pearson correlation coefficient (Benesty et al. 2009) as
an evaluation metric to consistently compare the statistical mod-
els used. Moreover, we computed Mathew correlation coefficient,
MCC (Matthews 1975) for binary trait (survival status) as MCC is
giving a different look (indicate which predicted value is assigned
to 0 or 1 case) for binary classification evaluation (Chicco and
Jurman 2020). Specifically, we used PresenceAbsence R package
(Freeman and Moisen 2008) to produce 4 � 4 confusion matrix
which assigned GEBV/EBV values against the actual phenotypes
for computing MCC (Supplementary Table S1 for additional infor-
mation and reference). To obtain the consistency and compara-
ble results among tested software/packages, we used the same

subsets of testing/validation data (i.e., 25 subsets) in BLUPF90
family program, BayesR, ML-KAML, DL-MLP, and DL-CNN.

The genomic prediction accuracy for survival status and sur-

vival time was calculated as Accuracy ¼ ry;ŷffiffiffiffi
h2
p ; where ry;ŷ is the cor-

relation between the predicted breeding values ŷ
� �

and actual

phenotypes yð Þ. The heritability was estimated using pedigree-
based analysis (PBLUP models).

To evaluate reliability (or potential biases) of the statistical

methods, we computed root mean square error (RMSE) and R2

(coefficient of determination) based on ŷ and y values. RMSE is

the standard deviation of residuals, also known as prediction er-
ror, while coefficient of determination is an indicator of the good-

ness of fit of a statistical model. RMSE and R2 were calculated as
below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1 ðŷ � yÞ2

n

s
: R2 ¼ 1�

Pn
1 ðŷ � yÞ2Pn
1 ðy� yÞ2

where �y is the average value of n actual phenotypes in a testing
set.

Results
Data, variance component, and heritability
The average survival rate and survival time after the pathogen
challenge test were 32.2% and 6.8 days, respectively (Table 1).

When exposed to the E. ictaluri pathogen, mortality occurred after
1.4 days and the highest death rate was observed after 4.1 days

(Figure 1). There were significant differences (P< 0.0001,
Figure 1) in both survival rate (60.0% vs 4.5%) and survival time

(5.0 vs 8.7 days) between 20 highest and 20 lowest resistant fami-
lies (Table 1). The variations in the disease-resistant traits among

families were also significant (Supplementary Figures S1 and S2).
The results of our main challenge test experiment are provided

in Supplementary Table S2.
The heritabilities estimated for survival time and survival sta-

tus using traditional PBLUP (0.65 6 0.14 and 0.71 6 0.14) were

greater than those obtained from (ss)GBLUP (0.44 6 0.09 and
0.46 6 0.09) but they were lower than those estimated by BayesR

(0.97 6 0.02 and 0.96 6 0.03) (Table 2). Across statistical models
(methods) used, the estimates of heritability for survival status

were slightly higher than those obtained for survival time
(Table 2).

Accuracy of genomic prediction using original
genotype (un-imputed) data
Figure 2 (or Table 3) presents the accuracies of genomic breeding

values for survival status and survival time using Machine learn-
ing (ML-KAML) together with four other methods (PBLUP, GBLUP,

ssGBLUP, and BayesR). Note that DL-MLP and DL-CNN methods
are not available for the analysis of missing genotypes. When the

original genotype data (i.e., un-imputed data) were used, the pre-
diction accuracies from ML-KAML (0.67) were slightly higher than

PBLUP (0.66) and they both were higher than those calculated
from GBLUP (0.55) and ssGBLUP (0.55) for survival status. ML-

KAML also outperformed BLUP methods for survival time (0.69 vs
0.59–0.65) (Table 3). In addition, the difference between ML-

KAML and BayesR in the prediction accuracy was small (0.67 for
survival status in both methods and 0.69 vs 0.70 for survival

time). For both traits, ssGBLUP was slightly better GBLUP.
Interestingly, both GBLUP and ssGBLUP did not improve the
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prediction accuracies for both survival status and survival time

as compared with conventional PBLUP method.

