Asymmetric Synthesis of Noradamantane Scaffolds via Diphenylprolinol Silyl Ether-Mediated Domino Michael/Epimerization/Michael (or Aldol)/1,2-Addition Reactions

Konstantinos Daskalakis,[‡] Nariyoshi Umekubo,^{‡ f} Satrajit Indu, Genki Kawauchi, Tohru Taniguchi,[†] Kenji Monde,[†] Yujiro Hayashi*

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan

† Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan

Index

1.	Materials and Methods	SI-3
2.	General Procedure A for the formation of compounds 3	SI-3
3.	General Procedure B for the formation of compounds 4 and 4'	SI-9
4.	General Procedure C for the formation of compounds 16	SI-32
5.	NMR spectral data	SI-45
6.	IR spectral data	SI-114
7.	HPLC data	SI-169

1. Materials and Methods

General Remarks: All reactions were carried out under air atmosphere (unless otherwise is specified) and monitored by thin-layer chromatography using Merck 60 F₂₅₄ precoated silica gel plates (0.25 mm thickness). Specific optical rotations were measured using a JASCO P-1020 polarimeter and a JASCO DIP-370 polarimeter. FT-IR spectra were recorded on a JASCO FT/IR-410. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on an Agilent-400 MR (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR) instrument. Data for ¹H NMR are reported as chemical shift (δ ppm), integration multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dt = doublet of triplet, td = triplet of doublet, dquint = doublet of quintet, m = multiplet, br s = broad singlet), coupling constant (Hz). Reference peaks for ¹H NMR are: CDCl₃ = 7.26 ppm, $CD_3CN = 1.96$ ppm, $(CD_3)_2CO = 2.05$ ppm. Data for ¹³C NMR are reported as chemical shift. Reference peaks for 13 C NMR are: CDCl₃ = 77.00 ppm, CD₃CN = 118.26, (CD₃)₂CO = 29.84 ppm. Data for ¹⁹F NMR are reported as chemical shift. Reference peaks for ¹⁹F NMR are: $C_6H_5F = -113.15$ ppm (added to the sample as internal standard). High resolution ESI-TOF mass spectra were measured by Themo Orbi-trap instrument. HPLC analysis was performed on a HITACHI Elite LaChrom Series HPLC, UV detection monitored at appropriate wavelength respectively, using Chiralpak IB (0.46 cm × 25 cm), Chiralpak IG (0.46 cm \times 25 cm) and Chiralpak AD-H (0.46 cm \times 25 cm).

2. General procedure A for the formation of compounds 3

A solution of the respective aldehyde **2** (0.33 mmol, 1.1 equiv.), 2,2'-(cyclohexane-1,4-diylidene)dimalononitrile **1** (62.5 mg, 0.30 mmol), water (16 μL, 0.9 mmol, 3.0 equiv.), benzoic acid (15 mg, 0.12 mmol, 0.4 equiv.) and (*S*)-diphenylprolinoldiphenylmethylsilyl ether (27 mg, 0.06 mmol, 0.2 equiv.) in 6 mL of MeCN (0.05 M) was stirred at room temperature. The progress of the reaction was monitored by both, Thin Layer Chromatography and ¹H NMR. After completion, the reaction solvent was removed *in vacuo*. The raw product was then purified using column chromatography (Biotage Isolera One – Sfär HC D Silica, Hexane to Hexane:Ethyl Acetate = 3:1) to obtain the products **3** as an inseparable mixture of two diastereoisomers. (Notice: Partial epimerization from the major to the minor product is possible to occur upon prolonged exposure to silica gel leading to depleted diastereomeric ratios of major: minor 2:1)

<u>2-((2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-hydroxy-6-phenyloctahydro-2,5-methanopentalen-7-ylidene)malononitrile</u> (3a, 3a')

Was prepared following General procedure A. 83 mg (81%, 0.24 mmol) obtained as diastereomeric mixture (dr \sim 5:1, inseparable). Isolated as a yellow foam. $R_f = 0.6$ (hexane: ethyl acetate 1:1)

For the gram scale synthesis: A solution of cinnamaldehyde (700 mg, 5.3 mmol, 1.1 equiv.), compound 3 (1.00 g, 4.8 mmol), water (260 μ L, 14.4 mmol, 3.0 equiv.), benzoic acid (234 mg, 1.92 mmol, 0.4 equiv.) and (*S*)-diphenylprolinoldiphenylmethylsilyl ether (430 mg, 0.96 mmol, 0.2 equiv.) in 32 mL of MeCN (0.05 M) was stirred at room temperature. After completion (TLC, 3 h), the reaction solvent was removed *in* vacuo. The raw product was then purified using column chromatography (Biotage Isolera One, Hexane to Hexane:Ethyl Acetate = 3:1) to obtain 1.5 g of product (3.8 mmol) as a diastereomeric mixture (dr 5:1, inseparable) in 79% of yield.

¹H NMR (400 MHz, CDCl₃): δ 7.43 – 7.38 (m, 2.4 Hz, 2H), 7.33 – 7.28 (m, 1H), 7.19 – 7.14 (m, 2H), 4.69 (dd, J = 6.5, 3.3 Hz, 5/6H), 4.29 (br s, 1/6H), 4.23 (br s, 5/6H), 3.97 (s, 1/6H), 3.93 (s, 5/6H), 3.88 (br s, 5/6H), 3.84 (br s, 1/6H), 3.67 (br s, 1/6H), 3.60 (br s, 5/6H), 3.26 (br s, 1/6H), 3.06 (d, J = 6.6 Hz, 5/6H), 2.87 – 2.61 (m, 1H), 2.74 (dt, J = 16.6, 3.2 Hz, 1/6H), 2.35 (dt, J = 12.3, 3.4 Hz, 5/6H), 2.22 – 2.19 (m, 1/6H), 2.15 (dt, J = 12.0, 3.6 Hz, 5/6H), 2.11 – 2.09 (m, 1/6H), 2.06 (br s, 1/6H), 2.02 (d, J = 11.8 Hz, 5/6H), 1.96 (d, J = 12.0 Hz, 1/6H), 1.88 (d, J = 11.6 Hz, 5/6H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 181.1, 178.2, 138.5, 135.5, 129.4, 129.3, 127.5, 126.2, 126.2, 111.3, 111.2, 110.8, 110.3, 84.6, 81.4, 77.5, 53.3, 50.4, 49.8, 49.6, 49.4, 49.2, 48.8, 47.8, 43.3, 42.4, 40.1, 30.4, 30.1 ppm

HRMS (ESI) m/z: calcd for $C_{21}H_{16}N_4NaO$: 363.1216 $[M+Na]^+$; found: 363.1220.

FT-IR (neat): v 3498, 3063, 3028, 2968, 2900, 2232, 1600, 1498, 1476, 1451, 1303, 1126, 1094, 910 cm⁻¹.

2-((2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-hydroxy-6-(4-methoxyphenyl)octahydro-2,5-methanopentalen-7-ylidene)malononitrile (3b, 3b')

Was prepared following General procedure A. 90 mg (80%, 0.24 mmol) obtained as diastereomeric mixture ($dr \sim 5:1$, inseparable). Isolated as a yellow oil. $R_f = 0.6$ (hexane: ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.10 – 7.04 (m, 2H), 6.93 – 6.89 (m, 2H), 4.64 (dd, J = 6.7, 3.2 Hz, 5/6H), 4.24 (br s, 1/6H), 4.16 (br s, 5/6H), 3.98 (s, 1/6H), 3.95 (s, 5/6H), 3.80 (s, 3H + 5/6H), 3.75 (br s, 1/6H), 3.62 (br s, 1/6H), 3.56 (br s, 5/6H), 3.19 (br s, 1/6H), 3.04 – 3.02 (m, 1/6H), 2.98 (d, J = 6.6 Hz, 1H), 2.31 (dt, J = 12.0, 3.3 Hz, 5/6H), 2.17 – 2.09 (m, 1H), 2.03 – 1.98 (m, 1H), 1.92 (d, J = 11.7 Hz, 1/6 H), 1.86 (d, J = 12.0 Hz, 5/6H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 181.6, 180.2, 158.9, 158.6, 130.3, 128.4, 127.3, 127.3, 116.3, 114.7, 114.6, 111.4, 111.3, 110.9, 110.4, 84.3, 83.3, 81.3, 77.5, 55.4, 52.9, 52.7, 51.6, 50.7, 49.7, 49.4, 49.1, 49.0, 48.8, 47.9, 43.9, 43.2, 42.3, 40.1, 38.4, 30.4, 30.1 ppm.

HRMS (ESI) m/z: calcd for $C_{22}H_{18}N_4NaO_2$: 393.1322 $[M+Na]^+$; found: 393.1316.

FT-IR (neat): v 3491, 2964, 2904, 2232, 1596, 1511, 1466, 1250, 1179, 1031, 910 cm⁻¹.

2-((2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-hydroxy-6-(3-methoxyphenyl)octahydro-2,5-methanopentalen-7-ylidene)malononitrile (3c, 3c')

Was prepared following General procedure A. 88 mg (79%, 0.24 mmol) obtained as diastereomeric mixture ($dr \sim 4:1$, inseparable). Isolated as a yellow oil. $R_f = 0.6$ (hexane: ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.33 – 7.30 (m, 1H), 6.85 – 6.81 (m, 1H), 6.74 – 6.67 (m, 2H), 4.69 (dd, J = 6.8, 3.4 Hz, 4/5 H), 4.27 (br s, 1/5 H), 4.19 (br s, 4/5 H), 3.97 (br s, 1/5 H), 3.94 (br s, 4/5 H), 3.86 (br s, 4/5H), 3.82 (s, 3H), 3.66 (br s, 1/5 H), 3.60 (br s, 4/5 H), 3.22 (br s, 1/5 H), 3.02 (d, J = 6.5 Hz, 1H), 2.81 – 2.76 (m, 1/5 H), 2.34 (dt, J = 12.1, 3.4 Hz, 1H), 2.16 – 2.12 (m, 1H), 2.03 (d, J = 11.6 Hz, 1H), 1.95 (d, J = 11.8 Hz, 1/5 H), 1.88 (d, J = 12.0 Hz, 4/5 H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 180.9, 160.3, 140.3, 138.3, 130.5, 130.4, 118.3, 113.2, 116.2, 111.3, 111.2, 110.8, 110.3, 84.7, 81.4, 77.4, 53.3, 53.3, 53.0, 50.5, 49.6, 49.4, 49.1, 47.8, 43.4, 42.3, 40.0, 30.4, 30.2 ppm.

HRMS (ESI) m/z: calcd for $C_{22}H_{18}N_4NaO_2$: 393.1322 $[M+Na]^+$; found: 393.1318.

FT-IR (neat): v 3469, 2236, 1631, 1604, 1490, 1430, 1267, 758 cm⁻¹.

2-((2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-hydroxy-6-(2-methoxyphenyl)octahydro-2,5-methanopentalen-7-ylidene)malononitrile (3d, 3d')

Was prepared following General procedure A. 84 mg (76%, 0.23 mmol) obtained as diastereomeric mixture ($dr \sim 5:1$, inseparable). Isolated as a light brown foam. $R_f = 0.6$ (hexane: ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 – 7.29 (m, 1H), 7.02 – 6.90 (m, 13/6H), 6.83 (d, J = 7.4 Hz, 5/6H), 4.68 (dd, J = 6.5, 3.1 Hz, 5/6H), 4.31 (br s, 5/6H), 4.29 (br s, 1/6H), 4.13 (br s, 5/6H), 3.94 (br s, 5/6H), 3.90 (s, 15/6H), 3.89 (s, 3/6H), 3.87 (br s, 1/6H), 3.65 (br s, 1/6H), 3.57 (br s, 5/6H), 3.29 (br s, 1/6H), 3.07 (dt, J = 11.8, 3.6 Hz, 1/6H), 2.96 (d, J = 6.6 Hz, 1H), 2.74 (br s, 1H), 2.35 (dt, J = 12.0, 3.6 Hz, 5/6H), 2.07 – 1.98 (m, 13/6H), 1.92 (d, J = 12.0 Hz, 1/6H), 1.85 (d, J = 11.5 Hz, 5/6H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 181.5, 180.3, 157.0, 129.3, 129.0, 126.7, 126.6, 125.1, 120.5, 120.2, 111.5 (2C), 111.1, 110.9, 110.4, 84.2, 82.1, 78.0, 55.2, 50.5, 49.7, 49.7, 49.5, 49.0, 46.9, 46.6, 43.4, 42.1, 39.9, 30.3, 30.1 ppm.

HRMS (ESI) m/z: calcd for $C_{22}H_{18}N_4NaO_2$: 393.1322 $[M+Na]^+$; found: 393.1330.

FT-IR (neat): v 3488, 2960, 2907, 2232, 1596, 1490, 1243, 1116, 1027, 906, 730 cm⁻¹.

2-((1S,2R,3aR,5R,6aR)-1-(4-bromophenyl)-3a-(dicyanomethyl)-6-hydroxyoctahydro-2,5-methanopentalen-7-ylidene)malononitrile (3e, 3e')

Was prepared following General procedure A. 106 mg (84%, 0.25 mmol) obtained as diastereomeric mixture ($dr \sim 5:1$, inseparable). Isolated as a yellow foam. $R_f = 0.6$ (hexane: ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.53 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 4.70 (dd, J = 6.6, 3.1 Hz, 5/6H), 4.30 (br s, 1/6H), 4.17 (br s, 5/6H), 3.93 (br s, 1/6H), 3.87 (br s, 10/6H), 3.83 (br s, 1/6H), 3.67 (br s, 1/6H), 3.61 (br s, 5/6H), 3.19 (br s, 1/6H), 3.06 – 2.99 (m, 1H), 2.73 (br s, 5/6H), 2.51 (br s, 1/6H),

2.34 (dt, J = 12.0, 3.4 Hz, 1H), 2.14 (dt, J = 11.8, 3.6 Hz, 1H), 2.07 - 1.97 (m, 7/6H), 1.91 (d, J = 12.2 Hz, 5/6H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 180.4, 137.5, 132.5, 132.4, 127.9, 121.4, 111.2, 111.1, 110.8, 110.3, 84.9, 77.3, 50.0, 49.9, 49.6, 49.1, 48.8, 48.1, 43.3, 40.1, 30.4 ppm.

HRMS (ESI) m/z: calcd for $C_{21}H_{15}BrN_4NaO$: 441.0321, 443.0301 [M+Na]⁺; found: 441.0331, 443.0301.

FT-IR (neat): v 3491, 2971, 2897, 2236, 1596, 1494, 1010, 906, 730 cm⁻¹.

2-((2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-hydroxy-6-(4-(trifluoromethyl)phenyl)octahydro-2,5-methanopentalen-7-ylidene)malononitrile (3f, 3f')

Was prepared following General procedure A. 95 mg (77%, 0.23 mmol) obtained as diastereomeric mixture ($dr \sim 7:1$, inseparable). Isolated as a yellow oil. $R_f = 0.6$ (hexane: ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.67 (δ, J = 8.1 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.72 (dd, J = 6.2, 3.1 Hz, 7/8 H), 4.33 (br s, 1/8 H), 4.28 (br s, 7/8 H), 3.96 (br s, 1/8H), 3.94 (br s, 7/8 H), 3.88 (s, 1H), 3.69 (br s, 1/8H), 3.63 (br s, 7/8H), 3.28 (br s, 1/8H), 3.12 – 3.02 (m, 7/8H + 2/8H), 2.84 (br s, 1H), 2.36 (dt, J = 12.1, 3.2 Hz, 7/8H), 2.14 (dt, J = 12.0, 3,3 Hz, 7/8H), 2.09 – 1.99 (m, 7/8H + 3/8H), 1.93 (d, J = 12.0 Hz, 7/8H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 180.1, 178.8, 142.6, 140.5, 129.9 (q, J = 32.7 Hz), 127.8, 126.7, 126.7, 126.3 (J = 3.7 Hz), 123.8 (q, J = 273.3 Hz), 111.1, 111.1, 110.7, 110.3, 85.0, 81.4, 77.3, 77.2, 53.1, 53.0, 51.6, 50.0, 49.7, 49.2, 49.1, 48.3, 48.2, 43.3, 43.1, 42.6, 40.2, 30.4, 30.1 ppm.

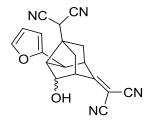
¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.7 (s, 21/8F), -62.7 (s, 3/8F) ppm.

HRMS (ESI) m/z: calcd for $C_{22}H_{15}F_3N_4NaO$: 431.1090 $[M+Na]^+$; found: 431.1075.

FT-IR (neat): v 3494, 2968, 2904, 2236, 1617, 1600, 1415, 1328, 1169, 1122, 1069, 914 cm⁻¹.

<u>2-((2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-hydroxy-6-(4-nitrophenyl)octahydro-2,5-methanopentalen-7-ylidene)malononitrile</u> (3g, 3g')

Was prepared following General procedure A. 101 mg (86%, 0.26 mmol) obtained as diastereomeric mixture ($dr \sim 3:1$, inseparable). Isolated as a yellow oil. $R_f = 0.5$ (hexane: ethyl acetate 1:1)


¹**H NMR** (400 MHz, CDCl₃): δ 8.22 – 8.16 (m, 2H), 7.55 – 7.50 (m, 2H), 4.60 – 4.55 (m, 3/4H), 4.39 (s, 1H), 4.26 (br s, 1/4H), 4.23 (br s, 3/4H), 4.13 (br s, 3/4H), 3.94 (br s, 3/4H), 3.83 (br s, 1/4H), 3.80 (br s, 1/4H), 3.49 (br s, 1H), 3.42 (s, 1/4H), 3.05 (d, J= 6.4 Hz, 3/4H), 3.02 (br s, 1/4H), 2.90 (dt, J = 11.6, 3.7 Hz, 1/4H), 2.25 (dt, J = 12.1, 3.5 Hz, 3/4H), 2.17 (dt, J = 12.1, 3.4 Hz, 3/4H), 2.01 – 1.93 (m, 6/4H + 3/4H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 182.8, 180.7, 148.5, 147.6, 146.8, 129.2, 129.1, 124.6, 124.6, 113.1, 112.9, 112.6, 112.2, 84.7, 81.7, 77.9, 54.2, 53.5, 54.2, 53.5, 52.7, 50.4, 50.3, 50.0, 49.8, 48.9, 43.5, 42.9, 41.1, 30.8, 30.7 ppm.

HRMS (ESI) m/z: calcd for $C_{21}H_{15}N_5NaO_3$: 408.1067 $[M+Na]^+$; found: 408.1071.

FT-IR (neat): v 3494, 3021, 2971, 2904, 2236, 1635, 1604, 1519, 1345, 1214, 850, 755 cm⁻¹.

2-((1S,2R,3aR,5R,6aR)-3a-(dicyanomethyl)-1-(furan-2-yl)-6-hydroxyoctahydro-2,5-methanopentalen-7-ylidene)malononitrile (3h, 3h')

Was prepared following General procedure A. 85 mg (86%, 0.26 mmol) obtained as diastereomeric mixture ($dr \sim 6:1$, inseparable). Isolated as a yellow foam. $R_f = 0.5$ (hexane: ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.38 (m, 1H), 6.43 – 6.38 (m, 1H), 6.24 – 6.19 (m, 1H), 4.64 (dd, J = 6.6, 3.3 Hz, 6/7 H), 4.24 (br s, 1/7 H), 4.21 (s, 6/7 H), 4.20 (br s, 6/7 H), 4.15 (br s, 1/7 H), 3.72 (br s, 6/7 H), 3.64 (br s, 1/7 H), 3.58 (br s, 6/7 H), 3.22 (br s, 1/7 H), 3.05 (dt, J = 11.6, 4.0 Hz, 1/7 H), 2.93 (br s, 1/7 H), 2.88 (d, J = 6.6 Hz, 6/7 H), 2.36 (dt, J = 12.3, 3.6 Hz, 1H), 2.36 (dt, J = 12.2, 3.3 Hz, 1H), 2.26 (dt, J = 12.2, 3.3 Hz, 1H), 2.06 (d, J = 13.1 Hz, 1H), 1.94 (d, J = 12.1 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 180.4, 179.0, 152.8, 150.6, 142.5, 142.5, 128.1, 127.8, 111.5, 111.2, 111.2, 111.1, 110.8, 110.7, 110.7, 110.6, 107.4, 84.8, 83.8, 80.7, 76.8, 53.0, 51.7, 50.7, 49.7, 49.6, 49.2, 48.6, 48.3, 48.2, 44.3, 44.2, 43.9, 42.3, 40.0, 29.8, 29.8 ppm.

HRMS (ESI) m/z: calcd for $C_{19}H_{14}N_4NaO_2$: 353.1009 $[M+Na]^+$; found: 353.1013.

FT-IR (neat): v 3491, 2971, 2904, 2236, 1600, 1508, 1476, 1381, 914, 737 cm⁻¹.

2-((2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-hydroxy-6-(naphthalen-2-yl)octahydro-2,5-methanopentalen-7-ylidene)malononitrile (3i, 3i')

Was prepared following General procedure A. 102 mg (87%, 0.26 mmol) obtained as diastereomeric mixture ($dr \sim 4:1$, inseparable). Isolated as a pale green foam. $R_f = 0.6$ (hexane: ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.90-7.81 (m, 3H), 7.59-7.48 (m, 3H), 7.33-7.27 (m, 1H), 4.68 (dd, J = 6.6, 3.2 Hz, 4/5 H), 4.35 (br s, 4/5 H), 4.28 (br s, 1/5 H), 4.00 (s, 1/5 H), 3.98 (br s, 4/5 H), 3.95 (s, 4/5 H), 3.91 (br s, 1/5 H), 3.66 (br s, 1/5 H), 3.59 (br s, 4/5 H), 3.34 (br s, 1/5 H), 3.17 (d, J = 6.1 Hz, 1H), 3.04 (dt, J = 11.8, 3.5 Hz, 1/5 H), 2.33 (dt, J = 12.0, 3.3 Hz, 4/5 H), 2.20 – 2.14 (m, 4/5 H), 2.04 (d, J = 8.2 Hz, 1/5 H), 1.98 (d, J = 12.0 Hz, 1H), 1.93 (d, J = 12.1Hz, 1/5 H), 1.86 (d, J = 11.9 Hz, 4/5 H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 181.3, 179.9, 135.9, 133.8, 133.1, 132.3, 129.5, 129.4, 127.7, 127.7, 127.6, 127.0, 126.9, 126.7, 126.5, 124.9, 124.6, 124.4, 124.1, 111.4, 111.3, 110.9, 110.4, 84.6, 83.5, 81.4, 77.5, 53.6, 52.7, 51.6, 50.2, 49.8, 49.6, 49.5, 49.2, 48.7, 48.3, 47.8, 43.3, 43.1, 42.4, 40.1, 30.4, 30.2 ppm.

HRMS (ESI) m/z: calcd for $C_{25}H_{18}N_4NaO$: 413.1373 $[M+Na]^+$; found: 413.1364.

FT-IR (neat): v 3505, 3060, 2971, 2904, 2236, 1600, 1476, 1133, 1087, 910, 737 cm⁻¹.

3. General procedure B for the formation of compounds 4 and 4'

To the diastereomeric mixture of **3** in acetonitrile (0.1 M), acetic anhydride (4 equiv.) and scandium triflate (1-5 mol%) were added. The solution was left stirring at room temperature until completion (TLC) and quenched with saturated aqueous NaHCO₃. The aqueous mixture was extracted with dichloromethane and the combined organic layers were dried with Na₂SO₄ and evaporated *in vacuo*. Purification by column chromatography (Biotage Isolera One, hexane to hexane:ethyl acetate 3:1) followed to afford a diastereomeric mixture of **5** and **6**, which could be partially separated.

