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Abstract: Sweden has 10.2 million inhabitants and more than 2.4 million have a foreign background.
A substantial number of immigrants come from countries where glucose-6-phosphate dehydrogenase
deficiency (G6PDD) is frequent. The total birth rate annually in Sweden is approximately 117,000
and newborn screening is centralized to one laboratory. We determined glucose-6-phosphate
dehydrogenase (G6PD) activity in 10,098 dried blood spot samples (DBS) from the whole country with
a fluorometric assay (LabSystems Diagnostics Oy, Finland). The first 5451 samples were anonymised
and run as singletons, whilst the following 4647 samples were coded. Enzyme activity ≤40% of the
mean of the day was found in 58 samples (1/170) and among these, 29 had activities ≤10% (1/350).
Twenty-nine samples with residual activities between 2–39% in the coded cohort were subjected to
Sanger sequencing. Disease-causing variants were identified in 26 out of 29 infants, of which six
were girls. In three patients, we did not find any disease-causing variants, although two patients
were hemizygous for the known polymorphisms c.1311T>C and c.1365-13C>T. The most common
disease-causing variant found in 15 of the 29 samples (12 hemizygotes, two heterozygotes, one
homozygote) was the Mediterranean mutation, c.563C>T (p.(Ser188Phe)) in exon 6. G6PDD is thus a
surprisingly prevalent disorder in Sweden.
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1. Introduction

Glucose-6-phosphate dehydrogenase (G6PD, E.C.1.1.1.49) is a key enzyme in the pentose phosphate
pathway, which produces ribose-5-phosphate. G6PD is extremely important for the reduction of
nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH + H+. It is a housekeeping enzyme
important for the control of oxidative stress, especially in red blood cells, which lack nucleus and
mitochondria. Patients with glucose-6-phosphate dehydrogenase deficiency (G6PDD, OMIM_305900)
are asymptomatic unless they have a very low residual activity or are exposed to some specific triggers,
including certain medicines, infections or fava beans (Vicia faba), the latter being the most common
trigger [1]. The clinical presentation of the disorder is dependent on the level of residual activity
of the enzyme and the load of the trigger. Older children and adults can develop acute haemolytic
anaemia, whilst newborn infants are at risk of severe jaundice and kernicterus. There is no cure for the
disorder, but once diagnosed, the patients can avoid known triggers and be treated promptly when
they get symptoms.
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The disorder has a continuum of severity of the disease and a complete absence of enzyme activity
is considered not compatible with life [2]. G6PDD is commonly divided into four classes based on the
residual activity of the enzyme [3], as shown in Table 1.

Table 1. Classification of glucose-6-phosphate dehydrogenase deficiency (G6PDD) with respect to
glucose-6-phosphate dehydrogenase (G6PD) activity.

Class Enzyme Activity Severity

I <1% Severe with chronic non-spherocytic anaemia
II 1–10% Severe with intermittent haemolysis
III 10–60% Mild to moderate haemolysis triggered by stressors only
IV 60–150% Normal activity

The disease was discovered in 1956 [4] and is traditionally known to be common in the
Mediterranean region, Africa, the Middle East and Asia, but with migration, it is now present
worldwide. It is the most common human genetic enzymopathy, estimated to affect more than
300 million people or 5% of the global population, as published in 2008 [5]. G6PDD is correlated
to protection against the malaria parasites Plasmodium falciparum and Plasmodium vivax [6], and this
probably explains why it is widespread in regions where the mosquitos harbouring these parasites
thrive. In the past decade, G6PDD has generated interest, since it appears to have an impact on
disorders like cardiovascular disease, diabetes, kidney disease, colorectal cancer and sepsis [7–12].
One reason for that is that G6PD is the rate-limiting enzyme of the pentose phosphate pathway as well
as a source of NADPH, which is crucial in the intermediary metabolism and cell survival [13].

1.1. Newborn Screening

As reported in an overview of newborn screening (NBS) worldwide, from 2015, general screening
of newborn infants for G6PDD had only been implemented in a few places. This includes a couple
of states in the United States of America, Greece, Panama and six countries in the Asia Pacific,
with pilot screening programmes in an additional nine countries [14]. The incidence of G6PDD in
the northern part of Europe is unknown. We know of one published Nordic study reporting the
prevalence of G6PDD, and this was among 1500 adult immigrants (of non-northern European origin) in
Denmark. In this cohort, the calculated allele frequency for G6PDD was estimated to between 2.4 and
2.9% [15]. Ethical permission for the study was given by the Regional Ethical Committee in Stockholm,
2019/991-31/2.