Accuracy of genomic prediction using imputed
genotype data
Imputation of missing genotypes increased the accuracies of ge-

nomic prediction for both survival status and survival time

across the four methods used, namely GBLUP, ssGBLUP, BayesR,

and ML-KAML (Figure 3 or Table 3). The improvements for sur-

vival status were from 12.0% (ML-KAML) to 19.2% (GBLUP). For

survival time, the increase in the prediction accuracy when using

the imputed genotypes was largest for GBLUP (10.0%), followed

by ML-KAML (8.1%), ssGBLUP (7.1%), and BayesR (5.3%). Deep

learning (DL) using multilayer perceptron (DL-MLP) and convolu-

tional neural network (DL-CNN) had lower prediction accuracies

for both traits (0.67–0.73) than ML-KAML (0.75) or BayesR (0.75–

0.76) methods but they (DL-MLP and DL-CNN) had higher predic-

tion accuracies than BLUP methods (0.55–0.66) (Table 3). There

were almost identical predictive performances between ML-

KAML and BayesR methods for both traits regarding minimum,

maximum, average, and standard deviation magnitudes of accu-

racy in all the 25 testing sets compared to other methods

(Figure 3 or Table 3).

Uni- vs multi-variate analysis
Our multivariate analyses used PBLUP, GBLUP, and ssGBLUP, and

the prediction accuracies for both survival status and survival

time are shown in Table 4. There were slight decreases observed

in the prediction accuracy when the three BLUP methods were

used to estimate genomic breeding values (GEBV) in multivariate

analyses relative to univariate model. The reduction in the pre-

diction accuracies was only 2.9–5.6% for survival time and 0.3–

2.5% for survival status.

Genomic prediction in combination with GWAS
The prediction accuracies for the disease resistance traits that in-

corporated only significant SNPs identified from genome-wide as-

sociation analysis (GWAS) are given in Tables 5 and 6. When

different genotype subsets were used (as tabulated in

Supplementary Table S1), the prediction accuracies were

Table 1 Number of animals (n) and phenotypes in the disease resistant and susceptible groups used for genotyping

Groups 20 lowest survival family 20 highest survival families All 40 families

Trait Individuals Mean 6 SD Ind/family Mean 6 SD n Mean 6 SD

Survival status (%) 245 4.5 6 20.8 245 60.0 6 49.1 490 32.2 6 46.8
Survival time (d) 245 5.0 6 2.2 245 8.7 6 4.3 490 6.8 6 3.9

Figure 1 Survival trend in day post challenge of high and low resistance groups in genotyped individuals of striped catfish.

Table 2 Variance components and heritability for survival status and survival time using AIREMLf90 and THRGIBBS1f90 sub-program in
BLUPF90 and BayesR

Trait Models Additive genetic variance Phenotypic variance Heritability

Survival status PBLUP 0.147 0.207 0.71 6 0.14
GBLUP 0.086 0.188 0.46 6 0.09
ssGBLUP 0.088 0.190 0.46 6 0.09
BayesR 0.043 0.044 0.96 6 0.03

Survival time PBLUP 9.579 14.694 0.65 6 0.14
GBLUP 5.900 13.303 0.44 6 0.09
ssGBLUP 5.908 13.442 0.44 6 0.09
BayesR 2.747 2.818 0.97 6 0.02

Note that estimate of genetic variance was not provided by ML-KAML, DL-MLP, and DL-CNN methods.
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generally smaller to those of the full set of 6470 SNPs. Using
smaller SNP panels selected from ssGWAS with P< 0.00001 in
this study scarified the prediction accuracies by 0.3–15.6%. For
survival status, the prediction accuracy was reduced from 4.3%
to 6.0% for ML-KAML and BLUP methods, but greater loss was ob-
served for deep learning methods (11.2% for DL-CNN and 15.6%
for DL-MLP). The same trend was observed for survival time but
the reduction in the prediction accuracy was only 0.3–4.9%.