(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-phenyloctahydro-2,5-methanopentalen-1-yl acetate (4a)

Was prepared following general procedure B from 83 mg diastereomeric mixture of alcohol (0.24 mmol, $dr \sim 4:1$) and 2 mg (2 mol%) Sc(OTf)₃ for 8 h to afford 74 mg (81%, 0.19 mmol) as a mixture of diastereoisomers ($dr \sim 4:1$).

4a was isolated as a colorless oil ($R_f = 0.7$, hexane:ethyl acetate 1:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.42 (t, J = 7.3 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.16 (d, J = 8.0 Hz, 2H), 5.31 (dd, J = 6.6, 3.3 Hz, 1H), 3.97 (br s, 1H), 3.92 (s, 1H), 3.83 (br s, 1H), 3.81 (br s, 1H), 3.35 (d, J = 6.5 Hz, 1H), 2.42 (dt, J = 12.2, 3.5 Hz, 1H), 2.24 (dt, J = 12.1, 3.5 Hz, 1H), 2.14 (s, 3H), 2.10 (d, J = 12.2 Hz, 1H), 1.95 (d, J = 12.1 Hz, 1H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 179.2, 169.3, 137.5, 129.5, 127.7, 126.0, 110.9, 110.7, 110.5, 110.2, 85.1, 77.7, 49.9, 49.7, 49.6, 46.4, 46.2, 43.4, 40.2, 30.2, 20.8 ppm.

HRMS (ESI) m/z: calcd for $C_{23}H_{18}N_4NaO_2$: 405.1322 $[M+Na]^+$; found: 405.1322.

FT-IR (neat): v 2975, 2235, 1743, 1602, 1498, 1449, 1367, 1117, 1071, 737, 702 cm⁻¹.

$$[\alpha]_D^{25} = -53.7 (c \ 1.0, CHCl_3)$$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time = 12.2 min (minor) and 17.3 min (major), 98.7% *ee*.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-phenyloctahydro-2,5-methanopentalen-1-yl acetate (4a')

4a' was isolated as a yellow oil

¹**H NMR** (400 MHz, CDCl₃): δ 7.42 (t, J = 7.0 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.15 (d, J = 7.9 Hz, 2H), 5.00 (br s, 1H), 3.89 (s, 1H), 3.88 (br s, 1H), 3.79 (br s, 1H), 3.42 (br s, 1H), 3.26 (br s, 1H), 2.97 (dt, J = 12.0, 3.7 Hz, 1H), 2.17 (s, 3H), 2.13 – 2.11 (m, 2H), 1.98 (d, J = 12.0 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 177.8, 170.0, 136.4, 129.5, 128.0, 126.1, 111.1, 110.6, 110.4, 84.6, 81.9, 53.7, 50.9, 50.1, 49.1, 48.6, 43.7, 43.0, 30.0, 20.9 ppm.

HRMS (ESI) m/z: calcd for C₂₃H₁₈N₄NaO₂: 405.1322 [M+Na]⁺; found: 405.1320.

FT-IR (neat): *v* 2916, 2235, 1744, 1602, 1449, 1365, 1231, 1051, 737 cm⁻¹.

HPLC (Daicel Chiralpak IB column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time = 25.6 min (minor) and 46.0 min (major), 98.6% *ee*.

$$[\alpha]_{D}^{25} = -20.3 \ (c \ 0.2, \text{CHCl}_3)$$

(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(4-methoxyphenyl)octahydro-2,5-methanopentalen-1-yl acetate (4b)

Was prepared following general procedure B from 81 mg diastereomeric mixture of alcohol (0.22 mmol, $dr \sim 5:1$) and 2.5 mg (2 mol%) Sc(OTf)₃ for 12 h to afford 75 mg (83%, 0.18 mmol) as a mixture of diastereoisomers ($dr \sim 5:1$).

4b was isolated as a yellow oil

¹**H NMR** (400 MHz, CDCl₃): δ 7.07 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 5.29 (dd, J = 6.5, 3.2 Hz, 1H), 3.92 (s, 1H), 3.90 (br s, 1H), 3.81 (s, 3H), 3.80 – 3.76 (m, 2H), 3.28 (d, J = 6.6 Hz, 1H), 2.41 (dt, J = 12.1 Hz, 3.5 Hz, 1H), 2.24 (dt, J = 11.9, 3.5 Hz, 1H), 2.13 (s, 3H), 2.09 (d, J = 12.2 Hz, 1H), 1.93 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 179.4, 169.3, 158.9, 129.2, 127.1, 114.8, 110.9, 110.7, 110.6, 110.2, 85.0, 77.7, 55.4, 49.9, 49.7, 49.3, 46.3, 46.2, 43.4, 40.1, 30.3, 20.8 ppm.

HRMS (ESI) m/z: calcd for $C_{24}H_{20}N_4NaO_3$: 435.1428 $[M+Na]^+$; found 435.1434.

FT-IR (neat): v 2964, 2907, 2232, 1740, 1606, 1515, 1360, 1228, 1179, 1073, 1034, 840 cm⁻¹.

$$[\alpha]_D^{24} = -77.4 (c 1.0, CHCl_3)$$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time = 15.4 min (minor) and 24.3 min (major), 98.3% *ee*.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(4-methoxyphenyl)octahydro-2,5-methanopentalen-1-yl acetate (4b')

4b' was isolated as a yellow solid (m.p. 117 – 120 °C)

¹**H NMR** (400 MHz, CDCl₃): δ 7.05 (d, J = 8.7 Hz, 2H), 6.95 – 6.92 (m, 2H), 4.99 (s, 1H), 3.87 (s, 1H), 3.84 – 3.80 (m, 4H), 3.78 (br s, 1H), 3.36 (br s, 1H), 3.20 (br s, 1H), 2.96 (dt, J = 12.0 Hz, 3.7 Hz, 1H), 2.17 (s, 3H), 2.14 – 2.07 (m, 2H), 1.97 (d, J = 11.9 Hz, 1H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 178.0, 170.0, 159.1, 128.1, 127.2, 114.8, 111.2, 110.6, 110.6, 110.4, 84.5, 81.9, 53.4, 53.1, 51.1, 50.0, 49.3, 48.5, 43.6, 43.0, 30.1, 20.9 ppm.

HRMS (ESI) m/z: calcd for $C_{24}H_{20}N_4O_3Na$: 435.1428 $[M+Na]^+$; found 435.1439.

FT-IR (neat): v 2968, 2907, 2232, 1744, 1606, 1519, 1466, 1362, 1228, 1179, 1052 cm⁻¹.

 $[\mathbf{a}]_{\mathbf{D}}^{25} = -42.1 \ (c \ 0.9, \text{CHCl}_3)$

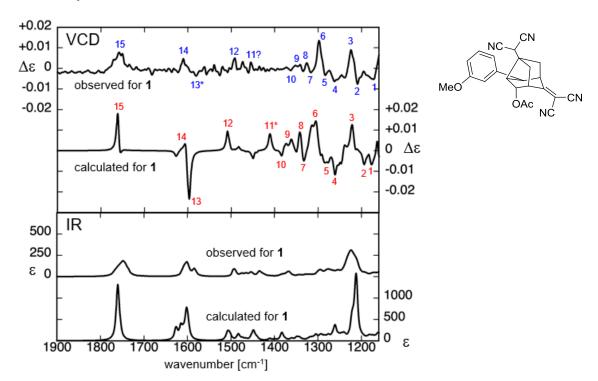
(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(3-methoxyphenyl)octahydro-2,5-methanopentalen-1-yl acetate (4c)

Was prepared following general procedure B from 88 mg diastereomeric mixture of alcohol (0.24 mmol, $dr \sim 4:1$) and 6 mg (5 mol%) Sc(OTf)₃ for 12 h to afford 82 mg (83%, 0.20 mmol) as a mixture of diastereoisomers ($dr \sim 4:1$).

4c was isolated as a colorless oil

¹**H NMR** (400 MHz, CDCl₃): δ 7.33 (t, J = 8.3 Hz, 1H), 6.83 (dd, J = 8.2, 2.5 Hz, 1H), 6.75 – 6.71 (m, 1H), 6.68 (br s, 1H), 5.31 (dd, J = 6.5 Hz, 3.3 Hz, 1H), 3.95 (s, 1H), 3.93 (br s, 1H), 3.82 (s, 3H), 3.79 (br s, 2H), 3.30 (d, J = 6.5 Hz, 1H), 2.41 (dt, J = 12.2, 3.4 Hz, 1H), 2.22 (dt, J = 12.2, 3.4 Hz, 1H), 2.13 (s, 3H), 2.09 (d, J = 12.3 Hz, 1H), 1.94 (d, J = 11.7 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 179.3, 169.3, 160.3, 139.2, 130.5, 118.1, 113.0, 111.8, 111.0, 110.7, 110.5, 110.3, 85.0, 77.6, 55.3, 49.9, 49.7, 49.6, 46.4, 46.0, 43.4, 40.1, 30.2, 20.7 ppm.


HRMS (ESI) m/z: calcd for $C_{24}H_{20}N_4NaO_3$: 435.1428 $[M+Na]^+$; found 435.1425.

FT-IR (neat): v 3024, 2968, 2911, 2232, 1740, 1604, 1490, 1225, 1069, 1044, 758 cm⁻¹.

 $[\alpha]_D^{25} = -70.9 (c 1.2, CHCl_3)$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time = 15.0 min (minor), 18.9 min (major), 99.0% *ee*.

VCD Analysis

Measurement condition:

Instrument: JASCO FVS-6000 spectrometer

c = 0.5 M

CDCl₃ solution, measured at ambient temperature

 $l = 50 \, \mu \text{m}$

IR: 16 scans, VCD: 3000 scans

All spectral data were corrected by a solvent spectrum obtained under the same experimental condition, and presented as De and e (both in M^{-1} cm⁻¹).

Calculation condition:

Preliminary MMFF conformational search of the arbitrarily chosen enantiomer shown above was carried out by CONFLEX 7 program. The obtained geometries within 3.0 kcal/mol from the most stable were optimized by DFT/B3LYP/6-311+G(d,p) using PCM for chloroform. Calculation was done on a Gaussian16 software, which led to 15 stable conformers in 1.75 kcal/mol energy window.

The IR and VCD spectra of the resultant stable conformers were calculated at the same level of theory, and then averaged based on their Boltzmann population at 298 K. The calculated frequencies, dipole strengths and rotational strengths were converted to IR and VCD spectra on GaussView 6 software using a peak half-width at half height of 4 cm⁻¹ width. The calculated frequencies n were scaled with a factor of 0.99.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(3-methoxyphenyl)octahydro-2,5-methanopentalen-1-yl acetate (4c')

4c' was isolated as a yellow oil

¹**H NMR** (400 MHz, CDCl₃): δ 7.33 (t, J = 8.0 Hz, 1H), 6.85 (dd, J = 8.3 Hz, 2.4 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.68 – 6.63 (m, 1H), 4.98 (s, 1H), 3.91 (s, 1H), 3.85 (br s, 1H), 3.82 (s, 3H), 3.78 (m, 1H), 3.38 (br s, 1H), 3.22 (br s, 1H), 2.96 (dt, J = 12.0, 3.8 Hz, 1H), 2.17 (s, 3H), 2.14 – 2.08 (m, 2H), 1.97 (d, J = 11.7 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 177.8, 169.9, 160.4, 138.1, 130.6, 118.2, 113.2, 112.1, 111.2, 110.6, 110.6, 110.4, 84.6, 81.9, 55.4, 53.6, 50.9, 50.0, 49.3, 48.6, 43.7, 42.9, 30.0, 20.9 ppm.

HRMS (ESI) m/z: calcd for $C_{24}H_{20}N_4NaO_3$: 435.1428 [M+Na]⁺; found 435.1428.

FT-IR (neat): v 2971, 2914, 2373, 2232, 1744, 1600, 1495, 1234, 1048, 757 cm⁻¹.

 $[\alpha]_D^{25} = -19.7 (c \ 0.7, \text{CHCl}_3)$

(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(2-methoxyphenyl)octahydro-2,5-methanopentalen-1-yl acetate (4d)

Was prepared following general procedure B from 73 mg diastereomeric mixture of alcohol (0.20 mmol, $dr \sim 5:1$) and 5 mg (5 mol%) Sc(OTf)₃ for 12 h to afford 75 mg (91%, 0.18 mmol) as a mixture of diastereoisomers ($dr \sim 5:1$).

4d was isolated as a colorless oil

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 – 7.29 (m, 1H), 6.98 (t, J = 7.3 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 6.88 (d, J = 7.2 Hz, 1H), 5.34 (dd, J = 6.6, 3.3 Hz, 1H), 4.08 (s, 1H), 4.03 (br s, 1H), 3.91 (br s, 1H), 3.90 (s, 3H), 3.77 (br s, 1H), 3.23 (d, J = 6.4 Hz, 1H), 2.42 (dt, J = 12.1, 3.6 Hz, 1H), 2.20 – 2.15 (m, 1H), 2.14 (s, 3H), 2.10 (d, J = 12.0 Hz, 1H), 1.92 (d, J = 11.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 179.8, 169.4, 156.9, 129.2, 126.5, 125.8, 120.5, 111.2, 111.1, 110.8, 110.4, 84.7, 77.9, 55.1, 49.7, 49.0, 47.4, 46.3, 45.1, 43.5, 40.1, 30.2, 20.9 ppm.

HRMS (ESI) m/z: calcd for $C_{24}H_{20}N_4NaO_3$: 435.1428 $[M+Na]^+$; found 435.1429.

FT-IR (neat): v 2968, 2907, 2366, 2232, 1744, 1604, 1490, 1462, 1235, 1069, 762 cm⁻¹.

 $[\mathbf{a}]_{\mathbf{D}}^{24} = -7.6 \ (c \ 1.0, \text{CHCl}_3)$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time = 14.9 min (minor) and 25.3 min (major), 97.5% *ee*.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(2-methoxyphenyl)octahydro-2,5-methanopentalen-1-yl acetate (4d')

4d' was isolated as a colorless oil

¹**H NMR** (400 MHz, CDCl₃): δ 7.36 – 7.30 (m, 1H), 6.98 (t, J = 7.5Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.82 (d, J = 7.4 Hz, 1H), 5.02 (s, 1H), 4.09 (s, 1H), 3.91 (br s, 1H), 3.89 (s, 3H), 3.76 (br s, 1H), 3.46 (br s, 1H), 3.15 (br s, 1H), 2.98 (dt, J = 11.9, 3.7 Hz, 1H), 2.15 (s, 3H), 2.14 – 2.09 (m, 1H), 2.04 – 1.99 (m, 1H), 1.95 (d, J = 12.2 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 178.5, 169.9, 156.7, 129.4, 126.6, 124.8, 120.5, 111.4, 111.2, 110.7, 110.7, 110.6, 84.1, 82.6, 55.2, 50.9, 50.0, 49.8, 48.5, 48.3, 43.8, 42.8, 29.9, 20.9 ppm.

HRMS (ESI) m/z: calcd for $C_{24}H_{20}N_4NaO_3$: 435.1428 [M+Na]⁺; found 435.1426.

FT-IR (neat): v 3021, 2964, 2911, 2236, 1740, 1606, 1490, 1466, 1370, 1235, 1055, 762 cm⁻¹.

 $[\alpha]_D^{24} = +26.6 (c 1.0, CHCl_3)$

(1S,2R,3aR,5R,6S,6aR)-6-(4-bromophenyl)-3a-(dicyanomethyl)-7-(dicyanomethylene)octahydro-2,5-methanopentalen-1-yl acetate (4e)

Was prepared following general procedure B from 64 mg diastereomeric mixture of alcohol (0.15 mmol, $dr \sim 5:1$) and 1.5 mg (2 mol%) Sc(OTf)₃ for 4 h to afford 59 mg (85%, 0.13 mmol) as a mixture of diastereoisomers ($dr \sim 5:1$).

4e was isolated as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 5.29 (dd, J = 6.8, 3.2 Hz, 1H), 3.95 (br s, 1H), 3.87 (s, 1H), 3.81 (br s, 1H), 3.74 (br s, 1H), 3.29 (d, J = 6.4 Hz, 1H), 2.40 (dt, J = 12.2, 3.5 Hz, 1H), 2.23 (dt, J = 12.1, 3.5 Hz, 1H), 2.14 (s, 3H), 2.09 (d, J = 12.2 Hz, 1H) , 1.97 (d, J = 12.2 Hz, 1H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 178.6, 169.4, 136.4, 132.5, 127.8, 121.7, 110.8, 110.6, 110.4, 110.2, 85.3, 77.6, 49.8, 49.3, 49.1, 46.5, 46.3, 43.3, 40.2, 30.2, 20.8 ppm.

HRMS (ESI) m/z: calcd for $C_{23}H_{17}BrN_4NaO_2$: 483.0427, 485.0407 $[M+Na]^+$; found: 483.0433, 485.0412.

FT-IR (neat): v 2975, 2900, 2232, 1742, 1603, 1491, 1366, 1227, 1073, 1010, 911, 732 cm⁻¹.

$$[\alpha]_D^{25} = -95.2 (c \ 0.2, \text{CHCl}_3)$$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time = 12.5 min (minor) and 19.8 min (major), 98.5% *ee*.

(1R,2R,3aR,5R,6S,6aR)-6-(4-bromophenyl)-3a-(dicyanomethyl)-7-(dicyanomethylene)octahydro-2,5-methanopentalen-1-yl acetate (4e')

4e' was isolated as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 4.98 (s, 1H), 3.86 (br s, 1H), 3.84 (s, 1H), 3.79 (br s, 1H), 3.34 (br s, 1H), 3.20 (br s, 1H), 2.96 (dt, J = 11.9, 3.6 Hz, 1H), 2.17 (s, 3H), 2.14 – 2.09 (m, 2H), 2.00 (d, J = 12.0 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 177.2, 170.0, 153.3, 132.6, 127.8, 122.0, 111.0, 110.5, 110.5, 110.3, 84.8, 81.8, 53.1, 51.1, 50.1, 48.6, 48.5, 43.6, 43.1, 30.0, 20.9 ppm.

HRMS (ESI) m/z: calcd for $C_{23}H_{17}BrN_4NaO_2$: 483.0427, 485.0407 [M+Na]⁺; found: 483.0424, 485.0409. **FT-IR** (neat): v 2975, 2904, 2236, 1744, 1604, 1490, 1366, 1228, 1052, 1010, 910, 730 cm⁻¹.

$$[\alpha]_{D}^{24} = -31.6 (c \ 0.4, \text{CHCl}_3)$$

(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(4-(trifluoromethyl)phenyl)octahydro-2,5-methanopentalen-1-yl acetate (4f)

4f was isolated as a yellow oil

Was prepared following general procedure B from 100 mg diastereomeric mixture of alcohol (0.24 mmol, $dr \sim 4:1$) and 2.5 mg (2 mol%) Sc(OTf)₃ for 12 h to afford 90 mg (82%, 0.20 mmol) as a mixture of diastereoisomers ($dr \sim 4:1$).

¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, J = 8.3Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 5.31 (dd, J = 6.6, 3.2 Hz, 1H), 4.03 (br s, 1H), 3.89 (s, 1H), 3.86 – 3.80 (m, 2H), 3.37 (d, J = 6.3 Hz, 1H), 2.42 (dt, J = 12.4, 3.5 Hz, 1H), 2.22 (dt, J = 12.3, 3.5 Hz, 1H), 2.14 (s, 3H), 2.10 (d, J = 12.3 Hz, 1H), 2.00 (d, J = 12.0 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 178.3, 169.4, 141.5 (d, J = 1 Hz), 130.1 (q, J = 33.0 Hz), 126.6, 126.3 (q, J = 4.0 Hz), 123.7 (q, J = 272.0 Hz), 110.7, 110.6, 110.4, 110.2, 85.4, 77.6, 49.9, 49.6, 48.9, 46.7, 46.4, 43.3, 40.3, 30.2, 20.8 ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.8 (s, 3F) ppm.

HRMS (ESI) m/z: calcd for $C_{23}H_{17}F_3N_4NaO_2$: 473.1196 [M+Na]⁺; found: 473.1195.

FT-IR (neat): v 2979, 2897, 2370, 2236, 1748, 1606, 1331, 1232, 1161, 1122, 1069 cm⁻¹.

 $[\alpha]_D^{22} = -67.2 (c 1.0, CHCl_3)$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time = 8.2 min (minor) and 11.5 min (major), 98.4% *ee*.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(4-(trifluoromethyl)phenyl)octahydro-2,5-methanopentalen-1-yl acetate (4f')

4f' was isolated as a yellow oil

¹**H NMR** (400 MHz, CDCl₃): δ 7.69 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 5.01 (s, 1H), 3.94 (br s, 1H), 3.85 (s, 1H), 3.81 (br s, 1H), 3.44 (br s, 1H), 3.27 (br s, 1H), 2.98 (dt, J = 12.1 Hz, 3.6 Hz, 1H), 2.18 (s, 3H), 2.14 – 2.08 (m, 2H), 2.03 (d, J = 11.8 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 170.0, 140.4 (d, J = 1.0 Hz), 126.7, 126.5 (q, J = 4.0 Hz), 111.0, 110.5, 110.3, 85.0, 81.9, 53.3, 51.2, 50.2, 48.6, 48.5, 43.7, 43.1, 30.0, 20.9 ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.8 (s, 3F) ppm.

HRMS (ESI) m/z: calcd for $C_{23}H_{17}F_3N_4NaO_2$: 473.1196 $[M+Na]^+$; found: 473.1193.

FT-IR (neat): v 2975, 2897, 2366, 2236, 1744, 1617, 1604, 1328, 1232, 1122, 1073 cm⁻¹.

 $[\alpha]_D^{24} = -26.5 \ (c \ 1.0, \text{CHCl}_3)$

(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(4-nitrophenyl)octahydro-2,5-methanopentalen-1-yl acetate (4g)

Was prepared following general procedure B from 78mg diastereomeric mixture of alcohol (0.20 mmol, $dr \sim 1.5:1$) and 2 mg (2 mol%) Sc(OTf)₃ for 12 h to afford 69 mg (81%, 0.16 mmol) as a mixture of diastereoisomers ($dr \sim 1.5:1$).

4g was isolated as a yellow oil

¹**H NMR** (400 MHz, CDCl₃): δ 8.28 – 8.20 (m, 2H), 7.39 (d, J = 8.4 Hz, 2H), 5.30 (dd, J = 6.7, 3.3 Hz, 1H), 4.09 (br s, 1H), 3.94 (s, 1H), 3.85 (br s, 2H), 3.39 (d, J = 6.6 Hz, 1H), 2.40 (dt, J = 12.3 Hz, 3.6 Hz, 1H), 2.30 (dt, J = 12.3, 3.4 Hz, 1H), 2.17 (s, 3H), 2.11 (d, J = 12.4 Hz, 1H), 2.03 (d, J = 12.4 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 177.9, 169.5, 147.1, 144.8, 127.3, 124.4, 110.7, 110.5, 110.3, 110.3, 85.7, 77.6, 50.0, 49.5, 48.3, 47.4, 46.4, 43.3, 40.4, 30.1, 20.8 ppm.

HRMS (ESI) m/z: calcd for $C_{23}H_{17}N_5NaO_4$: 450.1173 $[M+Na]^+$; found 450.1176.

FT-IR (neat): *v* 2968, 2907, 2232, 1738, 1606, 1519, 1466, 1366, 1228, 1186, 1069, 1034, 984 cm⁻¹.