1.2. The G6PD Gene

The G6PD gene (NG_009015.2) is located on chromosome Xq28 and is 18 kb long and consists
of 13 exons and 12 introns (exon 1 being non-coding) and codes for a protein of 514 amino acids [16].
Most disease-causing variants are either missense or nonsense, the latter only found in heterozygous
females since the complete loss of enzyme activity is considered not to be compatible with life [2].
Disease-causing variants have often been named after the geographic area where they are common,
for example the “Mediterranean” variant, c.563C>T (p.(Ser188Phe)) [17].

1.3. Aim

Sweden has 10.2 million inhabitants and more than 2.4 million have a foreign background (born
abroad or both parents born abroad). A substantial number of immigrants come from countries
where G6PDD is frequent. The total birth rate annually in Sweden is approximately 117,000, and
the NBS is centralized to one laboratory. The aim of this study was to investigate the incidence of
G6PDD in Sweden by analysis of 10,000 blood samples taken in a program screening infants in the
neonatal period.
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2. Materials and Methods

Included in the study were 10,098 fresh samples from newborn infants from the whole country.
They were screened for two periods of three weeks. Initially, 5451 samples were analysed as singletons
to test if a recall level, empirically set at a residual activity of ≤40%( Figure 1a), would result in a
reasonable amount of samples for further analysis. Then, 4647 coded samples were analysed (Figure 1b),
which enabled a re-run of samples below the cut-off in duplicate, in accordance with the routine for
disorders included in the Swedish screening program, followed by genetic analyses of samples with a
confirmed low activity.

Figure 1. (a) Summary of results for samples screened anonymously and analysed as singletons.
(b) Summary of results for samples screened coded. Abnormal samples were re-analysed in duplicate.
Samples with residual enzyme activities ≤40% were subjected to Sanger sequencing.

Fluorometric determination of G6PD activity from blood specimens dried on filter paper (dried
blood spots (DBS)) was performed with the Neonatal G6PD, fluorometric test kit 6199860 (LabSystems
Diagnostics Oy, Vantaa, Finland). The quantitation of the product of the enzymatic reaction was
performed with excitation at wavelength 355 nm and emission at 460 nm. The assay measures
the formation of NADPH, when NADP+ is reduced by the G6PD enzyme in the presence of
glucose-6-phosphate (Scheme 1).

Scheme 1. The principle of fluorometric measurement of G6PD activity.

Enzyme activity was expressed as percent residual activity of the mean of the samples analysed on
the same day and as U/gHb. Cut-off for re-run was set at ≤40% activity of the mean, corresponding to
≤3.5 U/g Hb. The cut-off was chosen to ensure that all infants with a high risk of developing symptoms
were identified.

DNA was extracted from two DBS with a diameter of 3.2 mm with QIAmp DNA Micro Kit
(QIAGEN, Venlo, The Netherlands). Exons 2–13 were amplified with PCR in nine fragments, followed
by Sanger sequencing of all exons and exon/intron boundaries. Direct-cycle sequencing of all PCR
fragments was performed with a BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems,
Foster City, CA, USA) following the manufacturer’s recommendations. We have not searched for
variants in the 5′ or the 3′ UTR region or for rearrangements or deletions.
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3. Results

The mean G6PD activity of the 10,098 samples was 8.7 U/gHb. Fifty-eight samples had G6PD
residual activities below the cut-off (≤40%), incidence 1/170, and of these, 29 had a residual activity of
≤10%, incidence 1/350 (Figure 1a,b and Figure 2a,b).

Figure 2. (a) Distribution of glucose-6-phosphate dehydrogenase activity in 10,098 screened samples,
expressed as percent of the days mean. (b). Distribution of glucose-6-phosphate dehydrogenase activity
in samples (n = 58) with ≤40% residual activity, expressed as percent of the days mean, analysed
as singletons.

In the coded cohort (Figure 1b), ten variants in the G6PD gene were detected in 29 infants,
including the two putatively benign variants c.1311T>C (p.(Tyr437Tyr)) and c.1365-13C>T. The latter
variants have been considered polymorphisms but there are several articles describing associations
with low G6PD enzyme activity in patients carrying the c.1311T>C, c.1365-13C>T and the 3′ UTR
c.*+357A>G variant without other variants in the G6PD gene [18,19]. An intronic variant, possibly
causing aberrant splicing, c.267+5G>A, not described before, was found on one allele. It was detected
in a patient who was compound heterozygous for c.[267+5G>A];[563C>T] with residual activity of
8% of normal. In one patient with ≤10% activity, we could not detect any disease-causing variants or
the two polymorphisms by Sanger sequencing. The most common disease-causing variant, found on
16 alleles, was c.563C>T (p.(Ser188Phe)), also known as the “Mediterranean” variant (Table 2).