Reliability (or potential biases) of the statistical
methods
The RMSE and coefficient of determination (R2) were computed
for each method and they are shown in Tables 4 and 5. In both

traits (survival status and survival time) and in all analyses (uni-
variate and multi-trait or full genotype vs subsets), the machine
learning (i.e., ML-KAML) gave the least possible biases in the
breeding values prediction, as evidenced by the low RMSE (0.36–
0.37 for survival status and 3.10 for survival time) and high R2

(0.35–0.39). BayesR also displayed similar predictive reliability to
ML-KAML (RMSE ¼ 0.36–0.37 for survival status and 0.311 for sur-
vival time and R2¼ 0.34–0.39). Among BLUP family methods,
there were no large differences in the reliability of the genomic
breeding value estimation between GBLUP and ssGBLUP (for in-
stance with univariate model using un-imputed genotype, RMSE
¼ 0.41 and R2 ¼ 0.20–0.21). However, they were likely less reliable
than PBLUP (RMSE ¼ 0.39 and R2 ¼ 0.30). The utilization of the

Figure 2 Accuracy of prediction for survival status and survival time traits using un-imputed 6,470 genotypes. Middle line of the box is mean accuracy;
top and bottom lines of the box is accuracy 6 one standard deviation. End points of vertical line represent min and max values. Note that PBLUP uses
phenotype and pedigree information only.
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imputed genotypes in GBLUP and ssGBLUP methods reduced the
prediction errors for both survival status and survival time (RMSE
¼ 0.39 and 3.31, and R2 ¼ 0.29 and 0.26, respectively).

Discussion
Development of disease resistance lines is essential for the aqua-
culture sector due to the combined effects of aquaculture intensi-
fications and environmental changes. Our study demonstrated
that genomic selection can be practiced improving resistance to
E. ictaluri disease in striped catfish populations, using a range of
different statistical methods especially machine and deep learn-
ing, and BayesR. However, further evaluation of these methods
should be made in randomly selected samples or independent
families/populations to avoid any possible biases in the genetic
parameters estimates and prediction accuracies for the two traits
studied. Salient findings from our study are discussed as follows.

First, the genomic prediction accuracies for the disease resis-
tance traits (survival status and survival time) were substantially
improved when machine (i.e., ML-KAML) and deep learning (DL-
MLP and DL-CNN) methods were used relative to BLUP-family
methods (PBLUP, GBLUP, and ssGBLUP). Interestingly, PBLUP out-
performed (ss)GBLUP methods in our study (Figure 2), which was
rarely reported in the literature as reviewed by Houston et al.
(2020). This implies that the SNP assumption of (ss)GBLUP does
not reflect the true SNPs’ distribution as the AI and BayesR meth-
ods, at least in our data. In addition, our evaluation of the predic-
tion biases or prediction errors based on RMSE and R2 statistics
indicated that the AI methods may be subject to the least errors
in the estimated breeding values than BLUP family methods.
Hence, genomic selection using AI and BayesR methods to im-
prove E. ictaluri disease is expected to achieve greater genetic gain
than the conventional selective breeding approach using pedigree
and phenotype information. The genome-based selection enables
early recruitment of breeding candidates and hence, potentially
reducing generation time in striped catfish as expected to reduce
at least a half of generation interval in dairy cattle (Hayes et al.
2009). Our results are consistent with those reported in farmed
animal (Baker et al. 2020), livestock (González-Recio and Forni
2011; Li et al. 2018), and plants (Montesinos-López et al. 2018,
2019; Zingaretti et al. 2020). Despite the superiority of the