 $[\alpha]_{D}^{21} = -104.7 (c 1.0, CHCl_3)$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 8/1, flow 1.0 mL/min, detection at 249 nm) retention time = 25.2 min (minor) and 42.6 min (major), 98.4% *ee*.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(4-nitrophenyl)octahydro-2,5-methanopentalen-1-yl acetate (4g')

4g' was isolated as a yellow oil

¹**H NMR** (400 MHz, CDCl₃): δ 8.25 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 5.03 (s, 1H), 4.00 (br s, 1H), 3.94 (s, 1H), 3.82 (br s, 1H), 3.47 (br s, 1H), 3.29 (br s, 1H), 2.97 (dt, J = 12.4, 3.7 Hz, 1H), 2.18 (s, 3H), 2.17 - 2.04 (m, 3H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 176.4, 170.1, 147.3, 143.6, 127.4, 124.5, 110.9, 110.5, 110.4, 110.2, 85.2, 81.8, 53.2, 51.7, 50.3, 48.5, 48.0, 43.6, 43.2, 29.9, 20.9 ppm.

HRMS (ESI) m/z: calcd for $C_{23}H_{17}N_5NaO_4$: 450.1173 [M+Na]⁺; found 450.1171.

FT-IR (neat): *v* 2968, 2907, 2236, 1740, 1604, 1515, 1370, 1235, 1182, 1119, 1073, 1034, 984 cm⁻¹.

 $[\alpha]_D^{25} = -49.6 (c 1.0, CHCl_3)$

(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(furan-2-yl)octahydro-2,5-methanopentalen-1-yl acetate (4h)

Was prepared following general procedure B from 85mg diastereomeric mixture of alcohol (0.26 mmol, $dr \sim 6:1$) and 5 mg (5 mol%) Sc(OTf)₃ for 12 h to afford 80 mg (82%, 0.22 mmol) as a mixture of diastereoisomers ($dr \sim 6:1$).

4h was isolated as a yellow oil. Partial decomposition was observed after 2 months storage at -20 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.36 (m, 1H), 6.42 – 6.37 (m, 1H), 6.25 – 6.20 (m, 1H), 5.28 (dd, J = 6.5, 3.3 Hz, 1H), 4.20 (s, 1H), 3.83 (br s, 1H), 3.80 – 3.74 (m, 2H), 3.11 (d, J = 6.8 Hz, 1H), 2.44 (dt, J = 12.3, 3.6 Hz, 1H), 2.26 (dt, J = 12.3, 3.6 Hz, 1H), 2.17 – 2.08 (m, 4H), 1.99 (d, J = 11.9 Hz, 1H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 178.3, 169.2, 151.6, 142.4, 111.2, 111.1, 110.6, 110.4, 110.4, 107.6, 85.3, 76.9, 50.1, 49.7, 46.4, 46.1, 45.2, 44.2, 40.2, 29.7, 20.8 ppm.

HRMS (ESI) m/z: calcd for $C_{21}H_{16}N_4NaO_3$: 395.1115 $[M+Na]^+$; found 395.1114.

FT-IR (neat): v 2979, 2907, 2232, 1797, 1744, 1604, 1370, 1232, 1065, 758 cm⁻¹.

$$[\alpha]_{D}^{22} = -48.1 \ (c \ 1.0, CHCl_3)$$

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 233 nm) retention time 11.9 min (minor) and 18.2 min (major), 97.2% *ee*.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(furan-2-yl)octahydro-2,5-methanopentalen-1-yl acetate (4h')

9b was isolated as a yellow oil. Partial decomposition was observed after 2 months storage at -20 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, J = 1.7 Hz, 1H), 6.41 (dd, J = 3.2 Hz, 1.9 Hz, 1H), 6.22 (d, J = 3.4 Hz, 1H), 4.94 (br s, 1H), 4.13 (s, 1H), 3.77 – 3.72 (m, 2H), 3.38 (br s, 1H), 3.10 – 3.07 (m, 1H), 2.98 (dt, J = 12.0, 3.7 Hz, 1H), 2.21 – 2.13 (m, 5H), 2.03 (d, J = 11.9 Hz, 1H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 177.0, 169.9, 150.4, 142.6, 111.4, 111.2, 110.8, 110.4, 110.4, 107.9, 84.9, 81.1, 51.1, 50.1, 49.5, 48.8, 48.6, 44.4, 42.9, 29.6, 20.8 ppm.

HRMS (ESI) m/z: calcd for $C_{21}H_{16}N_4O_3Na$: 395.1115 [M+Na]⁺; found 395.1115.

FT-IR: v 2971, 2922, 2239, 1804, 1744, 1606, 1370, 1228, 1108, 1059, 1020, 762 cm⁻¹.

 $[\alpha]_{D}^{23} = -20.6 (c 0.4, CHCl_3)$

(1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(naphthalen-2-yl)octahydro-2,5-methanopentalen-1-yl acetate (4i)

Was prepared following general procedure B from 102 mg diastereomeric mixture of alcohol (0.26 mmol, $dr \sim 4:1$) and 6.5 mg (5 mol%) Sc(OTf)₃ for 12 h to afford 95 mg (84%, 0.22 mmol) as a mixture of diastereoisomers ($dr \sim 4:1$).

4i was isolated as a pale orange amorphous solid

¹**H NMR** (400 MHz, CDCl₃): δ 7.90 (d, J = 8.6 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.60 – 7.50 (m, 3H), 7.29 (dd, J = 8.6, 1.8 Hz, 1H), 5.34 (dd, J = 6.5, 3.3 Hz, 1H), 4.09 (br s, 1H), 3.97 (s, 1H), 3.93 (s, 1H), 3.81 (br s, 1H), 3.49 (d, J = 6.5 Hz, 1H), 2.42 (dt, J = 12.2, 3.5 Hz, 1H), 2.28 (dt, J = 12.2, 3.5 Hz, 1H), 2.14 (s, 3H), 2.09 (d, J = 11.9 Hz, 1H), 1.95 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 179.3, 169.4, 134.7, 133.1, 132.4, 129.6, 127.7, 127.7, 127.0, 126.7, 124.6, 123.9, 111.0, 110.8, 110.6, 110.2, 85.1, 77.8, 50.1, 49.8, 49.5, 46.4, 46.2, 43.5, 40.2, 30.3, 20.8 ppm.

HRMS (ESI) m/z: calcd for $C_{27}H_{20}N_4NaO_2$: 455.1478 $[M+Na]^+$; found 455.1485.

FT-IR (neat): v 3021, 2971, 2911, 2236, 1744, 1600, 1366, 1225, 1065, 819, 751 cm⁻¹.

 $[\alpha]_D^{25} = -103.7$ (c 1.0, CHCl₃)

HPLC (Daicel Chiralpak IG column, *n*-hexane/isopropanol 9/1, flow 1.0 mL/min, detection at 226 nm) retention time = 20.3 min (minor) and 14.7 min (major), 98.2% *ee*.

(1R,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-7-(dicyanomethylene)-6-(naphthalen-2-yl)octahydro-2,5-methanopentalen-1-yl acetate (4i')

4i' was isolated as a pale yellow amorphous solid

¹**H NMR** (400 MHz, CDCl₃): δ 7.90 (d, J = 8.6 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.58 – 7.51 (m, 3H), 7.26 (dd, J = 8.6, 1.8 Hz, 1H), 5.05 (s, 1H), 4.00 (br s, 1H), 3.90 (s, 1H), 3.82 (br s, 1H), 3.52 (br s, 1H), 3.40 (br s, 1H), 3.00 (dt, J = 12, 3.7 Hz, 1H), 2.20 (s, 3H), 2.18 – 2.08 (m, 2H), 2.00 (d, J = 12.2 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 177.8, 170.1, 133.6, 133.1, 132.5, 129.8, 127.8, 127.7, 127.2, 126.8, 124.8, 123.9, 111.2, 110.6, 110.6, 110.4, 84.6, 82.0, 53.8, 51.0, 50.1, 48.9, 48.7, 43.7, 43.0, 30.1, 20.9 ppm.

HRMS (ESI) m/z: calcd for $C_{27}H_{20}N_4O_2Na$: 455.1478 [M+Na]⁺; found 455.1472.

FT-IR (neat): v 3024, 2968, 2915, 2232, 1740, 1606, 1366, 1228, 1055, 755 cm⁻¹.

$$[\alpha]_{D}^{22} = -53.2 (c 0.4, CHCl_3)$$

Formation of compound 5

To a solution of noradamantyl alcohols 3a, 3a' (35 mg, 0.103 mmol, $dr \sim 4:1$) in dichloromethane (2 mL) was added Dess Martin periodinane (46 mg, 0.11 mmol, 1.1 equiv.). After stirring for 2 minutes, H₂O (2 μ L, 0.11 mmol, 1.1 equiv.) was added. The mixture was left stirring at rt until starting material was completely consumed (TLC, 29 h) and then diluted with dichloromethane (2 mL). An aquatic solution of 10% w/v Na₂S₂O₃ (1 mL) and 10% NaHCO₃ (1 mL) were added. The organic layer was collected and washed with brine (1 mL). The solvent was removed *in vacuo* and the crude product was purified with

column chromatography (hexane to hexane: ethyl acetate 4:1) to afford ketone **5** (15mg, 0.044 mmol) as a colorless oil with 43% yield. (**Notice**: Partial decomposition of the product was observed in silica gel. Product was also found to decompose in alumina and upon prolonged storage at room temperature)

$\underline{2\text{-}((2R,3aR,5R,6S,6aR)\text{-}3a\text{-}(dicyanomethyl)\text{-}1\text{-}oxo\text{-}6\text{-}phenyloctahydro\text{-}2,5\text{-}methanopentalen\text{-}7\text{-}ylidene)} malononitrile} \ (5)$

 $\mathbf{R_f} = 0.6 \text{ (5:3 hexane : ethyl acetate)}$

¹**H NMR** (400 MHz, CDCl₃): δ 7.46 (t, J = 7.6 Hz, 2H), 7.40 – 7.35 (m, 1H), 7.18 (d, J = 7.6 Hz, 2H), 4.11 – 4.09 (m, 1H), 4.08 – 4.05 (m, 1H), 4.02 (s, 1H), 3.53 (br s, 1H), 3.36 (br s, 1H), 2.47-2.39 (m, 2H), 2.36 (dt, J = 12.1, 3.3 Hz, 1H), 2.10 (d, J = 12.1 Hz, 1H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 199.1, 174.6, 134.7, 129.7, 128.5, 126.3, 110.5, 110.2, 110.1, 109.7, 83.9, 56.1, 55.7, 53.6, 49.4, 47.6, 41.4, 41.2, 30.0 ppm.

IR (neat): v 2904, 2236, 1776, 1600, 1497, 1451, 1158, 762 cm⁻¹.

HRMS (ESI) m/z: calcd for $C_{21}H_{15}N_4O$: 339.1240 $[M+H]^+$; found: 339.1250.

 $[\mathbf{a}]_{\mathbf{D}}^{25}$: -27.2 (c = 0.7, CHCl₃)

Formation of compound 6

To a solution of a 3:1 diastereomeric mixture of alcohols **3a**, **3a'** (208 mg, 0.61 mmol) in dichloromethane (2 mL, 0.3 M), 4-methoxybenzyl 2,2,2-trichloroacetimidate (525 mg, 1.8 mmol) and Sc(OTf)₃ (3 mg, 1 mol%) are added. The solution is left stirring at room temperature for 3 h, after which a saturated solution of NaHCO₃ was added. The organic layer was removed and the aqueous layer was washed with dichloromethane. The combined organic layers were dried over Na₂SO₄, filtered and evaporated *in vacuo*. Column chromatography (hexane to hexane : ethyl acetate 4:1) followed to afford a

199 mg (71%) diastereomeric mixture ($dr \sim 3:1$) of compounds **6** and **6'**, from which **6** can be partially isolated as a yellow oil.

2-((1S,2R,3aR,5R,6S,6aR)-3a-(dicyanomethyl)-1-((4-methoxybenzyl)oxy)-6-phenyloctahydro-2,5-methanopentalen-7-ylidene)malononitrile (6)

Isolated as a yellow oil. $R_f = 0.7$ (hexane : ethyl acetate 4:3)

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.35 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.62 (d, J = 11.1 Hz, 1H), 4.49 (d, J = 11.1 Hz, 1H), 4.30 (dd, J = 6.4, 3.3 Hz, 1H), 4.10 (br s, 1H), 3.86 (br s, 2H), 3.79 (s, 3H), 3.75 (br s, 1H), 2.95 (d, J = 6.4 Hz, 1H), 2.29 (dt, J = 12.0, 3.7 Hz, 1H), 2.11 (dt, J = 12.0, 3.5 Hz, 1H), 2.02 (d, J = 12.3 Hz, 1H), 1.86 (d, J = 11.9 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 180.9, 159.8, 138.4, 129.8, 129.2, 128.5, 127.4, 126.1, 114.1, 111.2, 111.0, 110.9, 110.3, 84.5, 84.3, 72.6, 55.3, 50.1, 50.1, 49.4, 46.7, 46.6, 43.5, 40.4, 30.4 ppm.

HRMS (ESI) m/z: calcd for $C_{29}H_{24}N_4NaO_2$: 483.1791 [M+Na]⁺; found: 483.1791.

FT-IR (neat): v 2960, 2915, 2236, 1606, 1596, 1515, 1469, 1250, 1129, 1091, 1038 cm⁻¹.

 $[\alpha]_D^{24} = -32.1 \ (c \ 1.0, \text{CHCl}_3)$

Formation of compound 7

To a solution of the PMB ether **6** (60 mg, 0.13 mmol) in acetonitrile (1.3 mL, 0.1 M), was added ammonia-borane (6 mg, 0.2 mmol). The solution was left stirring for 2 hours and then filtered through a pad of silica. Solvent was removed *in vacuo* followed by purification with column chromatography (silica gel, hexane to hexane: ethyl acetate 3:1) to obtain 45 mg (75%) of compound **7** as a colorless oil.

<u>2,2'-((1S,2R,3aR,5S,6S,6aR,7R)-1-((4-methoxybenzyl)oxy)-6-phenylhexahydro-2,5-methanopentalene-3a,7(1H)-diyl)dimalononitrile (7)</u>

7 was isolated as a colorless oil. $R_f = 0.7$ (4:3 hexane : ethyl acetate)

¹**H NMR** (400 MHz, CDCl₃): δ 7.38 – 7.33 (m, 2H), 7.29 – 7.22 (m, 3H), 7.03 (d, J = 7.8 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.94 (d, J = 11.4 Hz, 1H), 4.57 (d, J = 11.1 Hz, 1H), 4.49 (d, J = 11.1 Hz, 1H), 4.16 – 4.13 (m, 1H), 3.83 (br s, 1H), 3.80 (s, 3H), 3.76 (s, 1H), 3.01 (br s, 1H), 2.81 (br s, 1H), 2.79 (br s, 1H), 2.52 (d, J = 11.6 Hz, 1H), 2.11 (dt, J = 12.1, 3.5 Hz, 1H), 1.99 (dt, J = 11.9, 3.4 Hz, 1H), 1.86 (d, J = 12.1 Hz, 1H), 1.79 (d, J = 11.5 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 159.8, 140.1, 129.7, 129.1, 128.5, 126.9, 125.8, 114.2, 112.7, 112.3, 111.5, 110.7, 83.7, 72.8, 55.3, 49.7, 46.5, 44.4, 44.3, 43.2, 42.9, 39.4, 38.5, 30.9, 25.0 ppm.

HRMS (ESI) m/z: calcd for $C_{29}H_{26}N_4NaO_2$: 485.1948 $[M+Na]^+$; found: 485.1941.

FT-IR (neat): v 2953, 2911, 1610, 1511, 1250, 1091, 1031 cm⁻¹.

$$[\alpha]^{25}_{D} = +17.9 (c \ 0.9, CHCl_3)$$

Formation of compound 8

To a 4 mL vial with a rubber septum containing a solution of **7** (42 mg, 0.09 mmol) in acetonitrile (1 mL, 0.1 M) and methanol (150 μ L, 3.64 mmol) was added Cs₂CO₃ (150 mg, 0.46 mmol). A flow of oxygen was provided through an oxygen balloon. The mixture was left stirring for 13 h, after which it was filtered through a pad of silica. The solvent was removed *in vacuo* to afford without further purification 32 mg (78%) diastereomeric mixture ($dr \sim 5:1$) of **8** (78%) as a yellow oil.

<u>dimethyl (1S,2R,3aS,5R,6S,6aR)-1-((4-methoxybenzyl)oxy)-6-phenylhexahydro-2,5-methanopentalene-3a,7(1H)-dicarboxylate</u> (8)

8 was isolated as a diastereomeric mixture ($dr \sim 5:1$, inseparable). Colorless oil. $R_f = 0.7$ (hexane: ethyl acetate 4:3).

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.26 (m, 4H), 7.23 – 7.14 (m, 3H), 6.87 – 6.82 (m, 2H), 4.49 – 4.47 (m, 2/6 H), 4.41 (q, J = 12.0 Hz, 10/6 H), 4.18 (br s, 5/6 H), 4.08 (d, J = 3.3 Hz, 1/6 H), 4.05 (dd, J = 6.9, 3.0 Hz, 5/6 H), 3.91 (br s, 1/6 H), 3.79 (s, 3/6 H), 3.78 (s, 15/6 H), 3.75 (s, 15/6 H), 3.72 (s, 3/6 H), 3.69 (s, 3/6 H), 3.61 (s, 15/6 H), 3.26 (d, J = 6.5 Hz, 1/6 H), 3.22 (d, J = 6.8 Hz, 5/6 H), 3.17 (br s, 1/6 H), 3.03 (br s, 5/6 H), 2.85 – 2.79 (m, 1H), 2.72 – 2.69 (m, 1/6 H), 2.63 (t, J = 2.5 Hz, 5/6 H), 2.19 – 2.09 (m, 10/6 H), 1.97 (br s, 2/6 H), 1.82 (d, J = 11.8 Hz, 5/6 H), 1.67 (d, J = 11.0 Hz, 2/6 H), 1.52 (d, J = 11.6 Hz, 5/6 H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 176.4, 176.2, 174.2, 173.7, 159.2, 158.9, 144.0, 144.3, 130.4, 129.8, 129.1, 128.6, 128.2, 128.1, 127.4, 127.3, 126.1, 125.6, 113.8, 113.6, 83.4, 81.8, 70.6, 70.4, 55.2, 55.2, 53.1, 53.0, 52.0, 51.9, 51.6, 51.5, 47.0, 46.7, 45.7, 45.6, 45.3, 44.6, 44.2, 40.6, 40.4, 40.1, 40.0, 39.0, 38.8 ppm.

HRMS (ESI) m/z: calcd for $C_{27}H_{30}NaO_6$: 473.1935 $[M+Na]^+$; found: 473.1938.

FT-IR (neat): v 2953, 2879, 1730, 1614, 1511, 1437, 1278, 1246, 1091, 1031 cm⁻¹.

Formation of compound 9

NC CN

MeMgBr (4 eq)

Et₂O, -20 °C, 3h

ONC CN

MeMgBr (4 eq)

Et₂O, -20 °C, 3h

ONC CN

Me

PMBO

NC CN

$$63\%$$
, $dr > 20:1$

To a solution of **6** (50 mg, 0.11 mmol) in diethyl ether (0.1 M) under nitrogen atmosphere was added dropwise a 3 M solution of MeMgBr in diethyl ether (0.15 mL, 0.45 mmol) at -20 °C. The mixture was

slowly warmed to room temperature and was left stirring for 3 h until completion (TLC). An equal volume of 1 M aqueous HCl solution was added. The organic layer was removed and the aqueous one was further extracted with diethyl ether. The combined organic layers were dried with Na₂SO₄, filtered and evaporated *in vacuo*. Column chromatography (hexane to hexane : ethyl acetate 3:1) followed to obtain 33 mg (63%) of compound **9** as a colorless oil.

2,2'-((1S,2R,3aR,5R,6S,6aR,7R)-1-((4-methoxybenzyl)oxy)-7-methyl-6-phenylhexahydro-2,5-methanopentalene-3a,7(1H)-diyl)dimalononitrile (9)

Was isolated as a colorless oil. $R_f = 0.7$ (hexane : ethyl acetate 4:3)

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 – 7.32 (m, 2H), 7.28 – 7.22 (m, 3H), 7.02 (d, J = 7.7 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.58 (s, 1H), 4.63 (d, J = 11.3 Hz, 1H), 4.50 (d, J = 11.1 Hz, 1H), 4.13 (dd, J = 6.3, 3.1 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 1H), 3.74 (br s, 1H), 2.75 (d, J = 6.6 Hz, 1H), 2.67 (br s, 1H), 2.49 (br s, 1H), 2.03 (d, J = 14.2 Hz, 1H), 1.95 – 1.89 (m, 2H), 1.79 – 1.73 (m, 1H), 1.46 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 159.8, 140.3, 129.7, 129.0, 128.4, 126.9, 125.8, 114.2, 112.5, 111.9, 111.5, 110.7, 83.1, 73.2, 55.3, 49.3, 49.2, 44.7, 43.9, 43.4, 43.4, 38.7, 35.0, 31.1, 30.9, 21.9 ppm.

HRMS (ESI) m/z: calcd for $C_{30}H_{28}N_4NaO_2$: 499.2104 $[M+Na]^+$; found: 499.2108.

FT-IR (neat): v 2936, 2366, 1614, 1508, 1250, 1119, 1034 cm⁻¹.

$$[\alpha]^{25}_{D} = +20.5 (c 1.0, CHCl_3)$$

Synthesis of bis-methyl ester 10

To a 4 mL vial with a rubber septum containing a solution of 9 (41 mg, 0.086 mmol) in acetonitrile (0.1 M) and methanol (170 μ L, 4.3 mmol) was added Cs₂CO₃ (168 mg, 0.52 mmol). A flow of oxygen was

provided through an oxygen balloon. The mixture was left stirring at room temperature for 8 days, after which it was filtered through a pad of silica. The solvent was removed *in vacuo* and the crude product was purified with column chromatography (hexane to hexane: ethyl acetate 4:1) to afford 22 mg (55%) of bismethyl ester **10** as a colorless oil.

<u>dimethyl (1S,2R,3aS,5R,6S,6aR,7S)-1-((4-methoxybenzyl)oxy)-7-methyl-6-phenylhexahydro-2,5-methanopentalene-3a,7(1H)-dicarboxylate (10)</u>

10 was isolated as a colorless oil. $R_f = 0.7$ (hexane : ethyl acetate 4:3)

¹**H NMR** (400 MHz, CDCl₃): δ 7.33 – 7.26 (m, 4H), 7.21 – 7.14 (m, 3H), 6.83 (d, J = 8.3 Hz, 2H), 4.38 (q, J = 11.2 Hz, 2H), 4.14 (br s, 1H), 4.02 (dd, J = 6.8, 3.1 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.53 (s, 3H), 3.17 (d, J = 6.7 Hz, 1H), 2.73 (br s, 1H), 2.53 (br s, 1H), 1.99 – 1.88 (m, 3H), 1.69 – 1.64 (m, 1H), 1.26 (s, 3H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 177.6, 176.5, 158.9, 144.3, 130.4, 128.8, 128.1, 127.3, 125.6, 113.6, 82.8, 70.5, 55.2, 53.0, 52.0, 51.6, 49.9, 46.5, 45.9, 44.2, 44.2, 36.3, 36.2, 23.5 ppm.

HRMS (ESI) m/z: calcd for $C_{28}H_{32}NaO_6$: 487.2091 $[M+Na]^+$; found: 487.2094.

FT-IR (neat): v 2953, 2922, 1727, 1614, 1511, 1264, 1116, 1034 cm⁻¹.

 $[\alpha]^{27}_{D} = +31.4 (c \ 0.2, CHCl_3)$

Formation of compound 11

To a solution of the ester 10 (4.0 mg, 8.6 μ mol) in THF (0.17 mL, 0.05 M), was added LiAlH₄ (3.3 mg, 0.086 mmol) at 0 °C. The solution is left stirring at room temperature for 15 min, after which a saturated

solution of Rochelle's salt was added. The organic layer was removed and the aqueous layer was washed with ethyl acetate. The combined organic layers were dried with Na_2SO_4 , filtered and evaporated *in vacuo*. Column chromatography (hexane: ethyl acetate = 2:1) followed to obtain 2.8 mg (80%) of compound **11** as a pale yellow oil.