Table 2. Glucose-6-phosphate dehydrogenase gene variants detected in the screened cohort.

Exon/
Intron

Nucleotide
Change

Predicted Effect
on Protein dbSNP Classi-

Fication
Number of

Alleles

Exon 2 c.95A>G p.(His32Arg) rs137852340 II 1
Exon 4 c.202G>A p.(Val68Met) rs1050828 III 4
Intron 4 c.267+5G>A p.(?) Novel II 1
Exon 5 c.376A>G p.(Asn126Asp) rs1050829 I–IV 2
Exon 6 c.563C>T p.(Ser188Phe) rs5030868 II 16
Exon 9 c.871G>A p.(Val291Met) rs137852327 III 2
Exon 9 c.969T>C p.(Leu323Pro) rs76723693 III 2

Exon 11 c.1311T>C p.(Tyr437Tyr) rs2230037 III (SNP) 15
Exon 11 c.1360C>T p.(Arg454Cys) rs398123546 II 1
Intron 11 c.1365-13C>T p.(?) rs2071429 III (SNP) 6

dbSNP, Single Nucleotide Polymorphism Database; SNP, Single Nucleotide Polymorphism.
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Of the 29 samples which were sequenced, six were from girls (21%). Two of the girls had a G6PD
activity ≤10% of normal, which represents 12.5% (2/16) of the infants in severity class II, as compared
to 31% (4/13) being girls in class III (Table 3).

Table 3. Classification and genotypes of newborn infants with activity ≤40% of the days mean.

Pat Class G6PD-Activity 1 Nucleotide Change Predicted Effect on Protein

01 II 2% c.[1360C>T];[0] p.[(Arg454Cys)];[0] 6

02 II 4% c.[563C>T];[0] p.[(Ser188Phe)];[0]
03 II 4% c.[563C>T];[0] p.[(Ser188Phe)];[0]
04 II 4% c.[563C>T];[0] p.[(Ser188Phe)];[0]
05 II 5% c.[563C>T];[0] p.[(Ser188Phe)];[0] 3

06 II 5% c.[563C>T];[0] p.[(Ser188Phe)];[0]
07 II 6% c.[563C>T];[0] p.[(Ser188Phe)];[0]
08 II 6% c.[563C>T];[0] p.[(Ser188Phe)];[0] 3

09 II 7% c.[563C>T];[0] p.[(Ser188Phe)];[0] 3,6

10 II 7% c.[563C>T];[0] p.[(Ser188Phe)];[0]
11 II 7% c.[563C>T];[563C>T] p.[(Ser188Phe)];[(Ser188Phe)] 2

12 II 8% c.[563C>T];[0] p.[(Ser188Phe)];[0]
13 II 8% c.[267+5G>T];[563C>T] p.[?];[(Ser188Phe)] 2,4,7

14 II 9% N.D p.[=];[0]
15 II 10% c.[563C>T];[0] p.[(Ser188Phe)];[0]
16 II 10% c.[563C>T];[0] p.[(Ser188Phe)];[0]
17 III 14% c.[95A>G];[0] p.[(His32Arg)];[0]6

18 III 14% c.[871G>A];[0] p.[(Val291Met)];[0]
19 III 18% c.[406C>T;1048G>C];[0] p.[(Arg136Cys;Asp350His)];[0]
20 III 20% c.[376A>G;524A>T;968T>C];[376A>G] p.[(Asn126Asp;Asp181Val;Leu323Pro)];[(Asn126Asp)] 2,5

21 III 22% c.[871G>A];[0] p.[(Val291Met)];[0]
22 III 22% c.[202G>A;376A>G];[0] p.[(Val68Met;Asn126Asp)];[0] 3

23 III 23% c.[202G>A;376A>G];[0] p.[(Val68Met;Asn126Asp)];[0] 3

24 III 24% N.D p.[=];[0] 3,6

25 III 25% c.[376A>G;968T>C];[0] p.[(Asn126Asp;Leu323Pro)];[0] 3

26 III 25% c.[202G>A;376A>G];[202G>A;376A>G] p.[(Val68Met;Asn126Asp)];[(Val68Met;Asn126Asp)] 2,5

27 III 36% c.[202G>A;376A>G];[202G>A;376A>G] p.[(Val68Met;Asn126Asp)];[(Val68Met;Asn126Asp)] 2,5

28 III 37% c.[563C>T];[=] p.[(Ser188Phe)];[=] 2

29 III 39% N.D p.[=];[0] 3,6

1 Mean activity of 3 determinations, 2 Girl, 3 Hemizygous for c.1311T>C, 4 Heterozygous for c.1311T>C, 5

Homozygous for c.1311T>C, 6 Hemizygous for c.1365-13C>T, 7 Heterozygous for c.1365-13C>T, Not detected, N.D.