machine learning methods (i.e., ML-KAML) to PBLUP, GBLUP and
ssGBLUP, they had similar predictive power to BayesR for both
traits in our study. Reports in farmed animals concluded that
BayesR is the best amongst Bayesian and GBLUP methods (Erbe
et al. 2012) but no published information is available in aquacul-
ture species to compare with our study. Previous studies indi-
cated other Bayesian methods (i.e., BayesB) outperformed PBLUP
and (ss)GBLUP (Sukhavachana et al. 2020; Joshi et al. 2021) while
GBLUP was similar to BayesA and BayesCp for predicting nine
traits of Portuguese oyster (Vu et al. 2021). To date, studies using
machine and deep learning, one in shrimp (Palaiokostas 2021)
that applied extreme gradient boost method (one of the machine
learning approaches) and another in seabream that used support
vector machines and linear bagging classification (Bargelloni et al.
2021) and reported that these methods improved the prediction
accuracy for survival traits by 1–4% and 20–70% relative to
GBLUP and Bayesian methods. Recently, the evaluation of deep
learning model (e.g., convolutional neural network) in Bay scallop
indicated this method outperformed BayesB and random regres-
sion GBLUP methods (Zhu et al. 2021). Therefore, machine or deep
learning should be used for genomic evaluation of disease resis-
tance traits, at least in this population of striped catfish. The pre-
dictive powers of these methods using AI algorithms are
expected to be greater (Montesinos-López et al. 2021) when big
data (e.g., hundreds of thousands or million animals sequenced)
are analyzed for this population in the future.

Second, imputation of missing genotypes (using offspring and
parent information available in the pedigree of striped catfish) in-
creased the predictive ability of all the seven methods used, espe-
cially BayesR by 5.3%–approximately 19% (GBLUP and ssGBLUP)
relative to when un-imputed data were used. Also note that the
imputation of missing genotypes in our study differed from
others that used software to compute missing genotypes without
considering parental relationship or shared haplotype in full-sib
families, e.g., Beagle (Browning and Browning 2009) or AlphaPeel
(Whalen et al. 2018). With the use of offspring-parent information
such as AlphaFamImpute (Whalen et al. 2020) or FImpute
(Sargolzaei et al. 2014), the imputation likely increased accuracy
of G and H matrices used in GBLUP and single-step methods (i.e.,
ssGBLUP) (Hickey et al. 2012). Published information across spe-
cies also showed that imputation from medium to high-density

Table 3 Accuracy between methods using nonimputed or imputed genotypes using 6470 SNPs

Trait Method Nonimputed Imputed Increasement (%)

Accuracy 6 sd
(Pearson)

Accuracy 6 sd
(Mathew’s)

Accuracy 6 sd
(Pearson)

Accuracy 6 sd
(Mathew’s)

Binary survival PBLUP 0.66 6 0.08 0.47 6 0.11 — — —
GBLUP 0.55 6 0.08 0.39 6 0.12 0.65 6 0.07 0.51 6 0.08 þ19.0
ssGBLUP 0.55 6 0.08 0.39 6 0.12 0.65 6 0.07 0.51 6 0.07 þ19.2
BayesR 0.67 6 0.08 0.55 6 0.09 0.76 6 0.06 0.63 6 0.09 þ12.5
ML-KAML 0.67 6 0.07 0.57 6 0.10 0.75 6 0.06 0.63 6 0.10 þ12.0
DL-MLP* n.e. n.e. 0.71 6 0.11 0.65 6 0.11 —
DL-CNN n.e. n.e. 0.73 6 0.08 0.63 6 0.12 —