<u>methyl</u> (1*S*,2*R*,3*aS*,5*R*,6*S*,6*aR*,7*S*)-3*a*-(hydroxymethyl)-1-((4-methoxybenzyl)oxy)-7-methyl-6-phenyloctahydro-2,5-methanopentalene-7-carboxylate (11)

Was isolated as a colorless oil. $R_f = 0.2$ (hexane : ethyl acetate 2:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.34 – 7.25 (m, 4H), 7.21 – 7.14 (m, 3H), 6.85 – 6.80 (m, 2H), 4.38 (dd, J = 11.2, 24.0 Hz, 2H), 4.11 (br s, 1H), 3.91 (dd, J = 3.2, 6.4 Hz, 1H), 3.77 (s, 3H), 3.70 – 3.69 (m, 2H), 3.52 (s, 3H), 2.71 – 2.68 (m, 2 H), 2.62 (br s, 1H), 1.65 (br s, 2H), 1.49 (br d, J = 12.4 Hz, 1H), 1.42 (br d, J = 12.4 Hz, 1H), 1.28 (s, 3H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 178.0, 158.9, 144.8, 130.7, 128.7, 128.1, 126.9, 125.4, 113.5, 83.4, 70.3, 68.1, 55.2, 51.5, 50.4, 49.1, 47.1, 45.7, 44.2, 42.4, 35.8, 34.2, 23.7 ppm.

HRMS (ESI) m/z: calcd for $C_{27}H_{32}NaO_5$: 459.2142 [M+Na]⁺; found: 459.2190.

FT-IR (neat): v 3463, 2948, 2877, 1727, 1613, 1514, 1498, 1481, 1464, 1450, 1373, 1360, 1301, 1248, 1198, 1174, 1116, 1081, 1035, 821, 744, 704 cm⁻¹.

$$[\alpha]^{22}_{D} = +5.7 (c \ 0.14, CHCl_3)$$

Formation of compound 13

To a solution of the alcohol 11 (10 mg, 23 μ mol) in THF (0.76 mL, 0.03 M), was added CS₂ (69 μ L, 1.2 mmol) and NaH (60% in oil, 18 mg, 0.46 mmol) at 0 °C. After stirring for 0.5 h at this temperature, MeI (36 μ L, 0.57 mmol) was added to this mixture. The solution is left stirring at 40 °C for 18 hours, after which this reaction mixture was cooled to 0 °C then a saturated solution of NH₄Cl was added. The organic layer was removed and the aqueous layer was washed with ethyl acetate 2 times. The combined organic layers were dried with Na₂SO₄, filtered and evaporated *in vacuo*. Column chromatography (hexane to hexane : ethyl acetate = 6:1) followed to obtain 10.2 mg (84%) of compound 12 as a pale yellow oil.

$\frac{\text{methyl } (1S,2R,3aS,5R,6S,6aR,7S)-1-((4-\text{methoxybenzyl})\text{oxy})-7-\text{methyl}-3a-}{(((\text{methylthio})\text{carbonothioyl})\text{oxy})\text{methyl})-6-\text{phenyloctahydro-2,5-methanopentalene-7-carboxylate}}{(12)}$

Was isolated as a pale yellow oil. $R_f = 0.4$ (hexane : ethyl acetate 6:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.31 (d, J = 4.3 Hz, 4H), 7.21 – 7.16 (m, 3H), 6.84 – 6.82 (m, 2H), 4.67 (d, J = 11.0 Hz, 1H), 4.62 (d, J = 11.0 Hz, 1H), 4.43 (d, J = 11.3 Hz, 1H), 4.36 (d, J = 11.3 Hz, 1H), 4.14 (br s, 1H), 3.92 (dd, J = 6.7, 3.2 Hz, 1H), 3.78 (s, 3H), 3.54 (s, 3H), 2.76 – 2.72 (m, 2H), 2.65 (br s, 1H), 2.50 (s, 3H), 1.74 (br d, J = 12.2 Hz, 1H), 1.68 – 1.58 (m, 2H), 1.50 (d, J = 12.2 Hz, 1H), 1.29 (s, 3H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 177.8, 158.9, 144.3, 130.5, 128.8, 128.2, 126.9, 125.5, 113.6, 82.9, 78.3, 70.4, 55.2, 51.6, 49.1, 48.1, 47.0, 45.8, 43.9, 43.1, 36.1, 34.9, 23.6, 18.8 ppm.

HRMS (ESI) m/z: calcd for C₂₉H₃₄NaO₅S₂: 549.1740 [M+Na]⁺; found: 549.1755.

FT-IR (neat): v 2950, 2879, 1727, 1612, 1513, 1450, 1302, 1247, 1233, 1219, 1186, 1179, 1119, 1096, 1068, 1048, 1036, 1000, 738, 704 cm⁻¹.

$$[\alpha]^{27}_{D} = +10.6 (c \ 0.06, CHCl_3)$$

Formation of compound 13

To a solution of the xanthate 12 (8.0 mg, 15 µmol) in toluene (0.30 mL, 0.05 M), was added Bu₃SnH (41 µL, 0.15 mmol) and AIBN (1.2 mg, 7.5 µmol) at room temperature. The solution is heated and left stirring at reflux for 30 minutes, after which this reaction mixture was cooled to room temperature and the solvent was removed in *vacuo*. Column chromatography (hexane to hexane : ethyl acetate = 9:1) was followed to obtain 3.5 mg (55%) of compound 13 as a colorless oil.

<u>methyl</u> (1S,2R,3aR,5R,6S,6aR,7S)-1-((4-methoxybenzyl)oxy)-3a,7-dimethyl-6-phenyloctahydro-2,5-methanopentalene-7-carboxylate (13)

Was isolated as a colorless oil. $R_f = 0.5$ (hexane : ethyl acetate 6:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.36 – 7.27 (m, 4H), 7.23 – 7.12 (m, 3H), 6.87 – 6.79 (m, 2H), 4.40 (d, J = 11.3 Hz, 1H), 4.33 (d, J = 11.3 Hz, 1H), 4.08 (br s, 1H), 3.93 (dd, J = 6.6, 3.2 Hz, 1H), 3.78 (s, 3H), 3.53 (s, 3H), 2.64 (br s, 1H), 2.51 – 2.42 (m, 2H), 1.68 (br d, J = 12.0 Hz, 1H), 1.48 (dt, J = 3.2, 12.0 Hz, 1H), 1.40 (dt, 1H, J = 3.2, 12.0 Hz), 1.36 (br d, J = 12.0 Hz, 1H), 1.26 (s, 3H), 1.24 (s, 3H) ppm.

¹³C **NMR** (100 MHz, CDCl₃): δ 178.2, 158.8, 145.5, 130.9, 128.7, 127.9, 127.3, 125.3, 113.5, 83.3, 70.2, 55.2, 51.4, 50.3, 46.7, 46.5, 46.0, 44.6, 44.0, 40.2, 39.6, 24.9, 23.7 ppm.

HRMS (ESI) m/z: calcd for $C_{27}H_{32}NaO_4$: 443.2193 $[M+Na]^+$; found: 443.2200.

FT-IR (neat): v 2947, 2874, 1728, 1613, 1514, 1452, 1248, 1203, 1173, 1127, 1111, 1035, 821, 703 cm⁻¹. $[\alpha]^{22}_{D} = -13.3$ (c 0.02, CHCl₃)

Formation of compound 14

All reagents were used after freeze-pump-thaw cycling, and this reaction was conducted in the Schlenk flask under argon.

To a THF solution of SmI_2 (0.1 M, 2.5 mL, 0.25 mmol) was added **9** (12 mg, 0.025 mmol) in THF (0.5 mL) under argon. Et_3N (105 μ L, 0.76 mmol) and H_2O (105 μ L, 0.76 mmol) was then added in dropwisem manner into the reaction mixture at -50 °C. The mixture was stirred for 15 min until completion (TLC). After the reaction mixture was opened to air, an equal volume of water was added. The organic layer was removed and the aqueous one was further extracted with EtOAc. The combined organic layers were dried with Na_2SO_4 , filtered and evaporated *in vacuo*. Column chromatography (hexane : ethyl acetate 2:1) followed to obtain 9.2 mg (85%) of compound **14** as a pale yellow oil.

2,2'-((1S,2R,3aR,5R,6S,6aR,7S)-1-((4-methoxybenzyl)oxy)-7-methyl-6-phenylhexahydro-2,5-methanopentalene-3a,7(1H)-diyl)diacetonitrile (14)

Was isolated as a pale yellow oil. $R_f = 0.6$ (hexane : ethyl acetate 2:1)

¹**H NMR** (400 MHz, CDCl₃): δ 7.36 – 7.29 (m, 2H), 7.27 – 7.20 (m, 3H), 7.10 – 7.08 (m, 2H), 6.88 – 6.84 (m, 2H), 5.64 (s, 1H), 4.57 (d, J = 11.2 Hz, 1H), 4.49 (d, J = 11.2 Hz, 1H), 4.11 – 4.10 (m, 1H), 3.80 (s, 3H), 3.79 (s, 1H), 3.70 (br s, 1H), 2.73 (d, J = 6.8 Hz, 1H), 2.57 (d, J = 2.8 Hz, 2H), 2.52 – 2.51 (m, 1H), 2.41 (br s, 1H), 1.85 (d, J = 12.4 Hz, 1H), 1.79 (dt, J = 3.2, 15.6 Hz, 1H), 1.71 (d, J = 12.4 Hz, 1H), 1.63 (dt, J = 3.2, 15.6 Hz, 1H), 1.42 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 159.6, 141.5, 129.4, 128.9, 128.8, 126.6, 126.3, 117.6, 114.1, 112.8, 112.2, 83.5, 72.7, 55.3, 50.1, 45.0, 44.4, 44.3, 43.5, 39.7, 37.2, 31.1, 26.3, 22.0 ppm.

HRMS (ESI) m/z: calcd for $C_{28}H_{30}N_2NaO_2$: 449.2199 $[M+Na]^+$; found: 449.2200.

FT-IR (neat): v 2925, 2854, 2358, 1732, 1612, 1513, 1456, 1247, 1174, 1083, 1031, 821, 732, 701, 642, 628, 574 cm⁻¹.

 $[\alpha]^{28}_{D} = -13.4 (c \ 0.07, CHCl_3)$

General procedure C for the formation of compounds 16

To a solution of ketone **15** (40.0 mg, 0.25 mmol) and aldehyde **2** (40.0 mg, 0.30 mmol) in Et₂O (600 μ L), H₂O (13.5 μ L, 0.75 mmol), diphenylprolinol silyl ether (22.4 mg, 0.050 mmol) and benzoic acid (12.2 mg, 0.10 mmol) were added at room temperature. After stirring the reaction mixture at this temperature, the solvent was removed under reduced pressure. The residue was directly purified by column chromatography on silica gel (n-Hexane: EtOAc = 3:1~1/1) to give compounds **16** as an inseparable mixture of two diastereoisomers.

2-((2R,3aS,5R,6S,6aS)-1,3a-dihydroxy-6-phenyloctahydro-2,5-methanopentalen-7-ylidene)malononitrile (16a, 16a')

Was prepared following General procedure C. 71.3 mg (93%) obtained as diastereomeric mixture ($dr \sim 4:1$, inseparable). Isolated as a yellow solid. $R_f = 0.2$ (hexane: ethyl acetate 1:1)

For major isomer:

¹H NMR (CD₃CN, 400 MHz) δ 7.42-7.34 (m, 5H), 4.65 (quint, J = 3.2 Hz, 1H), 4.01 (br s, 1H), 3.76 (d, J = 3.6 Hz, 1H), 3.67 (br s, 1H), 3.39 (q, J = 1.6 Hz, 1H), 3.36 (br s, 1H), 2.69 (td, J = 2.0, 6.8 Hz, 1H), 2.22-2.18 (m,1H), 1.69 (d, J = 11.2 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 186.6, 142.7, 129.3, 129.3, 129.2, 129.2, 129.0, 127.5, 113.0, 112.6, 82.1, 77.5, 53.1, 51.5, 50.6, 50.5, 45.8, 45.6 ppm.

HRMS (**ESI**): $[M+Na]^+$ calcd for $C_{18}H_{16}N_2O_2Na$: 315.1104 $[M+Na]^+$; found: 315.1109.

IR(neat) v 3431, 3060, 2968, 2236, 1592, 1233, 1497, 1451, 1415, 1308, 1265, 1231, 1129, 1086, 980, 930, 737, 704, 652, 610 cm⁻¹.

2-((2R,3aS,5R,6S,6aS)-1,3a-dihydroxy-6-(4-methoxyphenyl)octahydro-2,5-methanopentalen-7-ylidene)malononitrile (16b, 16b')

Was prepared following General procedure C. 71.0 mg (81%) obtained as diastereomeric mixture ($dr \sim 1.5:1$, inseparable). Isolated as a yellow solid. $R_f = 0.1$ (hexane : ethyl acetate 1:1)

For the major isomer:

¹H NMR (CD₃CN, 400 MHz) δ 7.30 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 4.63 (quint, J = 3.6 Hz, 1H), 3.95 (br s, 1H), 3.80 (s, 3H), 3.73 (d, J = 3.6 Hz, 1H), 3.65 (br s, 1H), 3.3.8 (br s, 1H), 3.30 (br s, 1H), 2.84 (td, J = 3.6, 10.8 Hz, 1H), 2.63 (td, J = 1.6, 6.4 Hz, 1H), 1.68 (d, J = 11.2 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 187.0, 159.3, 134.6, 133.3, 130.3, 130.1, 114.6, 113.0, 112.6, 82.6, 82.1, 77.5, 55.8, 53.3, 51.5, 50.7, 49.9, 45.9, 45.6 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₁₉H₁₈N₂O₃Na⁺: 345.1210, found: 345.1210.

IR (neat): I3439, 2965, 2235, 1591, 1513, 1464, 1307, 1252, 1181, 1116, 1082, 1034, 835, 735, 569, 532 cm⁻¹.

$\underline{2\text{-}((1S,2R,3aS,5R,6aS)\text{-}1\text{-}(4\text{-}fluorophenyl)\text{-}}3a,6\text{-}dihydroxyoctahydro\text{-}2,5\text{-}methanopentalen\text{-}7\text{-}}\underline{ylidene)malononitrile}~(16c, 16c')$

Was prepared following General procedure C. 63.3 mg (82%) obtained as diastereomeric mixture ($dr \sim 3.3:1$, inseparable). Isolated as a yellow solid. $R_f = 0.2$ (hexane : ethyl acetate 1:1)

For the major isomer:

¹H NMR (CD₃CN, 400 MHz) δ 7.40 (dd, J = 5.2, 8.0 Hz, 2H), 7.13 (t, J = 9.2 Hz, 2H), 4.63 (quint, J = 3.6 Hz, 1H), 4.00 (br s, 1H), 3.76 (d, J = 3.6 Hz, 1H), 3.68 (br s, 1H), 3.40-3.38 (m, 1H), 3.33 (br s, 1H), 2.65 (td, J = 2.0, 6.4 Hz, 1H), 2.15-2.13 (m, 1H), 1.70 (d, J = 11.2 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 185.6, 161.5 ($J_{C-F} = 242$ Hz), 137.8 ($J_{C-F} = 3.1$ Hz), 130.2 ($J_{C-F} = 7.0$ Hz), 130.2 ($J_{C-F} = 7.0$ Hz), 114.9($J_{C-F} = 21.3$ Hz), 114.9($J_{C-F} = 21.3$ Hz), 113.0, 112.5, 83.4, 82.0, 77.3, 53.0, 51.4, 50.7, 49.8, 45.8, 45.5 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₁₈H₁₅FN₂O₂Na⁺: 333.1010, found: 333.1005.

IR (neat): v 3423, 2966, 2235, 1714, 1681, 1595, 1510, 1228, 1160, 1082, 838, 734, 518 cm⁻¹.

2-((1S,2R,3aS,5R,6aS)-1-(4-chlorophenyl)-3a,6-dihydroxyoctahydro-2,5-methanopentalen-7-ylidene)malononitrile (16d, 16d')

Was prepared following General procedure C. 65.5 mg (80%) obtained as diastereomeric mixture ($dr \sim 1.9:1$, inseparable). Isolated as a yellow solid. $R_f = 0.2$ (hexane : ethyl acetate 1:1)

For the major isomer:

¹H NMR (CD₃CN, 400 MHz) δ 7.42-7.30 (m, 4H), 4.63 (dd, J = 3.6, 6.8 Hz, 1H), 4.00 (br s, 1H), 3.77 (br s, 1H), 3.68 (br s, 1H), 3.40-3.38 (m, 1H), 3.35 (br s, 1H), 2.65 (td, J = 2.0, 6.8 Hz, 1H), 2.14-2.12 (m, 1H) 1.70 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 186.3, 141.6, 132.8, 130.1, 130.8, 129.3, 129.2, 113.0, 112.6, 83.5, 82.0, 77.3, 52.8, 51.4, 50.6, 50.0, 45.8, 45.6 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₁₈H₁₅ClN₂O₂Na⁺: 349.0714, found: 349.0717.

IR(neat) v 3399, 2968, 2236, 1592, 1492, 1309, 1232, 1086, 1012, 833, 737 cm⁻¹.

$\underline{2\text{-}((1S,2R,3aS,5R,6aS)\text{-}1\text{-}(4\text{-bromophenyl})\text{-}3a,6\text{-}dihydroxyoctahydro-}2,5\text{-methanopentalen-}7\text{-}ylidene)malononitrile} \ (16e, 16e')$

Was prepared following General procedure C. 76.5 mg (82%) obtained as diastereomeric mixture ($dr \sim 1.2:1$, inseparable). Isolated as a yellow solid. $R_f = 0.2$ (hexane : ethyl acetate 1:1)

¹H NMR (CD₃CN, 400 MHz) δ 7.54 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.63 (dd, J = 3.2, 6.8 Hz, 1H), 3.96 (br s, 1H), 3.96-3.38 (m, 1H), 3.35 (br s, 1H), 3.15 (br s, 1H), 2.85 (td, J = 4.0, 11.2 Hz, 1H), 2.64 (td, J = 1.6, 6.4 Hz, 1H), 2.05 (td, J = 4.0, 12.0 Hz, 1H), 1.70 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 186.3, 142.1, 132.3, 132.2, 131.4, 131.1, 120.9, 113.0, 112.6, 83.5, 82.0, 81.4, 53.8, 52.7, 51.4, 50.6, 45.8, 45.6 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₁₈H₁₅BrN₂O₂Na⁺: 393.0209, found: 393.0211.

IR(neat) v 3398, 2968, 2235, 1712, 1593, 1489, 1404, 1309, 1232, 1113, 1080, 1009, 946, 830, 793, 737 cm⁻¹.

2-((1S,2R,3aS,5R,6aS)-1-(3-bromophenyl)-3a,6-dihydroxyoctahydro-2,5-methanopentalen-7-ylidene)malononitrile (16f, 16f')

Was prepared following General procedure C. 75.0 mg (81%) obtained as diastereomeric mixture ($dr \sim 2.9:1$, inseparable). Isolated as a yellow solid. $R_f = 0.2$ (hexane : ethyl acetate 1:1)

¹**H NMR** (**CD₃CN**, **400 MHz**) δ 7.58 (br s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.26 (br s, 1H), 4.63 (quint, 3.6 Hz, 1H), 4.01 (br s, 1H), 3.78 (dd, J = 1.2, 7.6 Hz, 1H), 3.71 (d, J = 1.2 Hz, 1H), 3.40-3.36 (m 2H), 2.66 (td, J = 1.6, 3.6 Hz, 1H), 1.71 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 186.1, 145.4, 132.2, 131.2, 130.5, 128.2, 122.9, 112.9, 112.5, 83.6, 82.0, 77.2, 52.7, 51.4, 50.5, 50.2, 45.8, 45.6 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₁₈H₁₅BrN₂O₂Na⁺: 393.0209, found: 393.0209.

IR(neat) v 3439, 2967, 2236, 1593, 1474, 1422, 1308, 1230, 1166, 1081, 981, 926, 782, 727, 705 cm⁻¹.

<u>2-((1S,2R,3aS,5R,6aS)-1-(2-bromophenyl)-3a,6-dihydroxyoctahydro-2,5-methanopentalen-7-ylidene)malononitrile</u> (16g, 16g')

Was prepared following General procedure C. 70.5 mg (76%) obtained as diastereomeric mixture ($dr \sim 1.2:1$, inseparable). Isolated as a yellow solid. $R_f = 0.2$ (hexane : ethyl acetate 1:1)

¹H NMR (CD₃CN, 400 MHz) δ 7.64 (dd, J = 1.2, 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.43 (dt, J = 1.2, 8.0 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H), 4.65 (dd, J = 3.6, 6.8 Hz, 1H), 4.21 (br s, 1H), 4.10 (br s, 1H), 3.41 (br s, 1H), 3.30 (br s, 1H), 2.87 (td, J = 4.0, 7.2 Hz, 1H), 2.59 (br s, 1H), 2.07 (td, J = 4.0, 12.0 Hz, 1H), 1.80 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 183.8, 140.1, 133.9, 132.0, 129.8, 128.5, 124.8, 112.8, 112.7, 82.8, 81.5, 77.3, 55.6, 55.3, 53.4, 49.6, 46.5, 45.6 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₁₈H₁₅BrN₂O₂Na⁺: 393.0209, found: 393.0209.

IR(neat) v 3414, 2968, 2236, 1712, 1594, 1470, 1438, 1310, 1266, 1232, 1084, 738, 669, 571 cm⁻¹.

2-((1S,2R,3aS,5R,6aS)-1-(furan-2-yl)-3a,6-dihydroxyoctahydro-2,5-methanopentalen-7-ylidene)malononitrile (16h, 16h')

Was prepared following General procedure C. 63.3 mg (90%) obtained as diastereomeric mixture ($dr \sim 1.7:1$, inseparable). Isolated as a papule solid. $R_f = 0.3$ (hexane : ethyl acetate 1:1)

¹H NMR (CD₃CN, 400 MHz) δ 7.47 (t, J = 1.2 Hz, 1H), 6.41 (d, J = 2.0 Hz, 1H), 6.29 (d, J = 3.2 Hz, 1H), 4.59 (quint, J = 3.2 Hz, 1H), 3.91 (br s, 1H), 3.81 (br s, 1H), 3.57-3.54 (m, 2H), 3.37 (br s, 1H), 2.54 (td, J = 2.0, 6.8 Hz, 1H), 2.16-2.12 (m, 1H), 1.78 (d, J = 11.2 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 185.7, 155.6, 142.9, 112.8, 112.6, 111.3, 108.5, 83.9, 81.8, 77.0, 51.6, 51.0, 50.0, 46.7, 45.6, 44.5 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₁₆H₁₄N₂O₃Na⁺: 305.0897, found: 305.0898.

IR(neat) v 3367, 2968, 2235, 1595, 1503, 1308, 1230, 1143, 1080, 1015, 944, 738 cm⁻¹.

General procedure D for the benzoylation of secondary alcohol to determine the enantiomeric excess

To a solution of secondary alcohol **16** (0.10 mmol) in pyridine (0.3 M), p-bromobenzoyl choride (2 equiv.) was added. After the consumption of starting material, the reaction mixture was quenched by 2N HCl. The residue was diluted by EtOAc. After separation, the organic layer was washed with 2N HCl and aq. sat. NaHCO₃ for two times. The combined organic layers were evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (n-Hexane: EtOAc = 12:1) to give corresponding benzoylated compounds. The major diastereoisomer was isolated to determine the ee.