All but two infants (88%, (14/16)) in severity class II were either hemizygous, heterozygous or
homozygous for c.563C>T, in contrast to heterogeneity of genotypes present in class III with only
one patient being compound heterozygous for c.[563C>T];[=]. In three patients, we did not find any
disease-causing variants, although two were hemizygous for the known polymorphisms c.1311T>C
and c.1365-13C>T (Table 3).

4. Discussion

The incidence of G6PDD in Sweden was unknown before this study. Our results indicate that
1/350 newborn infants have a G6PDD with an enzyme activity of ≤10% of normal. With the present
annual number of births in Sweden of 117,000, approximately 330 patients would be recalled with a
suspected severe G6PDD if newborn screening for G6PDD was to be implemented in the Swedish NBS
programme. If all newborn infants with residual activity of ≤40% of normal were to be recalled, this
number would increase to almost 700 or 0.6% of all newborn infants.

The proportion of boys and girls among the 58 infants with an enzyme activity below the
cut-off (≤40%) in this study is unknown. NBS screening programmes detect hemizygous boys and
homozygous girls, missing out most of the heterozygous girls [20]. In the genetic study, five girls
were either homozygous or compound homozygous for disease-causing variants. Only one girl
was heterozygous for one severe disease-causing variant. Heterozygous girls would probably be
detected by increasing the cut-off to ≤65% of the days mean G6PD activity. This would almost double
the number of recalls (Figure 2a). If the goal is to detect infants with severe G6PDD and at risk of
developing chronic non-spherocytic haemolytic anaemia or intermittent haemolysis, severity class
I and II, the cut-off can be left at ≤40%. If the proportion of girls with G6PDD in Swedish neonates
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with a G6PD activity of ≤40% is true, the disorder seems to affect almost 0.5% of all newborn boys in
Sweden if the birth rate is equal between genders.

With the immigration to Sweden from areas in the world with a known high prevalence of G6PDD,
it is not surprising that the incidence of newborn infants with an enzyme activity less or equal to 40%
is as high as 1/170. This is much higher than indicated by clinically diagnosed patients. In a recent
article where the incidence of hazardous hyperbilirubinaemia (1/15,000) and kernicterus (1.3/100,000)
in newborn infants was studied, the authors conclude that the incidence of the two diagnoses is
increasing [21]. This is an important discussion, as one could speculate that when G6PDD is becoming
more common, it may lead to an increase in the incidence of kernicterus and haemolytic anaemia in the
neonatal period. Kernicterus was almost unknown (in modern times) before early discharge (before
24 h of age) after delivery was implemented in Sweden: too early for jaundice to have developed.
If patients with G6PDD develop hyperbilirubinaemia, it is of great importance that these infants are
handled correctly to avoid kernicterus followed by complications.

Screening for G6PDD has been recommended if the incidence in newborn boys is more than
4–5% [3]. This is not the case in Sweden with an incidence of approximately 0.5%, but it may well
be increasing. When the increasing number of immigrants have babies, G6PDD could be one factor
behind the increasing incidence of kernicterus in Sweden [20]. In comparison to the disorders currently
included in the Swedish NBS programme, the incidence of G6PDD in Sweden is very high. The fact
that only a minority of the patients will ever exhibit symptoms has to be taken into consideration when
screening for G6PDD is discussed. It is also doubtful if the results from the NBS test will be available
in time for the start of treatment to prevent the development of hazardous hyperbilirubinaemia during
the first week of life, since the results are usually not ready before six days of age. The early diagnosis
would, however, be of benefit for parents to be able to avoid triggers for children at risk.

G6PDD is becoming a more common disorder in Sweden. It is important for clinicians to be aware
of the disorder when patients originating from areas where malaria was or still is common and G6PDD
frequent, are diagnosed with acute haemolytic anaemia. This is also the case when newborn infants
develop hyperbilirubinaemia rapidly or develop hyperbilirubinaemia not responding to traditional
treatments. NBS for G6PDD ought to be kept in mind in the future since an increase in the incidence
among newborn infants is to be expected.
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