Survival time PBLUP 0.65 6 0.08 n.e. — — —
GBLUP 0.59 6 0.09 n.e. 0.65 6 0.09 n.e. þ10.0
ssGBLUP 0.61 6 0.07 n.e. 0.65 6 0.09 n.e. þ7.1
BayesR 0.70 6 0.07 n.e. 0.75 6 0.07 n.e. þ5.3
ML-KAML 0.69 6 0.07 n.e. 0.75 6 0.07 n.e. þ8.1
DL-MLP n.e. n.e. 0.67 6 0.09 n.e. —
DL-CNN n.e. n.e. 0.70 6 0.11 n.e. —

n.e. not estimable due to DL-MLP and DL-CNN do not accept un-imputed missing genotype or not estimable for Mathew’s coefficient of continuous trait (i.e.,
survival time). Increasement (%) ¼ (accuracy of imputed 6470 SNPs � accuracy of un-imputed 6470 SNPs)/accuracy of un-imputed 6470 SNPs
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Figure 3 Accuracy of prediction for survival status and survival time traits using imputed 6,470 genotypes. Middle line of the box is mean accuracy; top
and bottom lines of the box is accuracy 6 one standard deviation. End points of vertical line represent min and max values. Note that PBLUP uses
phenotype and pedigree information only.

Table 4 Genomic prediction accuracy for survival status and survival time using univariate and bivariate models with un-imputed 6470
SNPs

Trait Method Univariate Bivariate Increasement (%)

Accuracy 6 sd RMSE R2 Accuracy 6 sd RMSE R2

Survival status PBLUP 0.66 6 0.08 0.39 0.30 0.66 6 0.07 0.39 0.30 �0.3
GBLUP 0.55 6 0.08 0.41 0.21 0.53 6 0.08 0.42 0.20 �2.5
ssGBLUP 0.55 6 0.08 0.41 0.21 0.54 6 0.08 0.41 0.21 �0.7

Survival time PBLUP 0.65 6 0.08 3.30 0.26 0.63 6 0.09 3.33 0.25 �2.9
GBLUP 0.59 6 0.09 3.41 0.22 0.57 6 0.07 3.47 0.21 �3.5
ssGBLUP 0.61 6 0.07 3.38 0.23 0.58 6 0.07 3.47 0.21 �5.6

Bivariate analysis is not available in BayesR, ML-KAML, Dl-MLP and DL-CNN. RMSE, root square mean error; R2, coefficient of determination; sd, standard deviation.
Increasement (%) ¼ (accuracy of bivariate—accuracy of univariate)/accuracy of univariate.
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SNP panels (25–78k SNPs) increased the genomic prediction accu-
racies for resistance to parasite (i.e., sea lice count) and body
traits in Atlantic salmon (Tsai et al. 2017), or from commercial
SNP arrays to whole genome sequence improved the accuracies
for agronomic traits in maize (Crossa et al. 2013). However, some
other studies also showed that imputed genotype did not im-
prove prediction accuracies in livestock animal breeding (Chen
et al. 2014; Van Binsbergen et al. 2015; Heidaritabar et al. 2016).
Imputation has several benefits, first it can be made after sequenc-
ing with no extra cost. Second, through imputation, we can in-
crease the number of animals genotyped and the number of
breeding candidates, which in turn increase selection intensity,
and this can lead to increases in genetic progress made in
selected populations (Gorjanc et al. 2017). Thus, imputation of low-
density sequence can support our future incorporation of genomic
selection for E. ictaluri disease in this striped catfish population.

Third, we found that multivariate analysis did not improve
the predictive ability for the two studied traits irrespective of the
statistical methods. These results are not expected, despite the
high and positive genetic correlations (rg) between the two traits
(rg ¼ 0.81). A bivariate analysis of harvest body weight and fillet
yield in Nile tilapia also showed no improvement in the predic-
tion accuracies for these traits (Joshi et al. 2020). Multi-trait analy-
ses generally improve accuracy of genetic parameter estimates
and animal breeding values for traits whose genetic architectures

are different (e.g., low vs high heritable) or genetically antagonis-
tic associated (i.e., unfavorably correlated). Examples of multivar-
iate genomic prediction models involving multi-trait in cassava
and wheat plants gave better prediction accuracy over univariate
models (Okeke et al. 2017; Sun et al. 2017). To utilize the benefits
of multi-trait analysis, we continue collecting other traits of eco-
nomic importance in striped catfish, namely disease tolerance,
disease resilience as well as immunological parameters to in-
crease overall resistant capacity of the animals in this catfish
population.