(1S,2R,3aS,5R,6S,6aS)-7-(dicyanomethylene)-3a-hydroxy-6-phenyloctahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24a)

Was prepared following General procedure D. 20.0 mg (42%) obtained as a white solid (m.p. 108-110 $^{\circ}$ C). $R_f = 0.55$ (hexane : ethyl acetate 3:1)

¹H NMR (acetone-d₆, 400 MHz): δ 7.99 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.2 Hz, 1H), 5.70 (dd, J = 6.8, 3.4 Hz, 1H), 3.95 (br s, 1H), 3.85 – 3.79 (m, 1H), 3.51 (br s, 1H), 3.18 (d, J = 7.1 Hz, 1H), 2.50 (td, J = 11.7, 3.6 Hz, 1H), 2.37 (td, J = 11.8, 3.7 Hz, 1H), 2.29 (d, J = 11.8 Hz, 1H), 1.92 (d, J = 11.8 Hz, 1H) ppm.

¹³C NMR (acetone-d₆, 100 MHz): δ 184.0, 165.1, 141.9, 132.9, 132.2, 129.6, 129.3, 129.2, 128.9, 127.7, 112.4, 112.4, 84.1, 82.2, 79.7, 53.0, 51.5, 49.1, 48.7, 45.9, 45.7 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₂₅H₁₉BrN₂O₃Na⁺: 497.0471, found: 497.0466.

IR(neat) v 3477, 2975, 2235, 1724, 1593, 1481, 1396, 1269, 1173, 1097, 848, 754, 703, 549 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] IG (n-Hexane: i-PrOH = 9:1; flow rate 1.0 mL/min, major isomer $t_R = 12.5$ min, minor isomer $t_R = 17.7$ min) (96% ee).

 $[\alpha]_D^{26}$ -46.7 (c 2.0, MeCN)

(1S,2R,3aS,5R,6S,6aS)-7-(dicyanomethylene)-3a-hydroxy-6-(4-methoxyphenyl)octahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24b)

Was prepared following General procedure D. 10.5 mg (21%) obtained as a white solid (m.p. 112-115 $^{\circ}$ C). $R_f = 0.45$ (hexane : ethyl acetate 3:1)

¹H NMR (CD₃CN, 400 MHz) δ 7.93 (d, J = 8.8 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 5.60 (dd, J = 3.2, 6.8 Hz, 1H), 3.78 (s, 3H), 3.76 (br s, 1H), 3.73 (dt, J = 1.6, 3.2 Hz, 1H), 3.42 (br s, 1H), 3.03 (td, J = 1.6, 4.4 Hz, 1H), 2.34 (td, J = 3.6, 11.6 Hz, 1H), 2.25 (td, J = 4.0, 11.6 Hz, 1H), 2.14 (dd, J = 1.2, 11.6 Hz, 1H), 1.99 (s, 1H), 1.79 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 184.3, 165.4, 159.4, 133.6, 132.9, 132.9, 132.3,132.3, 130.2, 130.2, 129.5, 129.0, 114.6, 114.6, 112.6, 112.5, 84.2, 82.1, 79.6, 55.8, 53.0, 50.6, 49.1, 48.6, 45.6, 45.5 ppm.

HRMS (**ESI**): $[M+Na]^+$ calcd for $C_{26}H_{21}BrN_2O_4Na^+$: 527.0577 found: 527.0575.

IR(neat) v 3484, 2968, 2235, 1724, 1592, 1514, 1480, 1396, 1266, 1176, 1095, 1037, 1011,841, 755, 524 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK® IG (n-Hexane: i-PrOH = 9:1; flow rate 1.0 mL/min, major isomer $t_R = 24.4$ min, minor isomer $t_R = 16.4$ min) (93% ee).

 $[\alpha]_D^{26}$ -31.3 (c 1.0, MeCN)

(1S,2R,3aS,5R,6S,6aS)-7-(dicyanomethylene)-6-(4-fluorophenyl)-3a-hydroxyoctahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24c)

Was prepared following General procedure D. 25.4 mg (52%) obtained as a white solid (m.p. 107-109 $^{\circ}$ C). $R_f = 0.55$ (hexane : ethyl acetate 3:1)

¹H NMR (CD₃CN, 400 MHz) δ 7.92 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.41 (dd, J = 5.2, 8.4 Hz, 2H), 7.12 (t, J = 8.8 Hz, 2H), 5.60 (dd, J = 3.6, 10.8 Hz, 1H), 3.81 (br s, 1H), 3.74 (dt, J = 1.6, 3.6 Hz, 1H), 3.45 (t, J = 1.2 Hz, 1H), 3.05 (td, J = 2.0, 6.8 Hz, 1H), 2.35 (td, J = 4.0, 12.0 Hz, 1H), 2.21 (dd, J = 4.0, 12.0 Hz, 1H), 2.15 (dd, J = 1.2, 12.0 Hz, 1H), 1.81 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 183.8, 165.4, 162.5 (J_{C-F} = 242 Hz), 137.8 (J_{C-F} = 3.1 Hz), 132.9, 132.9, 132.2, 132.2, 131.0 (J_{C-F} = 8.1 Hz), 131.0 (J_{C-F} = 8.1 Hz), 129.4, 129.0, 115.9 (J_{C-F} = 21.4 Hz), 115.9 (J_{C-F} = 21.4 Hz), 112.5, 112.4, 84.5, 82.1, 79.4, 52.8, 50.5, 49.1, 48.6, 45.5, 45.5 ppm.

HRMS (**ESI**): $[M+Na]^+$ calcd for $C_{25}H_{18}BrFN_2O_3Na^+$: 515.0377, found: 515.0378.

IR(neat) v 3477, 2975, 2235, 1724, 1593, 1512, 1481, 1396, 1268, 1168, 1102, 1049, 1011, 843 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] IG (n-Hexane: i-PrOH = 9:1; flow rate 0.50 mL/min, major isomer $t_R = 31.5$ min, minor isomer $t_R = 29.1$ min) (>99% ee).

 $[\alpha]_D^{26}$ -53.4 (*c* 2.2, MeCN)

(1S,2R,3aS,5R,6S,6aS)-6-(4-chlorophenyl)-7-(dicyanomethylene)-3a-hydroxyoctahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24d)

Was prepared following General procedure D. 28.5 mg (56%) obtained as a white solid (m.p. 115-118 $^{\circ}$ C). $R_f = 0.55$ (hexane : ethyl acetate 3:1)

¹**H NMR** (**CD₃CN**, **400 MHz**) δ 7.92 (d, J = 8.8 Hz, 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.38 (s, 4H), 5.60 (dd, J = 3.2, 6.8 Hz, 1H), 3.80 (br s, 1H), 3.74 (d, J = 1.2 Hz, 1H), 3.47 (br s, 1H), 3.05 (td, J = 1.6, 6.4 Hz, 1H), 2.35 (td, J = 3.6, 12.0 Hz, 1H), 2.20 (td, J = 3.6, 11.6 Hz, 1H), 2.15 (d, J = 11.6 Hz, 1H), 1.81 (d, J = 12.0 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 183.6, 165.4, 140.7, 133.0, 132.8, 132.8, 132.3, 132.3, 130.9, 130.9, 129.4, 129.3, 129.3, 129.0, 112.5, 112.4, 84.5, 82.1, 79.4, 52.6, 50.6, 50.0, 48.6, 45.5, 45.5 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₂₅H₁₈BrClN₂O₃Na⁺: 531.0082, found: 531.0083.

IR(neat) v 3491, 2970, 2236, 1722, 1592, 1490, 1398, 1272, 1173, 1094, 1013, 927, 846, 815, 754, 738 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] IG (n-Hexane: i-PrOH = 9:1; flow rate 1.0 mL/min, major isomer $t_R = 15.8$ min, minor isomer $t_R = 10.4$ min) (96% ee).

$$[\alpha]_D^{26}$$
 -42.4 (c 2.8, MeCN)

(1S,2R,3aS,5R,6S,6aS)-6-(4-bromophenyl)-7-(dicyanomethylene)-3a-hydroxyoctahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24e)

Was prepared following General procedure D. 33.3 mg (60%) obtained as a white solid (m.p. 118-120 °C). $R_f = 0.55$ (hexane: ethyl acetate 3:1)

¹H NMR (CD₃CN, 400 MHz) δ 7.92 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.60 (dd, J = 3.6, 6.8 Hz, 1H), 3.78 (br s, 1H), 3.74 (dt, J = 1.2, 3.2 Hz, 1H), 3.47 (t, J = 1.2 Hz, 1H), 3.04 (td, J = 2.0, 6.8 Hz, 1H), 2.34 (td, J = 3.6, 11.6 Hz, 1H), 2.19 (td, J = 3.6, 12.0 Hz, 1H), 2.14 (dd, J = 0.80, 11.6 Hz, 1H), 1.81 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 183.6, 165.4, 141.1, 132.8, 132.8, 132.3, 132.3, 132.3, 131.2, 131.2, 129.4, 129.0, 121.2, 112.5, 112.4, 84.5, 82.1, 79.4, 52.5, 50.7, 48.9, 48.6, 45.5, 45.5 ppm.

HRMS (**ESI**): $[M+Na]^+$ calcd for $C_{25}H_{18}Br_2N_2O_3Na^+$: 574.9576, found: 574.9576.

IR(neat) v 3483, 2974, 2235, 1724, 1593, 1489, 1397, 1270, 1173, 1095, 1011, 845, 816, 754, 568 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK® IE (n-Hexane: i-PrOH = 9:1; flow rate 1.0 mL/min, major isomer $t_R = 9.61$ min, minor isomer $t_R = 8.71$ min) (98% ee).

$$[\alpha]_D^{26}$$
 -30.3 (c 2.6, MeCN)

(1S,2R,3aS,5R,6S,6aS)-6-(3-bromophenyl)-7-(dicyanomethylene)-3a-hydroxyoctahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24f)

Was prepared following General procedure D. 32.5 mg (59%) obtained as a white solid (m.p. 103-106 $^{\circ}$ C). $R_f = 0.55$ (hexane : ethyl acetate 3:1)

¹**H NMR** (**CD₃CN**, **400 MHz**) δ 7.93 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 7.58 (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 5.61 (dd, J = 3.6, 6.8 Hz, 1H), 3.83 (br s, 1H), 3.74 (dd, J = 1.6, 2.8 Hz, 1H), 3.49 (br s, 1H), 3.05 (td, J = 2.0, 6.8 Hz, 1H), 2.35 (td, J = 3.6, 11.6 Hz, 1H), 2.23-2.13 (m, 2H), 1.83 (d, J = 12.0 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 183.5, 165.4, 144.5, 132.8, 132.8, 132.3, 132.3, 132.1, 131.2, 130.7, 129.4, 129.0, 128.1, 122.9, 112.5, 112.4, 84.6, 82.1, 79.3, 52.5, 50.9, 48.8, 48.6, 45.5, 45.5 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₂₅H₁₈Br₂N₂O₃Na⁺: 574.9576, found: 574.9576.

IR(neat) v 3484, 2975, 2235, 1724, 1593, 1479, 1425, 1396, 1374, 1268, 1173, 1095, 1049, 1011, 954, 906, 848, 782, 755, 738, 706, 683, 642, 576 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] IH (n-Hexane: i-PrOH = 9:1; flow rate 1.0 mL/min, major isomer $t_R = 17.4$ min, minor isomer $t_R = 15.6$ min) (98% ee).

 $[\alpha]_D^{26}$ -30.8 (c 3.3, MeCN)

(1S,2R,3aS,5R,6S,6aS)-6-(2-bromophenyl)-7-(dicyanomethylene)-3a-hydroxyoctahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24g)

Was prepared following General procedure D. 14.8 mg (27%) obtained as a white solid (m.p. 124-127 $^{\circ}$ C). $R_f = 0.55$ (hexane : ethyl acetate 3:1)

Yield: 27% (14.8 mg)

Physical state: White solid (m.p. 124~127 °C)

¹H NMR (CD₃CN, 400 MHz) δ 7.91 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.61 (dd, J = 1.2, 8.0 Hz, 1H), 7.56 (dd, J = 1.6, 7.6 Hz, 1H), 7.42 (dt, J = 1.6, 8.0 Hz, 1H), 7.21 (dt, J = 1.6, 7.6 Hz, 1H), 5.65 (dd, J = 3.2, 6.8 Hz, 1H), 4.06 (br s, 1H), 3.76 (dd, J = 1.6, 3.2 Hz, 1H), 3.64 (br s, 1H), 3.01 (td, J = 1.6, 6.4 Hz, 1H), 2.38 (td, J = 3.6, 12.0 Hz, 1H), 2.25 (td, J = 4.0, 12.0 Hz, 1H), 2.18 (dd, J = 0.40, 11.6 Hz, 1H), 1.85 (d, J = 12.4 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 183.1, 165.2, 140.1, 133.8, 133.0, 133.0, 132.6, 132.3, 132.1, 131.9, 130.0, 129.5, 128.6, 125.3, 112.5, 112.3, 84.6, 82.4, 79.1, 52.4, 50.7, 49.3, 48.6, 45.4 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₂₅H₁₈Br₂N₂O₃Na⁺: 574.9576, found: 574.9575.

IR(neat) v 3492, 2976, 2236, 1787, 1725, 1592, 1476, 1437, 1396, 1269, 1173, 1094, 1051, 1012, 954, 926, 847, 754, 677, 568 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] IH (n-Hexane: i-PrOH = 9:1; flow rate 1.0 mL/min, major isomer $t_R = 18.9$ min, minor isomer $t_R = 17.7$ min) (98% ee).

 $[\alpha]_D^{26} + 114 (c 1.4, MeCN)$

(1S,2R,3aS,5R,6S,6aS)-7-(dicyanomethylene)-6-(furan-2-yl)-3a-hydroxyoctahydro-2,5-methanopentalen-1-yl 4-bromobenzoate (24h)

Was prepared following General procedure D. 11.0 mg (24%) obtained as a white solid (m.p. 92.5-95.5 $^{\circ}$ C). $R_f = 0.55$ (hexane: ethyl acetate 3:1)

¹H NMR (CD₃CN, 400 MHz) δ 7.94 – 7.89 (m, 2H), 7.71 – 7.67 (m, 2H), 7.50 – 7.43 (m, 1H), 6.42 – 6.37 (m, 1H), 6.32 (d, J = 3.4 Hz, 1H), 5.57 (dd, J = 6.8, 3.5 Hz, 1H), 3.75 (br s, 1H), 3.74 – 3.72 (m, 1H), 3.67 (br s, 1H), 2.93 (dt, J = 6.7, 1.6 Hz, 1H), 2.31 (dt, J = 11.9, 3.8 Hz, 1H), 2.22 (dt, J = 11.8, 3.8 Hz, 1H), 2.13 (d, J = 11.6 Hz, 1H), 1.89 (d, J = 11.6 Hz, 1H) ppm.

¹³C NMR (CD₃CN, 100 MHz) δ 182.9, 165.4, 154.5, 143.1, 132.9, 132.6, 132.3, 129.4, 129.0, 112.4, 111.3, 108.8, 85.0, 81.9, 79.1, 49.9, 49.2, 48.7, 46.6, 45.5, 45.4 ppm.

HRMS (**ESI**): [M+Na]⁺ calcd for C₂₃H₁₇BrN₂O₄Na⁺: 487.0264, found: 487.0267.

IR(neat) v 3487, 2974, 2235, 1787, 1723, 1592, 1481, 1396, 1267, 1173, 1094, 1011, 937, 846, 811, 738, 600, 549 cm⁻¹.

The enantiomeric ratio was determined by HPLC using CHIRALPACK[®] IG (n-Hexane: i-PrOH = 9:1; flow rate 0.50 mL/min, major isomer $t_R = 27.0$ min, minor isomer $t_R = 35.4$ min) (82% ee).

 $[\alpha]_D^{26}$ -50.9 (c 1.1, MeCN)

Synthesis of compounds 17i and 17j

ethyl (*E*)-3-((1*S*,5*S*,6*S*,7*S*)-2-(dicyanomethylene)-7-(dimethyl(phenyl)silyl)-5-hydroxybicyclo[3.2.1]octan-6-yl)acrylate (17i)

To a solution of ketone (40.0 mg, 0.25 mmol) and (*E*)-3-(dimethyl(phenyl)silyl)acrylaldehyde (57.0 mg, 0.30 mmol) in Et₂O (600 μ L), H₂O (13.5 μ L, 0.75 mmol), diphenylprolinol silyl ether (22.4 mg, 0.050 mmol) and benzoic acid (12.2 mg, 0.10 mmol) were added at room temperature. After stirring the reaction mixture at this temperature for 3 hours, the solvent was removed under reduced pressure. To a solution of the residue in toluene (600 μ L), Wittig reagent (104.5 mg, 0.30 mmol) was added. The residue was directly purified by column chromatography on silica gel (*n*-Hexane: EtOAc = 10/1) to give the target compound (73.1 mg, 0.174 mmol) in 70% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.49 – 7.39 (m, 5H), 6.79 (dd, J = 15.5, 10.1 Hz, 1H), 5.82 (d, J = 15.5 Hz, 1H), 4.20 (q, J = 6.9 Hz, 2H), 3.50 (t, J = 4.7 Hz, 1H), 2.67 (t, J = 8.9 Hz, 1H), 2.52 – 2.45 (m, 1H), 2.40 (br s, 1H), 2.24 – 2.17 (m, 1H), 1.77 – 1.69 (m, 3H), 1.65 – 1.55 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 0.42 (s, 3H), 0.31 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 184.2, 166.1, 149.2, 135.3, 133.7, 130.2, 128.4, 122.7, 111.3, 111.2, 83.3, 79.3, 60.6, 48.8, 45.0, 44.9, 40.1, 39.0, 28.1, 14.2, -2.5, -3.8 ppm.

IR (neat): v 2979, 2236, 1709, 1649, 1589, 1426, 1370, 1275, 1119, 832 cm⁻¹

HRMS (ESI) m/z: calcd for $C_{24}H_{29}N_2O_3Si$: 421.1942 $[M+H]^+$; found: 421.1938.

 $[a]_{D}^{23}$: -78.1 (c = 1.0, CHCl₃)

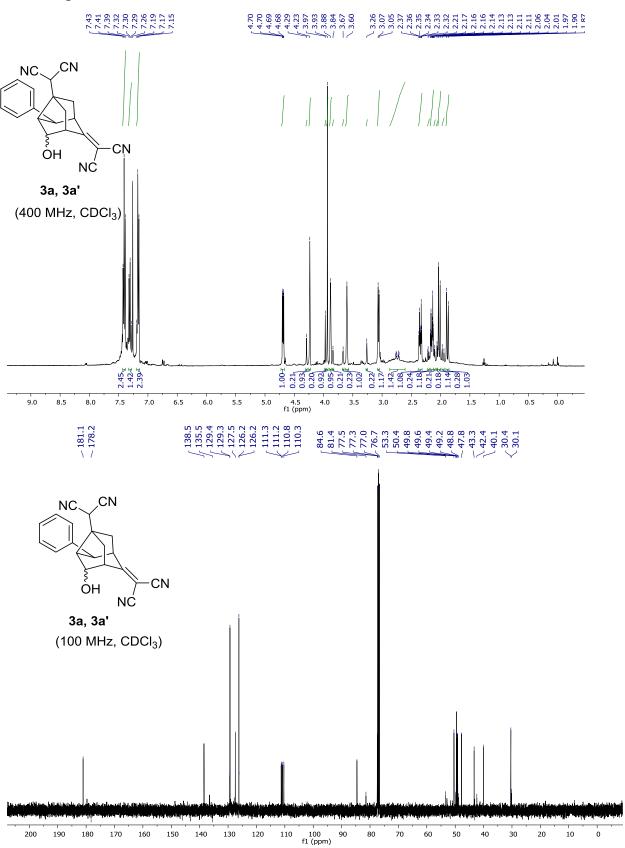
HPLC (Daicel Chiralpak AD-H column, n-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 230 nm) retention time = 9.6 min (minor) and 10.5 min (major), 98% ee.

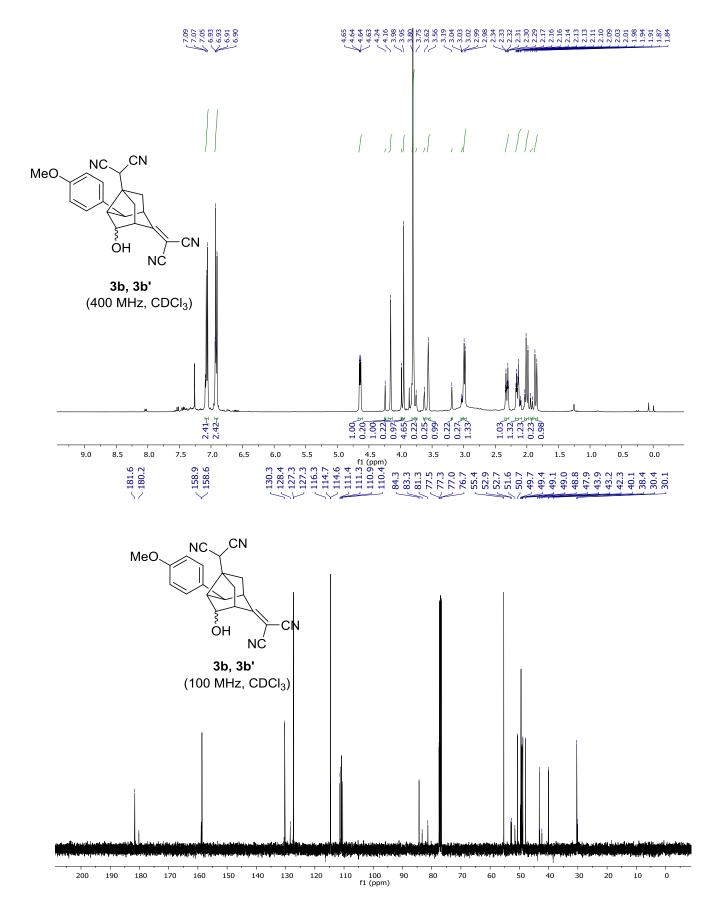
<u>ethyl (E)-3-((1R,5S,6R,7S)-2-(dicyanomethylene)-5-hydroxy-7-phenethylbicyclo[3.2.1]octan-6-yl)acrylate</u> (17j)

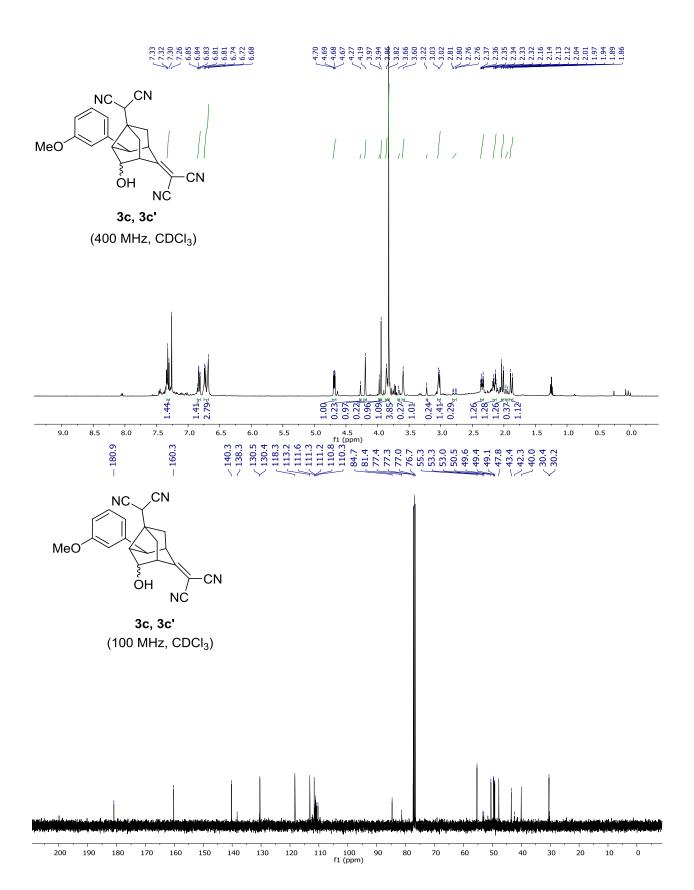
To a solution of ketone (40.0 mg, 0.25 mmol) and (*E*)-5-phenylpent-2-enal (48 mg, 0.30 mmol) in Et₂O (600 μ L), H₂O (13.5 μ L, 0.75 mmol), diphenylprolinol silyl ether (22.4 mg, 0.050 mmol) and benzoic acid (12.2 mg, 0.10 mmol) were added at room temperature. After stirring the reaction mixture at this temperature for 3 hours, the solvent was removed under reduced pressure. To a solution of the residue in toluene (600 μ L), Wittig reagent (104.5 mg, 0.30 mmol) was added. The residue was directly purified by column chromatography on silica gel (*n*-Hexane: EtOAc = 10/1) to give the target compound (97 mg, 0.25 mmol) as a yellow oil in 83% yield.