Fourth, we suggest using the full set of SNPs to obtain a rea-
sonable level of prediction accuracy for genomic selection to im-
prove disease resistance traits in striped catfish. It has been well
documented that the prediction accuracy increased with number
of markers and sequencing depth or genome coverage (Pook et al.
2021). Due to characteristics of RAD-sequencing methods, there
are still limited number of markers in our study as compared
with those reported in farmed animals or plants (Davey et al.
2010; Robledo et al. 2018). It is necessary to examine prediction
ability of whole-genome data when sequencing costs are reduced
to an affordable level to sequence thousands (or hundreds of
thousands) of animals in a near future. However, there are stud-
ies in farmed animals reporting that whole-genome sequence
data improved the predictive powers for complex traits by only
0.4–5.0% (VanRaden et al. 2017; Al Kalaldeh et al. 2019).

Table 5 Accuracy of genomic prediction using imputed genotypes of 6470 vs ssGWAS SNPs

Trait Method 6,470 SNPs ssGWAS SNPs Increasment (%)

Accuracy 6 sd RMSE R2 Accuracy 6 sd RMSE R2

Survival status GBLUP 0.65 6 0.07 0.39 0.29 0.62 6 0.07 0.40 0.26 �4.9
ssGBLUP 0.65 6 0.07 0.39 0.29 0.62 6 0.07 0.40 0.27 �4.3
BayesR 0.76 6 0.06 0.36 0.39 0.71 6 0.06 0.38 0.34 �6.0
ML-KAML 0.75 6 0.06 0.36 0.39 0.72 6 0.06 0.37 0.36 �4.0
DL-MLP 0.74 6 0.08 0.37 0.38 0.62 6 0.08 0.40 0.27 �15.6
DL-CNN 0.73 6 0.09 0.37 0.37 0.65 6 0.07 0.46 0.35 �11.2

Survival time GBLUP 0.65 6 0.09 3.31 0.26 0.64 6 12.5 3.31 0.25 �1.8
ssGBLUP 0.65 6 0.09 3.31 0.26 0.65 6 11.4 3.30 0.26 �0.8
BayesR 0.75 6 0.07 3.11 0.35 0.75 6 0.07 3.11 0.35 �0.3
ML-KAML 0.75 6 0.07 3.10 0.35 0.75 6 0.07 3.10 0.35 �0.3
DL-MLP 0.67 6 0.09 3.25 0.29 0.64 6 0.09 3.31 0.26 �4.9
DL-CNN 0.70 6 0.11 3.20 0.30 0.69 6 0.07 3.25 0.30 �2.1

6470 SNPs were filtered with dartR packages. ssGWAS SPs were selected based on P-value of each SNPs effect (<0.00001) in each testing set. RMSE, root mean squared
error and coefficient of determination; sd, standard deviation. Increasement (%) ¼ (accuracy of ssGWAS SNPs � accuracy of 6470 SNPs)/accuracy of 6470 SNPs.

Table 6 Accuracy (6sd) of genomic prediction for survival status and survival using highly significant SNPs (P< 0.0001)

Trait Method Original (un-imputed) genotype Imputed genotype

6470 SNPs ssGWAS SNPs Increase mnt (%) 6470 SNPs ssGWAS SNPs Increase mnt (%)

Survival status PBLUP 0.66 — — — — —
GBLUP 0.55 0.48 6 0.09 �12.5 0.65 0.62 6 0.07 �4.9
ssGBLUP 0.5 0.49 6 0.09 �9.9 0.65 0.62 6 0.07 �4.3
BayesR 0.67 0.62 6 0.09 �8.2 0.76 0.71 6 0.06 �6.0
ML-KAML 0.67 0.61 6 0.09 �8.5 0.75 0.72 6 0.06 �4.3
DL-MLP — — — 0.74 0.62 6 0.08 �15.6
DL-CNN — — — 0.73 0.65 6 0.07 �11.2

Survival time PBLUP 0.65 — — — — —
GBLUP 0.59 0.59 6 0.12 þ0.2 0.65 0.64 6 0.13 �1.8
ssGBLUP 0.61 0.60 6 0.12 �0.3 0.65 0.65 6 0.11 �0.7
BayesR 0.71 0.70 6 0.07 �2.1 0.75 0.75 6 0.07 �0.4
ML-KAML 0.69 0.70 6 0.06 þ 0.3 0.75 0.75 6 0.07 �0.3
DL-MLP — — — 0.67 0.64 6 0.09 �4.9
DL-CNN — — — 0.70 0.69 6 0.07 �2.1

Sd, standard deviation; increasement (%) ¼ (accuracy of ssGWAS SNPs � accuracy of 6470 SNPs)/accuracy of 6470 SNPs using unimputed or imputed genotypes.
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Finally, the utilization of highly significant SNPs from ssGWAS
can give comparative prediction accuracies for the two traits
studied, for both un-imputed and imputed genotype data, as
compared to the full set of 6470 SNPs in our present study.
However, previous reports showed that using significant SNP pan-
els selected from ssGWAS had higher accuracy in the estimated
breeding values for disease resistance traits in Litopeneaus vannamei
(Luo et al. 2021) or fish species (Jeong et al. 2020). On the one hand,
these SNPs can be used to develop a small SNP panel to genotype a
large number of animals in both the training and validation popu-
lations. On the other hand, the costs of genotyping animals for
hundreds of SNPs may not be a lot cheaper than DArT sequencing
as used in this study. The use of significant SNPs can be beneficial
when their biological functions (pathways) are known and in-
cluded in genomic prediction models. In species where reference
genome or high-quality genome assembly is available, the incorpo-
ration of SNPs with biological functions (i.e., multi-omics) improved
the prediction accuracy, for instance, about 5–19% for fertility
traits in dairy cattle (Abdollahi-Arpanahi et al. 2017; Nani et al.
2019), or 27.4–60.7% for traits in inbred lines of Drosophila (Ye et al.
2020). Unfortunately, a good genome assembly is currently not
available for striped catfish (Kim et al. 2018), this area thus deserves
future studies to enable the efficient utilization of genomic infor-
mation in the genetic selection program for this economically im-
portant species in the aquaculture sector.

In summary, despite the high level of consistency in the pre-
diction accuracies across the seven methods used, the estimates
of heritability and prediction accuracies obtained for survival sta-
tus and survival time may be potentially biased upward (e.g., the
high heritability from BayesR), likely due to the family structure
of the current population that included selective genotypes (high
and low resistant families). However, this problem may have
been alleviated because both pedigree and genotype data were in-
cluded in mixed models (i.e., BLUP family and machine learning
methods) to estimate genomic breeding values as described in
Gowane et al. (2019). When more genotype and phenotype data
and full pedigree records are collected, further analyses should
be conducted to avoid possible biases in the prediction accuracies
for the disease-resistant traits in this population of striped catfish
Pangasianodon hypophthalmus.

Concluding remarks
The genomic prediction accuracies for disease resistance traits
of striped catfish were moderate to high, suggesting possibilities
for the application of genomic selection to improve resilience to
E. ictaluri in this population. Machine learning methods outper-
formed BLUP-family in almost all our analyses. However, the pre-
diction accuracies using machine learning methods for both
survival status and survival time were almost similar to those
obtained from BayesR. Therefore, either machine learning, deep
learning or BayesR could be used for genomic evaluation of
the disease resistance traits in this striped catfish population.
Furthermore, breeding to improve resistance to E. ictaluri can use
survival status or survival time as alternative selection criterion
as there was no significant difference in the prediction accuracies
across the seven different methods used in our study. However,
when more data are accumulated in future generations, it is nec-
essary to re-evaluate the prediction accuracies and potential
biases of these methods before any practical implementation of
genomic selection can be made to improve the disease resistance
of this striped catfish population.