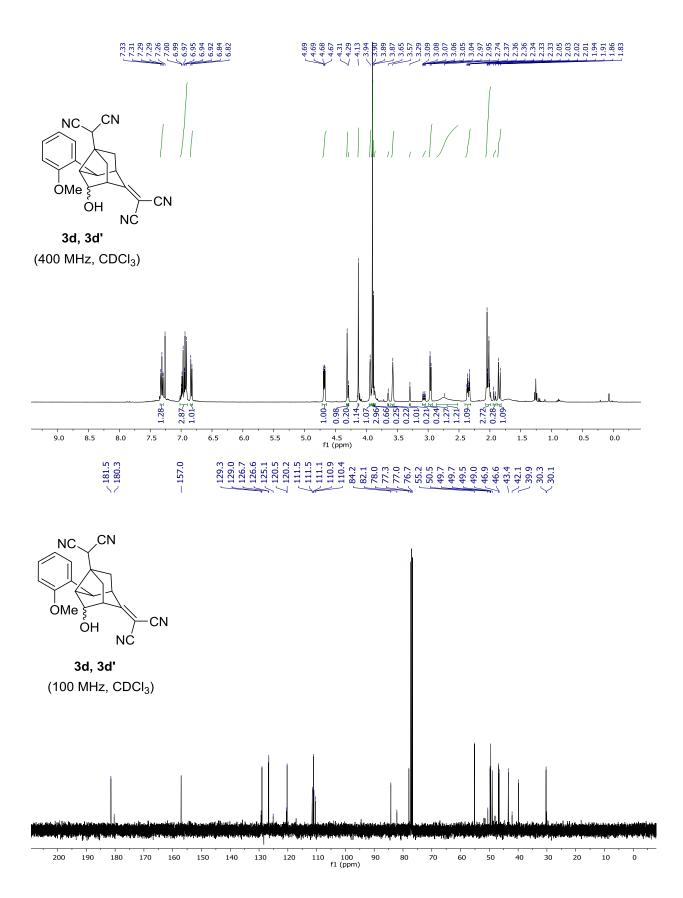
¹**H NMR** (400 MHz, CDCl₃): δ 7.31 – 7.26 (m, 2H), 7.24 – 7.20 (m, 1H), 7.13 (d, J = 7.1 Hz, 2H), 6.89 (dd, J = 15.6, 9.8 Hz, 1H), 5.85 (d, J = 15.6 Hz, 1H), 4.25 – 4.17 (m, 2H), 3.52 (t, J = 4.9 Hz, 1H), 3.16 (dd, J = 18.1, 6.6 Hz, 1H), 2.94 (br s, 1H), 2.64 – 2.50 (m, 3H), 2.40 – 2.28 (m, 2H), 2.26 – 2.18 (m, 1H), 2.04 – 1.87 (m, 2H), 1.71 (d, J = 11.7 Hz, 1H), 1.69 – 1.61 (m, 1H), 1.53 – 1.42 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H) ppm.

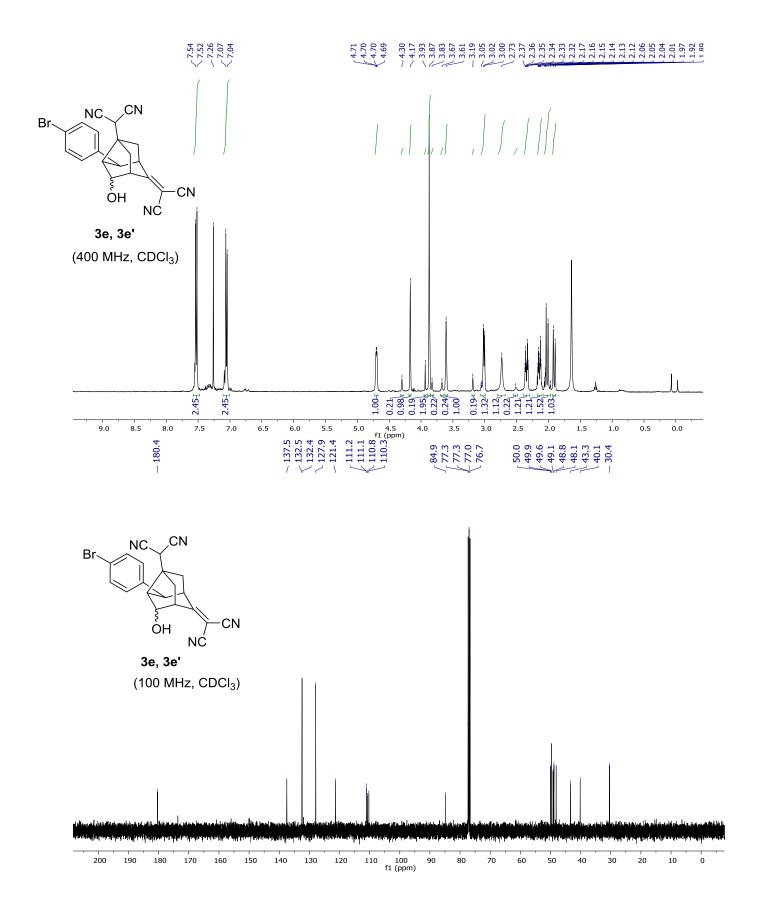
¹³C NMR (100 MHz, CDCl₃): δ 182.6, 166.1, 148.0, 140.4, 128.6, 128.1, 126.3, 123.0, 111.3, 111.3, 84.7, 77.8, 60.7, 53.2, 49.2, 46.0, 42.9, 39.6, 34.0, 31.9, 28.9, 14.2 ppm.

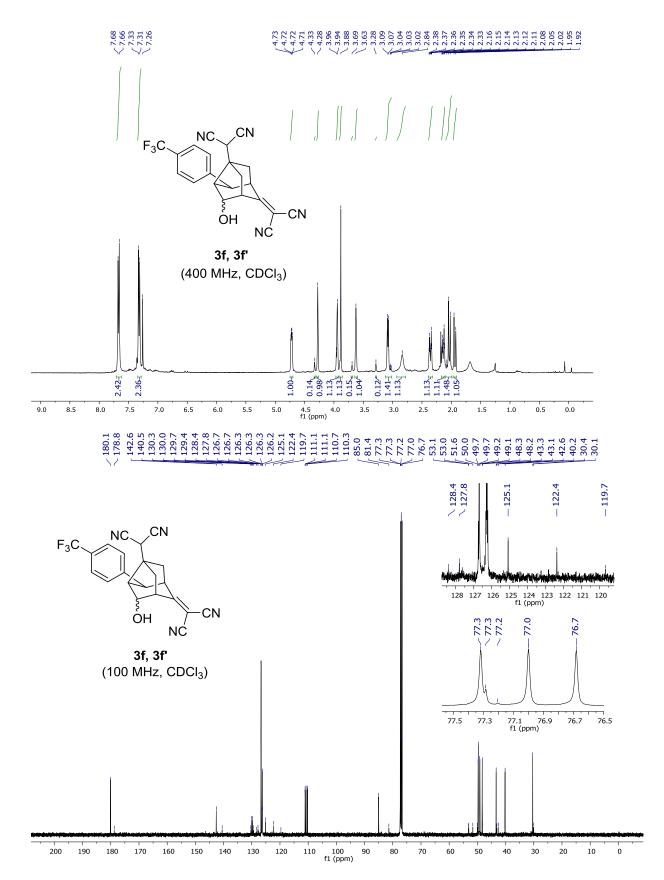

IR (neat): v 3463, 2939, 2236, 1709, 1653, 1589, 1451, 1303, 1275, 1126, 1031 cm⁻¹.

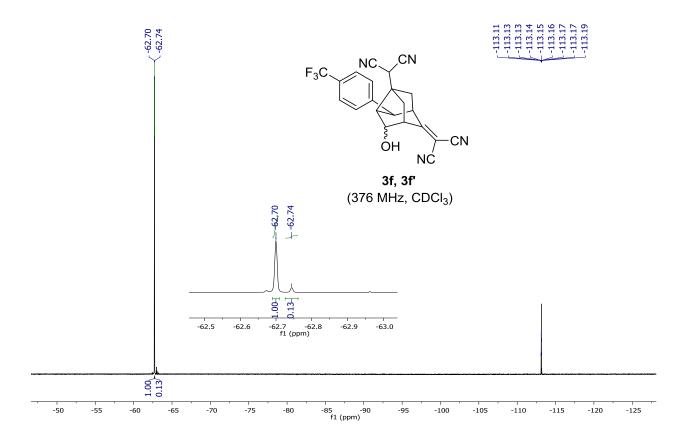

HRMS (ESI) m/z: calcd for $C_{24}H_{26}N_2NaO_3$: 413.1836 [M+Na]⁺; found: 413.1839.

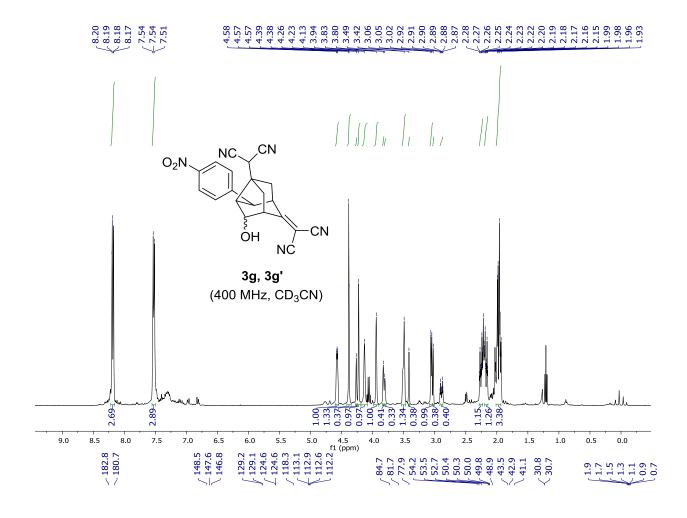

 $[a]_D^{24}$: -43.4 (c = 2.0, CHCl₃)

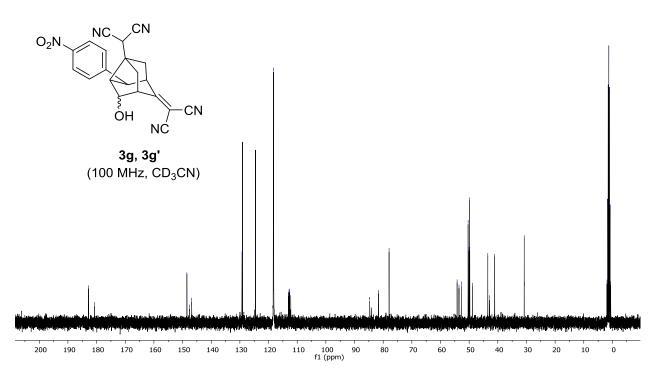

HPLC (Daicel Chiralpak OJ-H column, *n*-hexane/isopropanol = 9/1, flow 1.0 mL/min, detection at 214 nm) retention time = 33.7 min (minor) and 42.1 min (major), 97% *ee*.

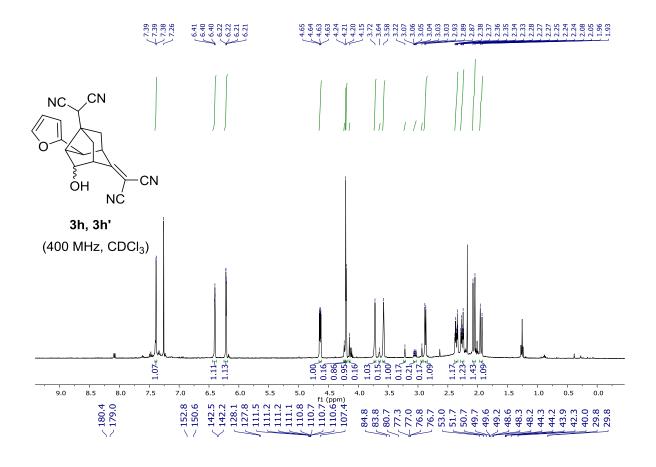

5. NMR spectral data

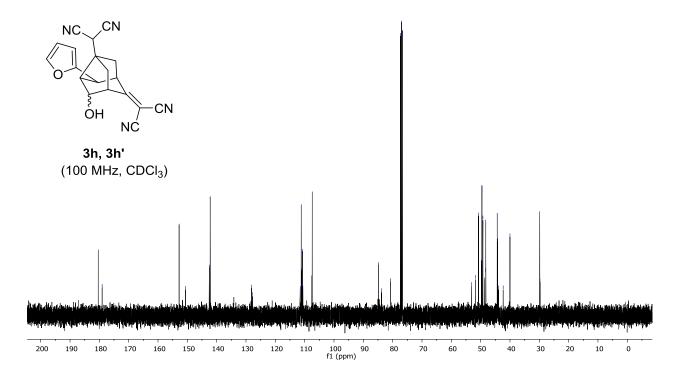


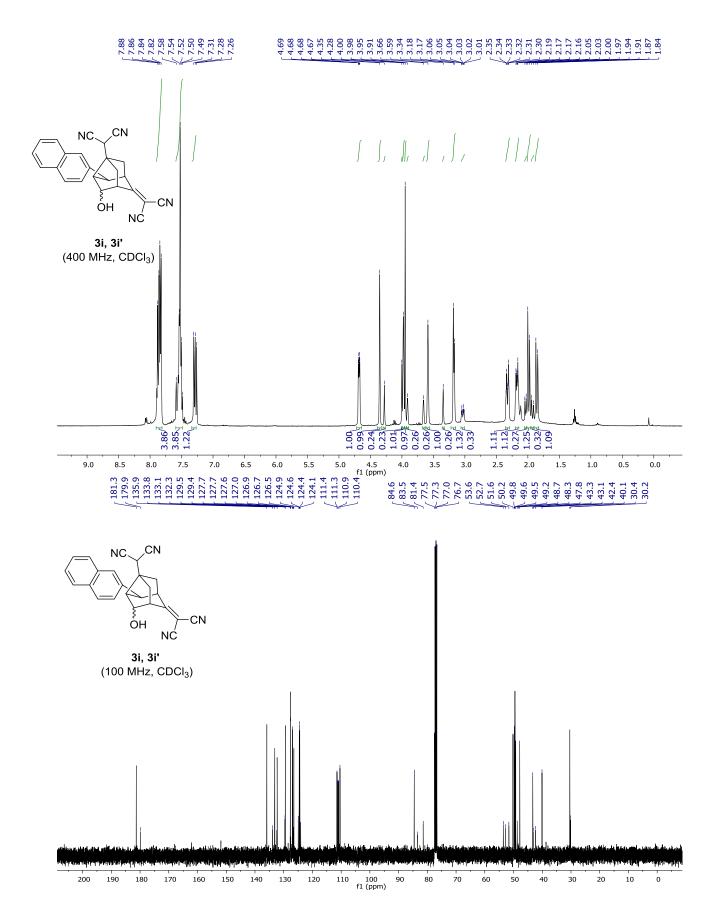


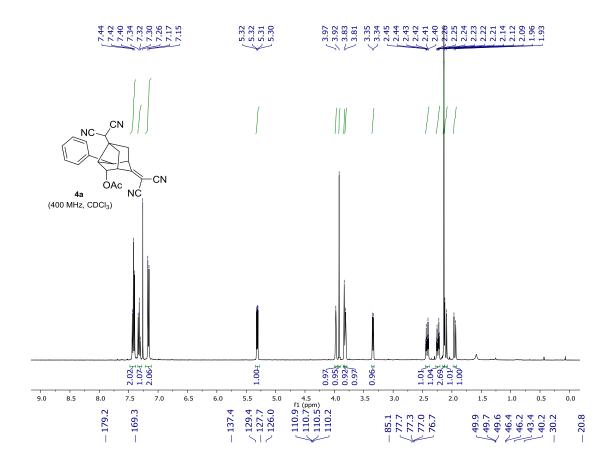


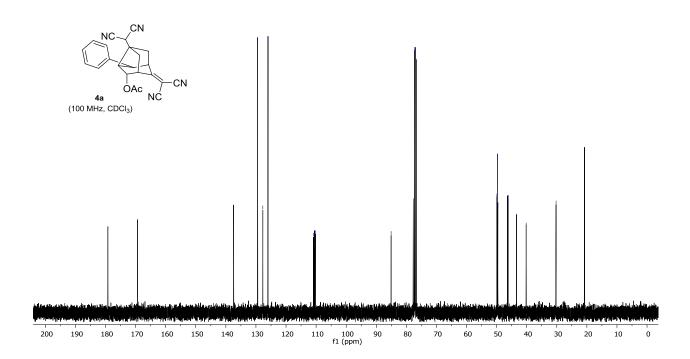


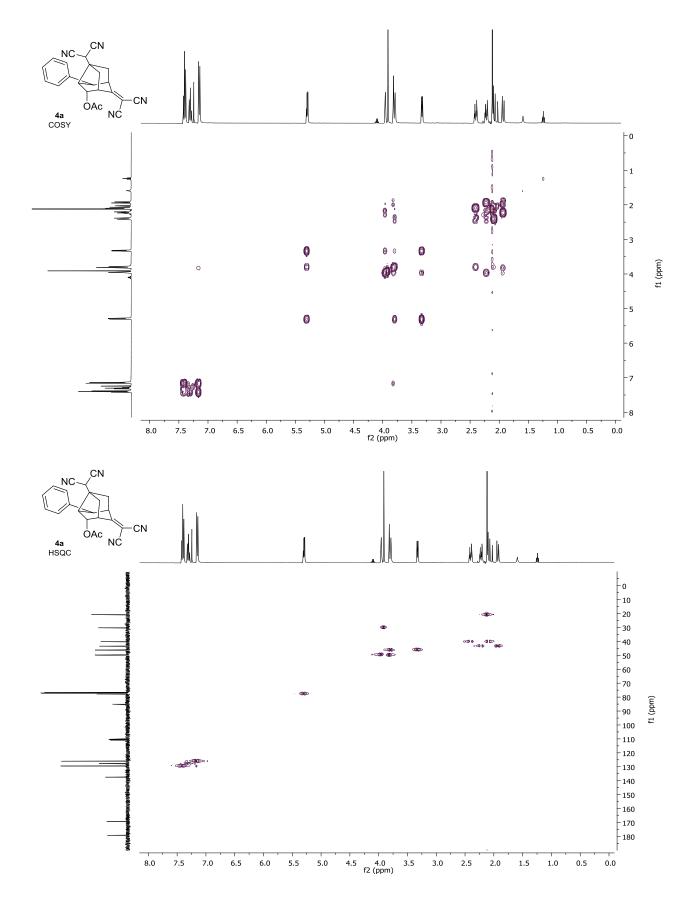


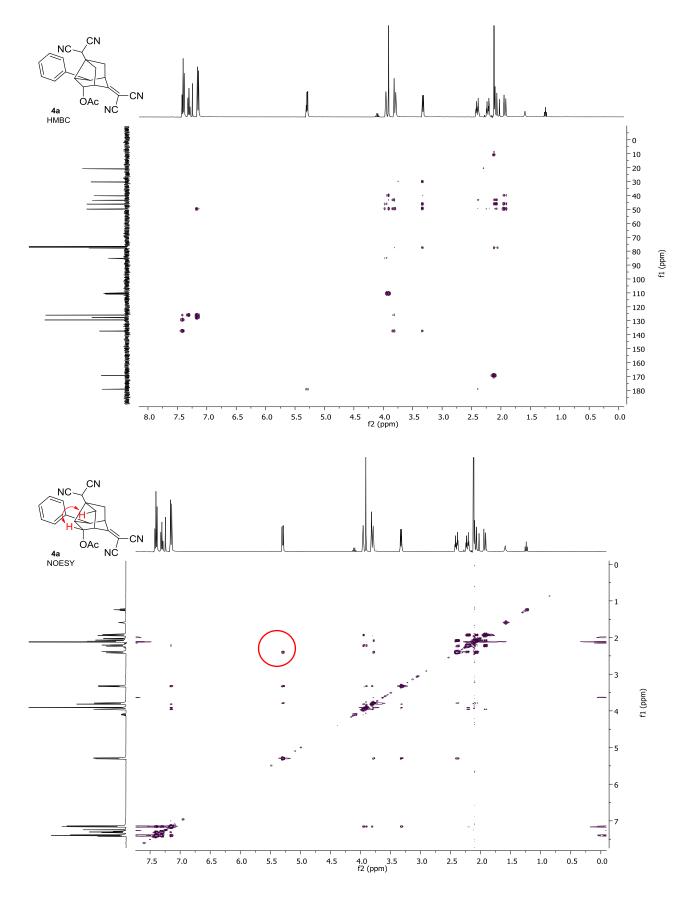


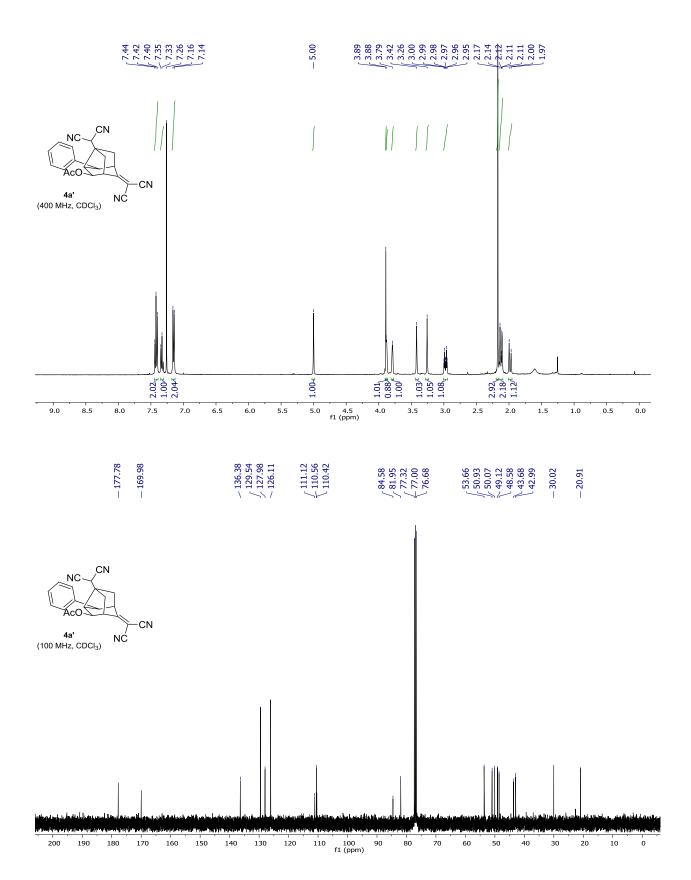


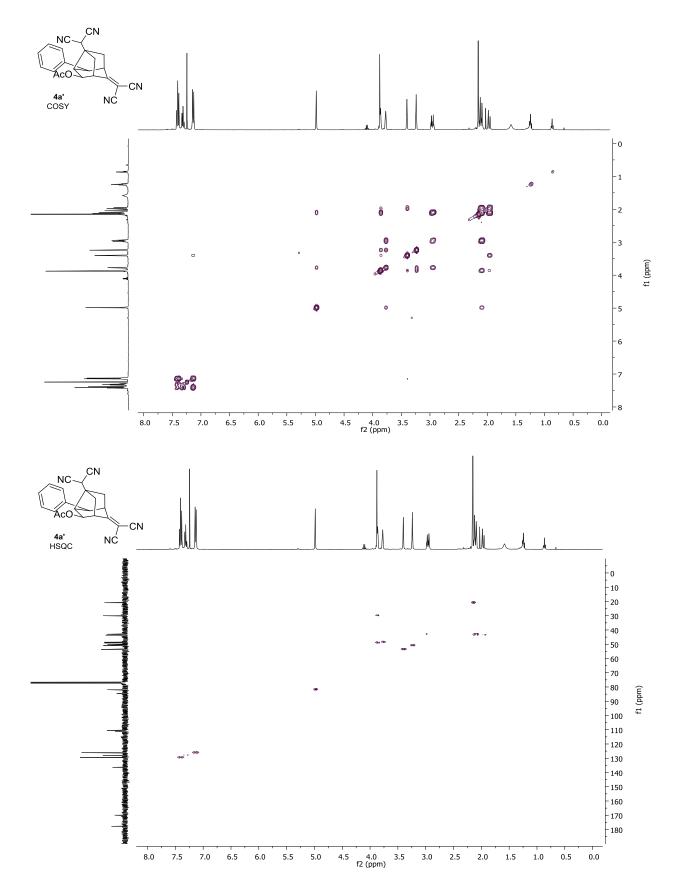


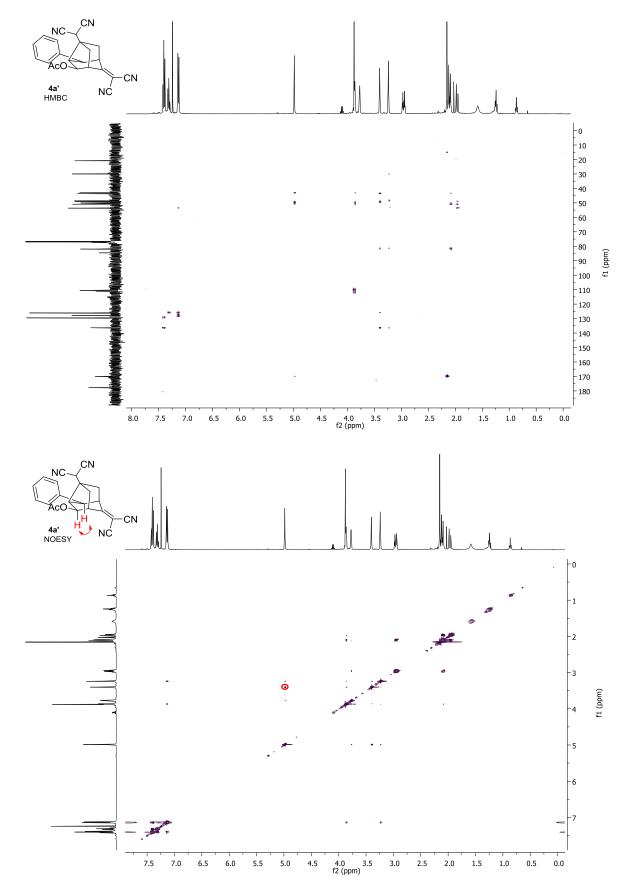


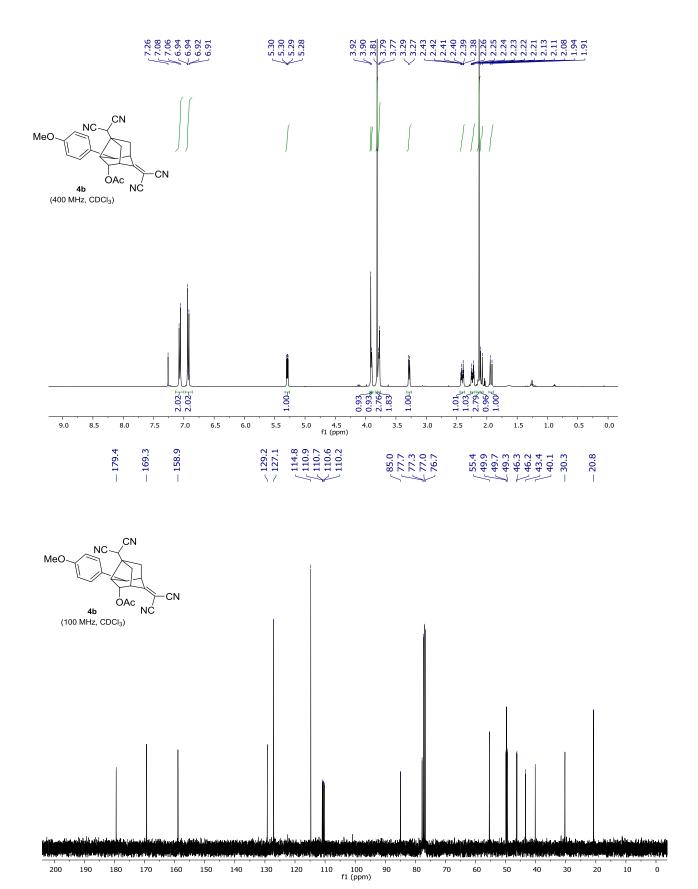


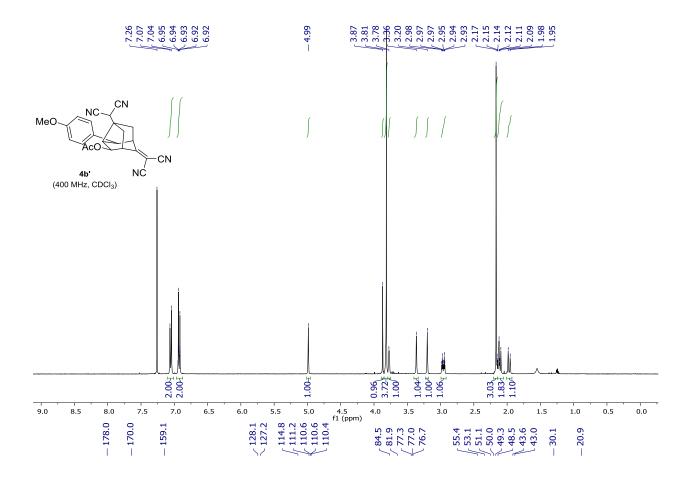


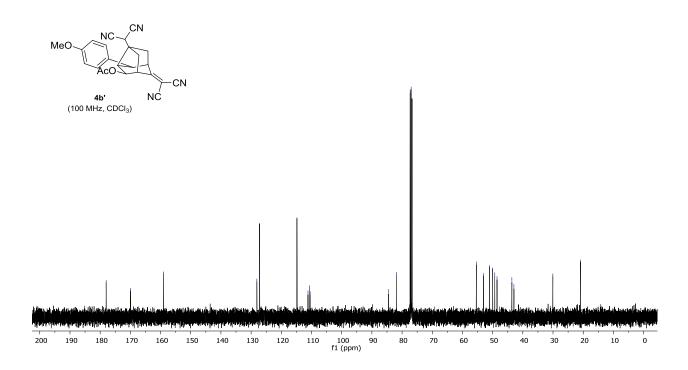


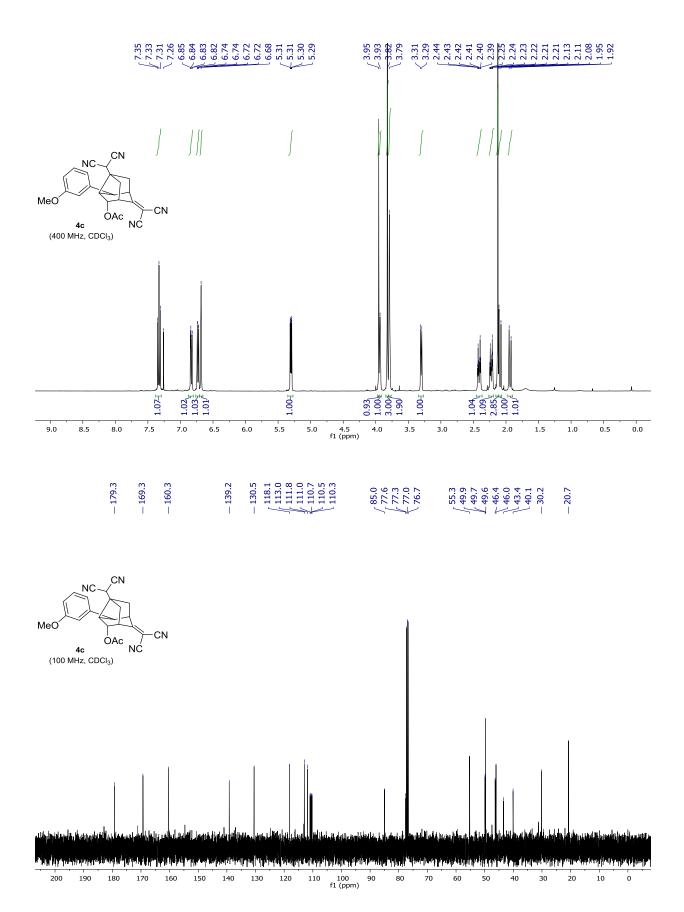


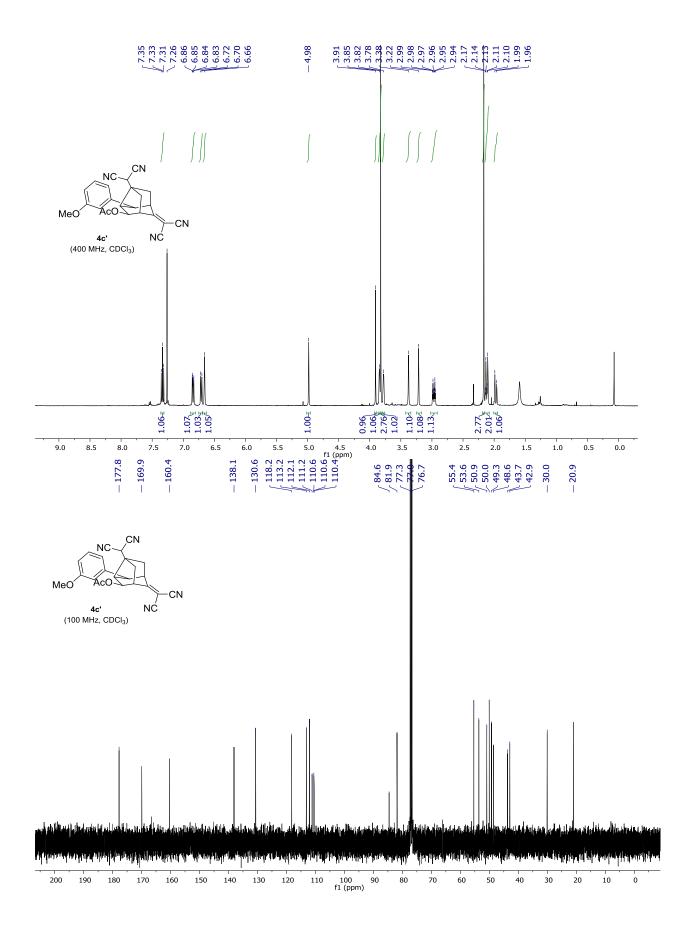


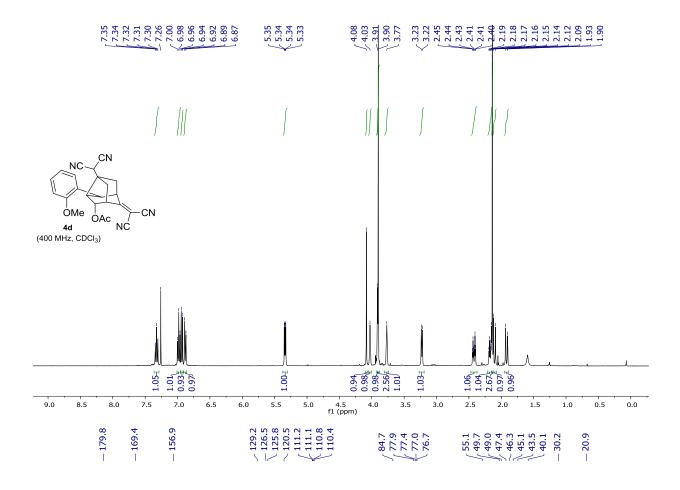


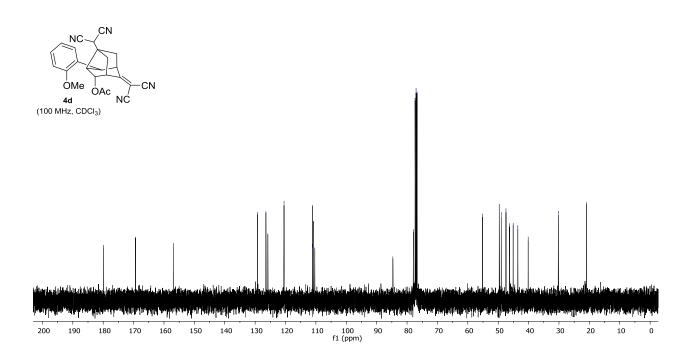


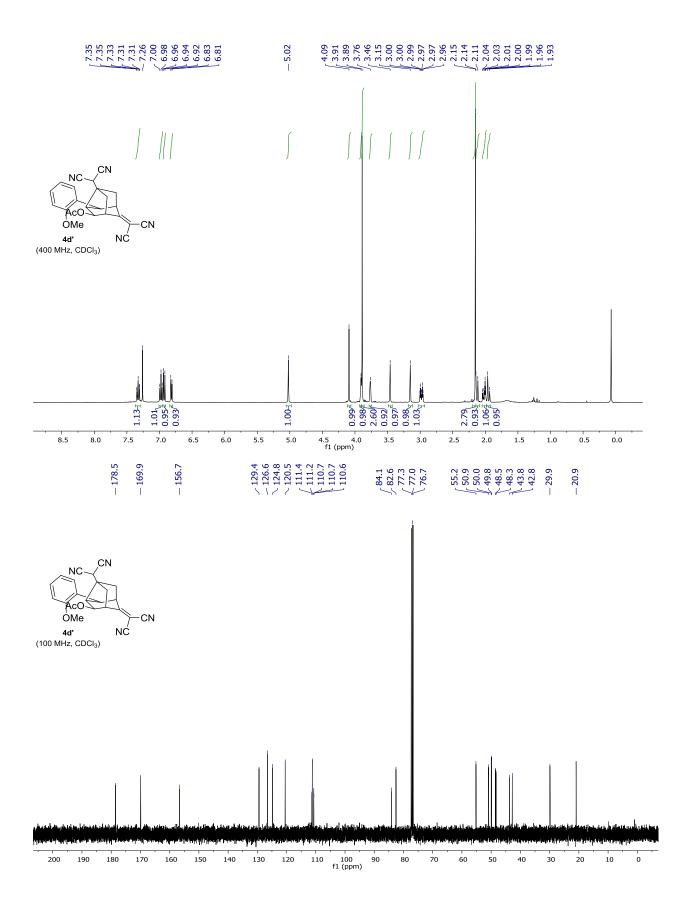


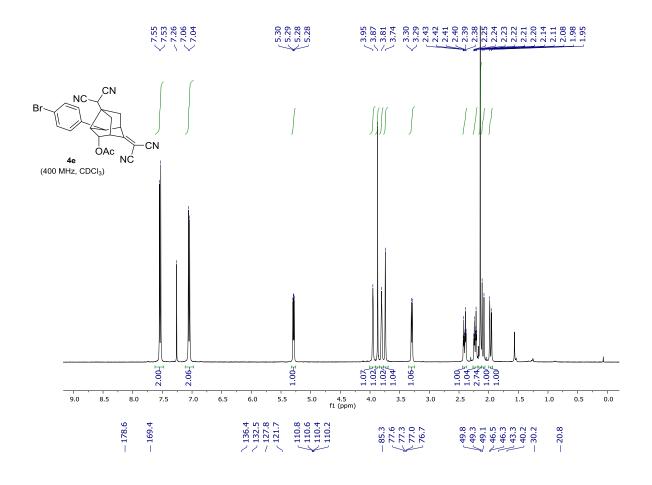


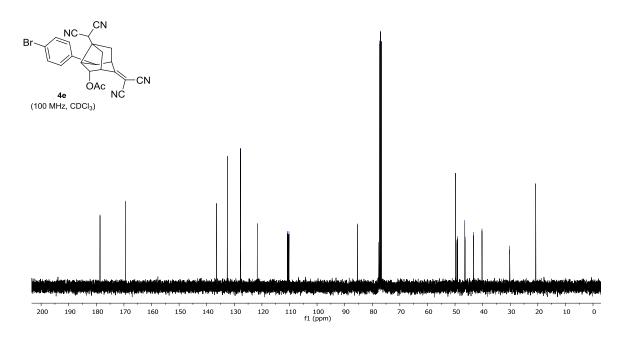


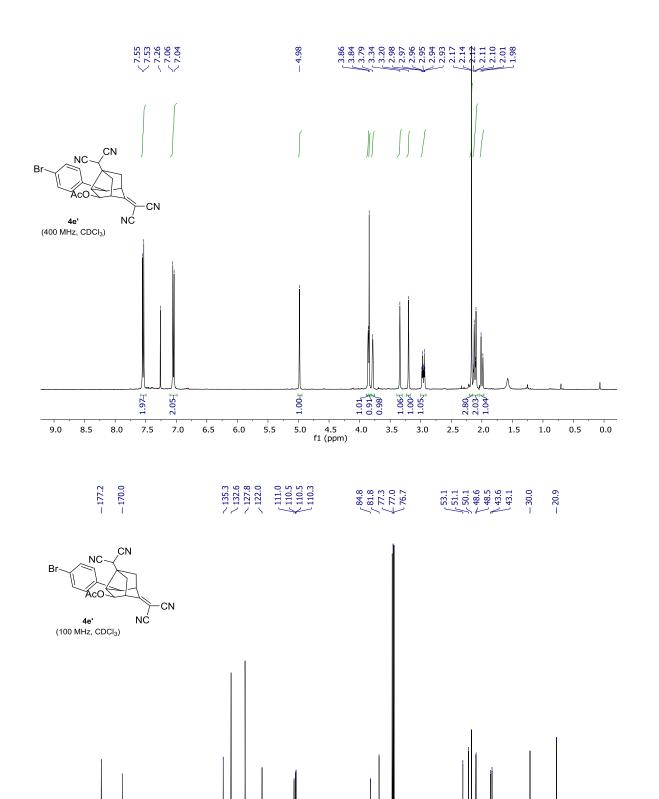


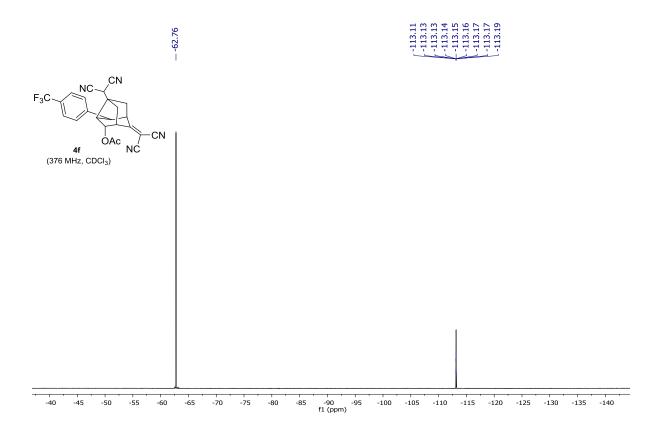


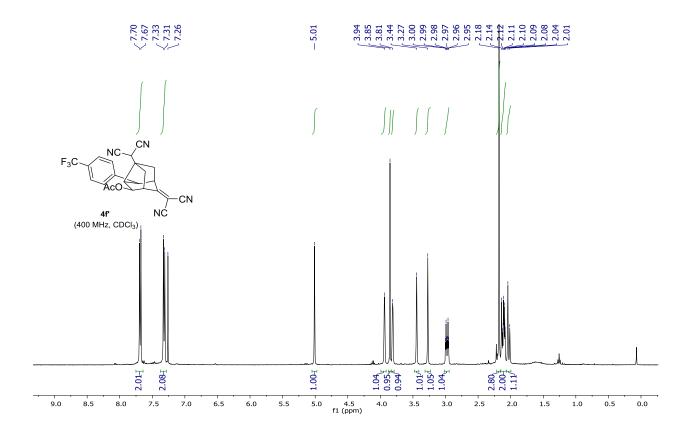


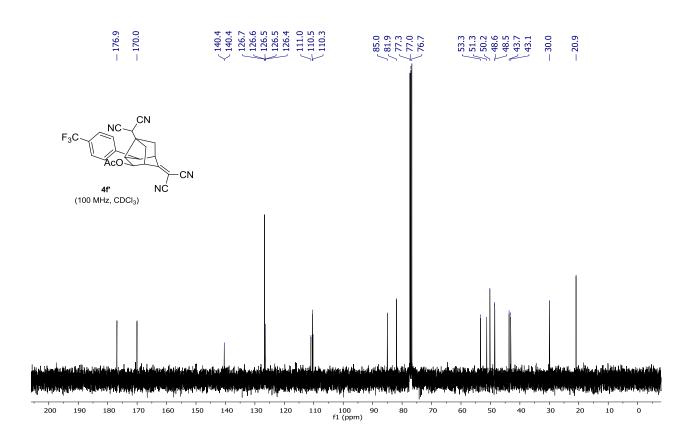


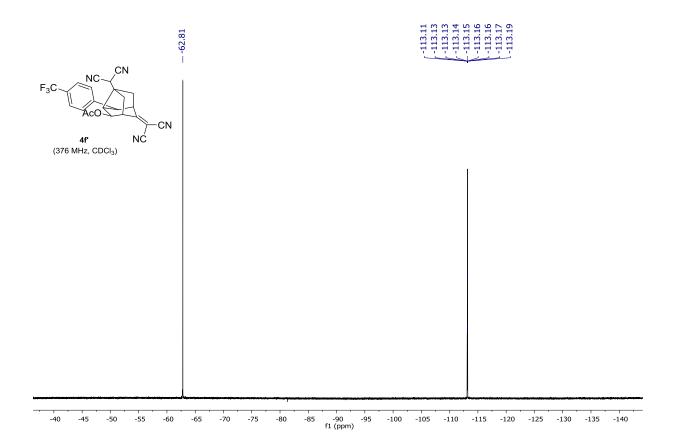


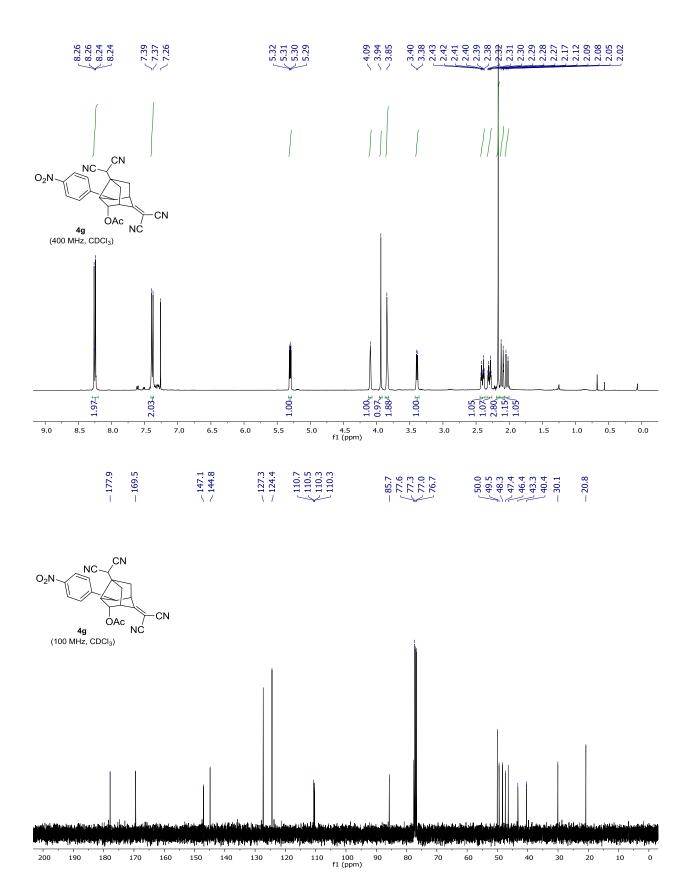


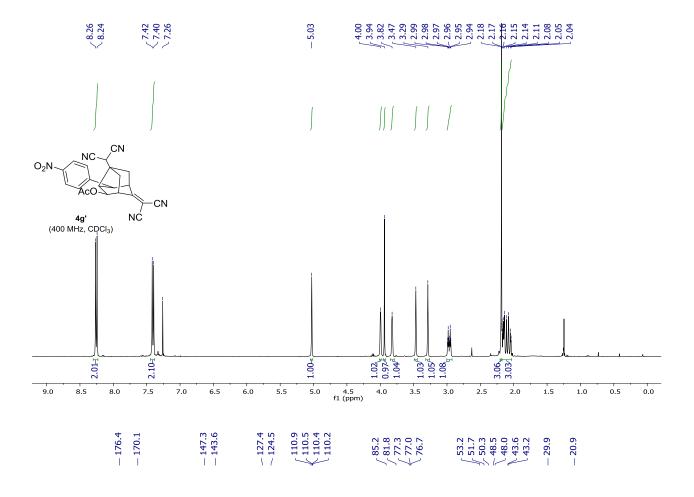


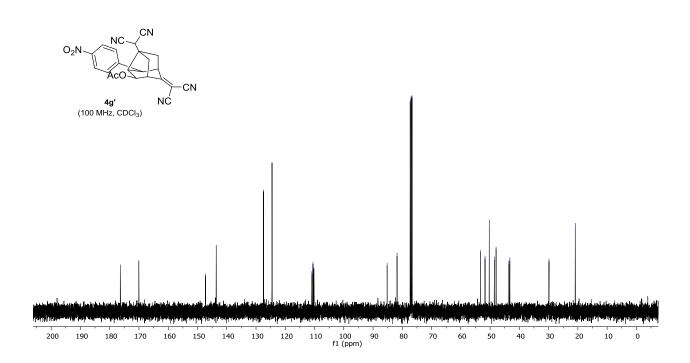

110 100 90 f1 (ppm)