Data availability
All data are available via Figshare portal at https://doi.org/10.
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pedigree information.

Acknowledgments
The authors sincerely thank for the team at National Breeding
Centre for Southern Aquaculture (NABRECSOFA), Research
Institute for Aquaculture (RIA2) for supporting this work.

Funding
This study was jointly funded by Ministry of Agriculture and
Rural Development (MARD), Vietnam (Project tittle: Breeding for
disease resistance to Bacillary Necrosis of Pangasius for striped
catfish, 2018–2020) and higher degree by research funds from
University of the Sunshine Coast, Australia.

Conflicts of Interest
The authors declare that there is no conflict of interest.

Literature cited
Abdollahi-Arpanahi R, Morota G, Pe~nagaricano F. 2017. Predicting

bull fertility using genomic data and biological information. J

Dairy Sci. 100:9656–9666.

Aguilar I, Misztal I, Johnson D, Legarra A, Tsuruta S, et al. 2010. Hot

topic: a unified approach to utilize phenotypic, full pedigree, and

genomic information for genetic evaluation of Holstein final

score. J Dairy Sci. 93:743–752.

Al Kalaldeh M, Gibson J, Duijvesteijn N, Daetwyler HD, MacLeod I, et

al. 2019. Using imputed whole-genome sequence data to improve

the accuracy of genomic prediction for parasite resistance in

Australian sheep. Genet Sel Evol. 51:1–13.

Baker LA, Momen M, Chan K, Bollig N, Lopes FB, et al. 2020. Bayesian

and machine learning models for genomic prediction of anterior

cruciate ligament rupture in the canine model. G3 (Bethesda). 10:

2619–2628.

Bargelloni L, Tassiello O, Babbucci M, Ferraresso S, Franch R, et al.

2021. Data imputation and machine learning improve associa-

tion analysis and genomic prediction for resistance to fish photo-

bacteriosis in the gilthead sea bream. Aquacul Rep. 20:100661.

Barrı́a A, Christensen KA, Yoshida GM, Correa K, Jedlicki A, et al.

2018. Genomic predictions and genome-wide association study

of resistance against Piscirickettsia salmonis in Coho salmon

(Oncorhynchus kisutch) using ddRAD sequencing. G3 (Bethesda). 8:

1183–1194.

Benesty J, Chen J, Huang Y, Cohen I. 2009. Pearson correlation coeffi-

cient. In: Noise Reduction in Speech Processing. Springer. p. 1–4.

https://link.springer.com/book/10.1007/978-3-642-00296-0.

Browning BL, Browning SR. 2009. A unified approach to genotype im-

putation and haplotype-phase inference for large data sets of

trios and unrelated individuals. Am J Hum Genet. 84:210–223.

Chen L, Li C, Sargolzaei M, Schenkel F. 2014. Impact of genotype im-

putation on the performance of GBLUP and Bayesian methods for

genomic prediction. PLoS One. 9:e101544.

Chicco D, Jurman G. 2020. The advantages of the Matthews correla-

tion coefficient (MCC) over F1 score and accuracy in binary classi-

fication evaluation. BMC Genomics. 21:6–13.

N. T. Vu et al. | 11

https://doi.org/10.25387/g3.16713361
https://doi.org/10.25387/g3.16713361
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Hernández-Suárez CM, et al. 2018. Multi-trait, multi-environment

deep learning modeling for genomic-enabled prediction of plant

traits. G3 (Bethesda). 8:3829–3840.
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Pérez-Enciso M, Zingaretti LM. 2019. A guide on deep learning for

complex trait genomic prediction. Genes. 10:553.
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