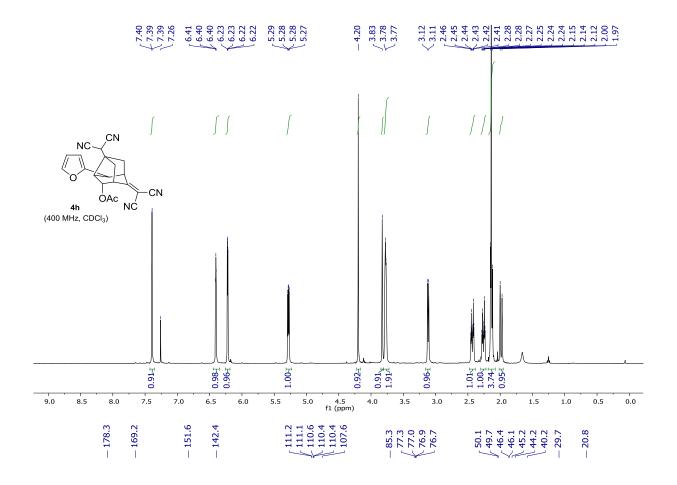

200 190 180 170

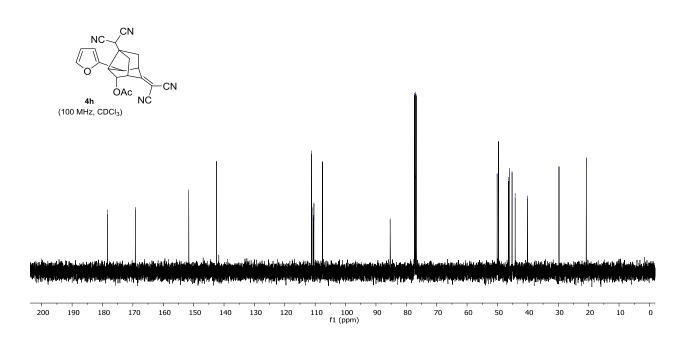

160 150 140 130

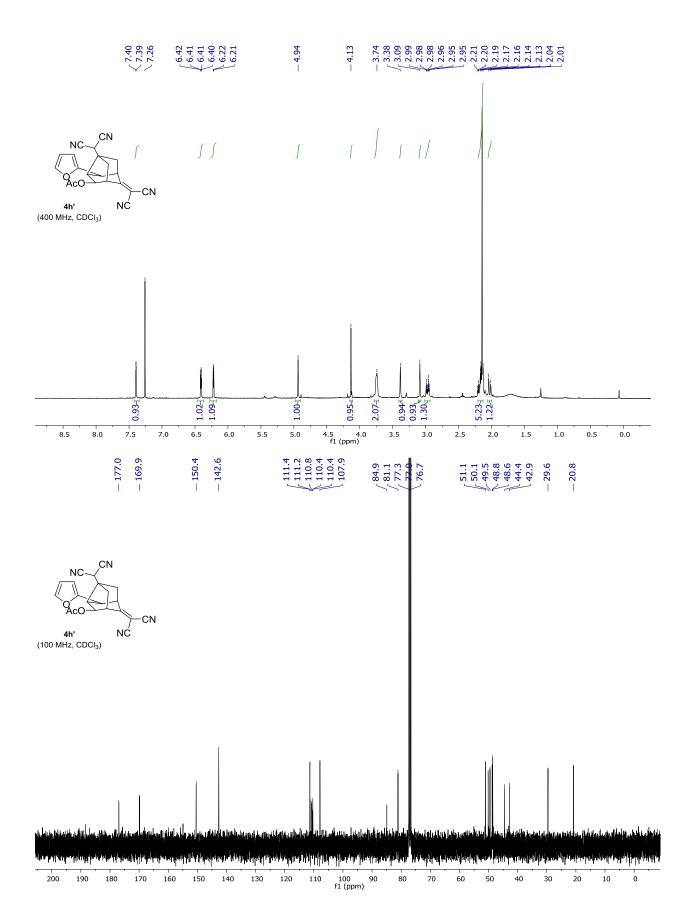


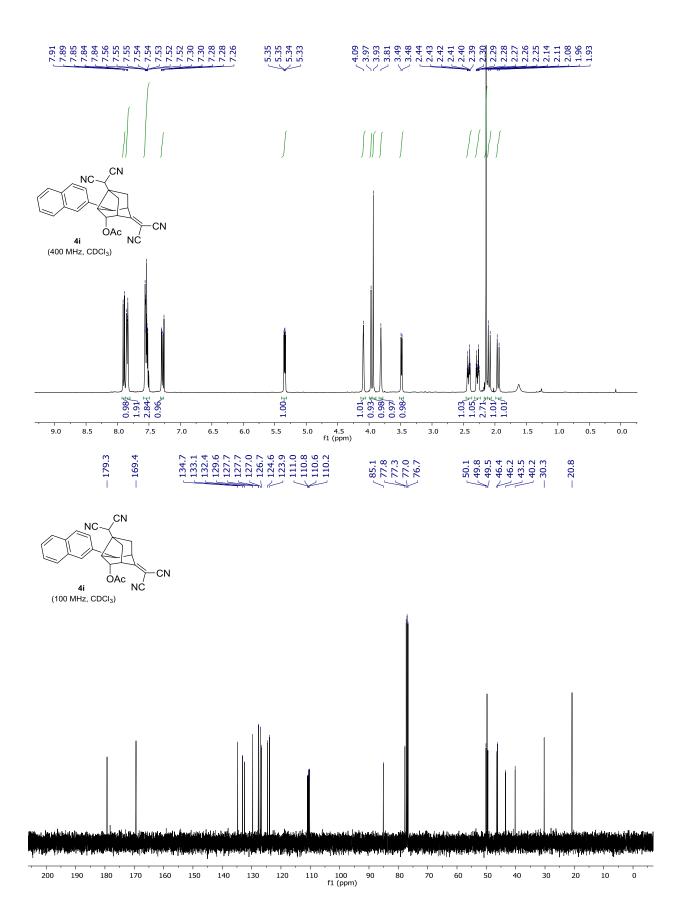


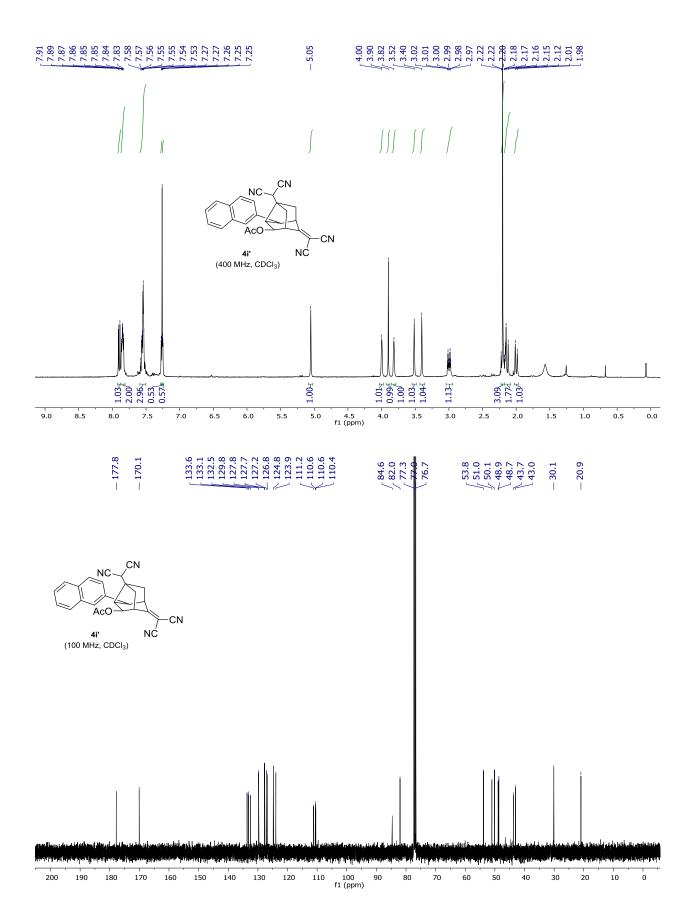


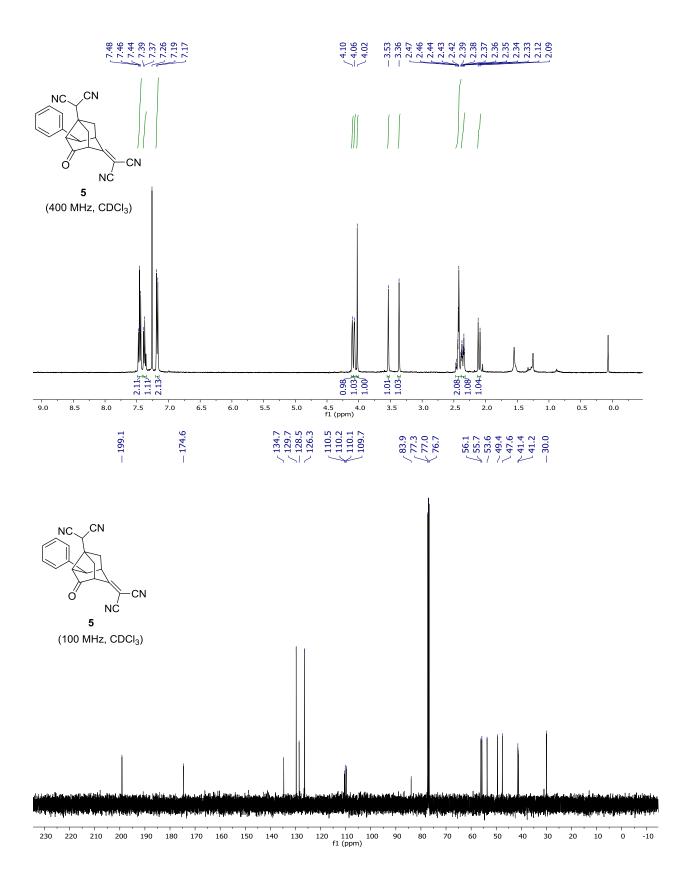


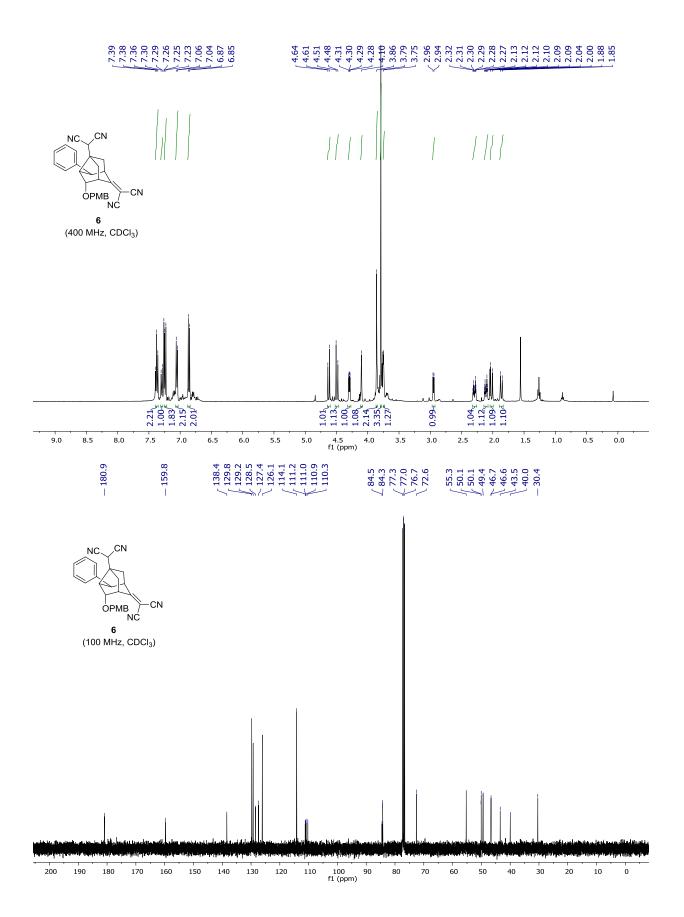


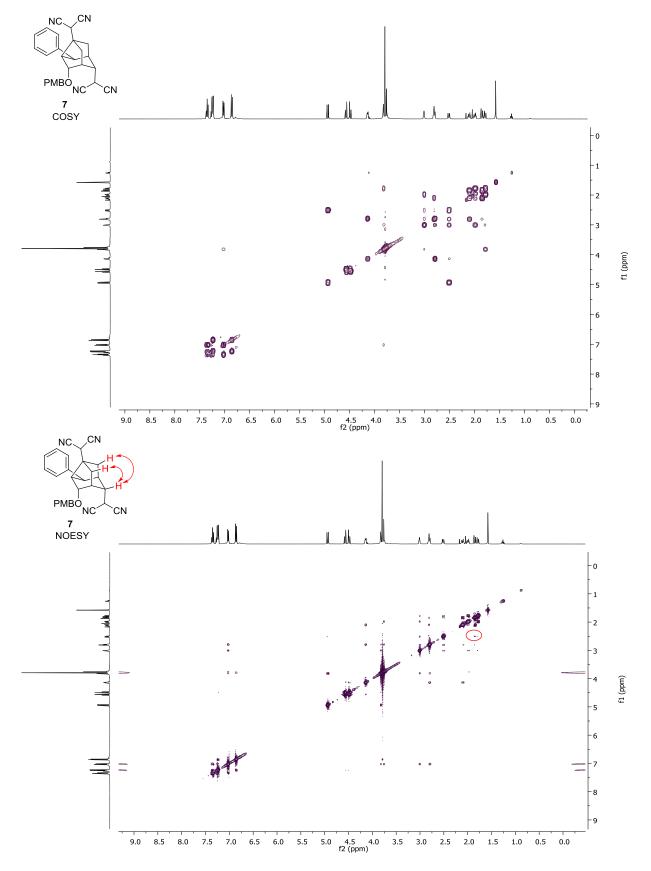


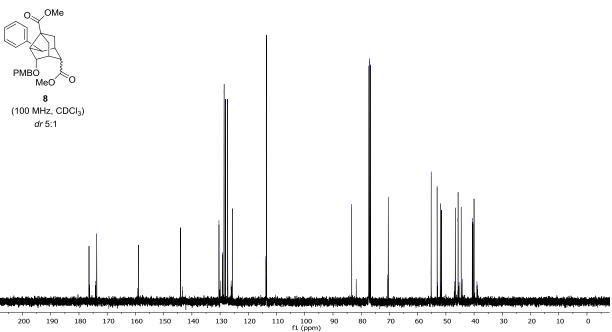


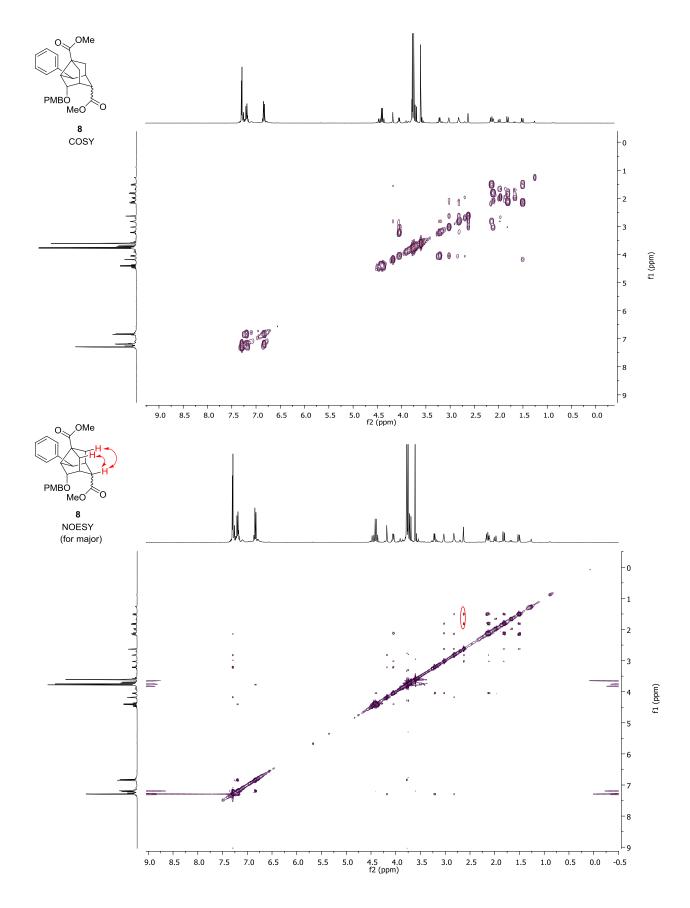


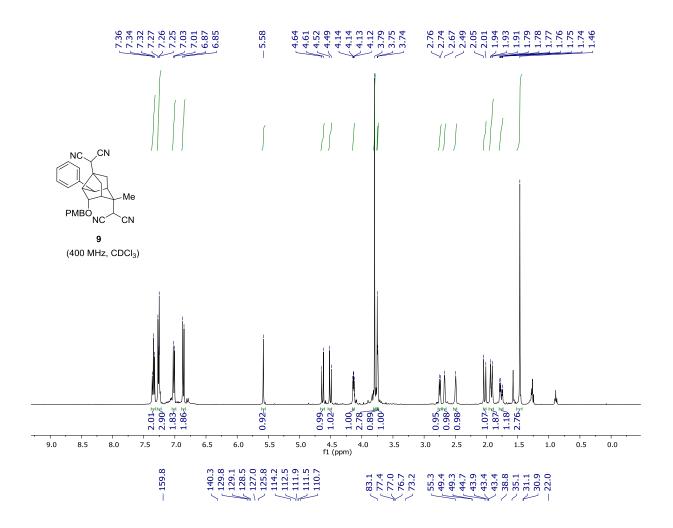


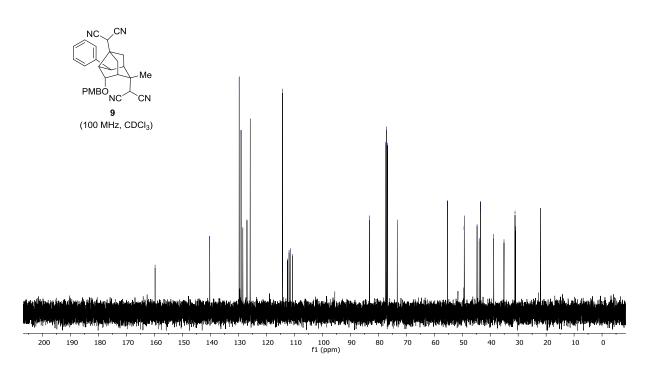


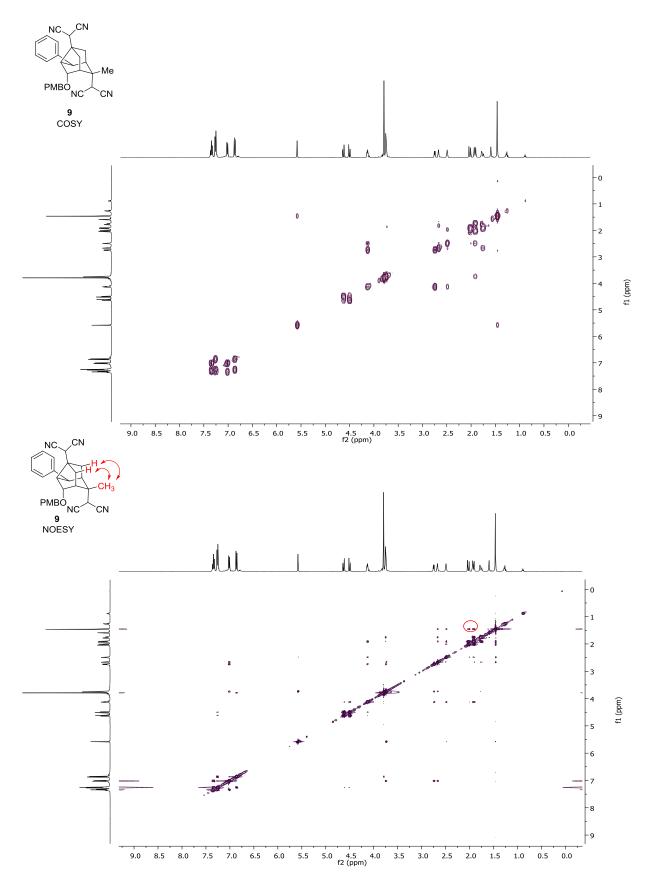


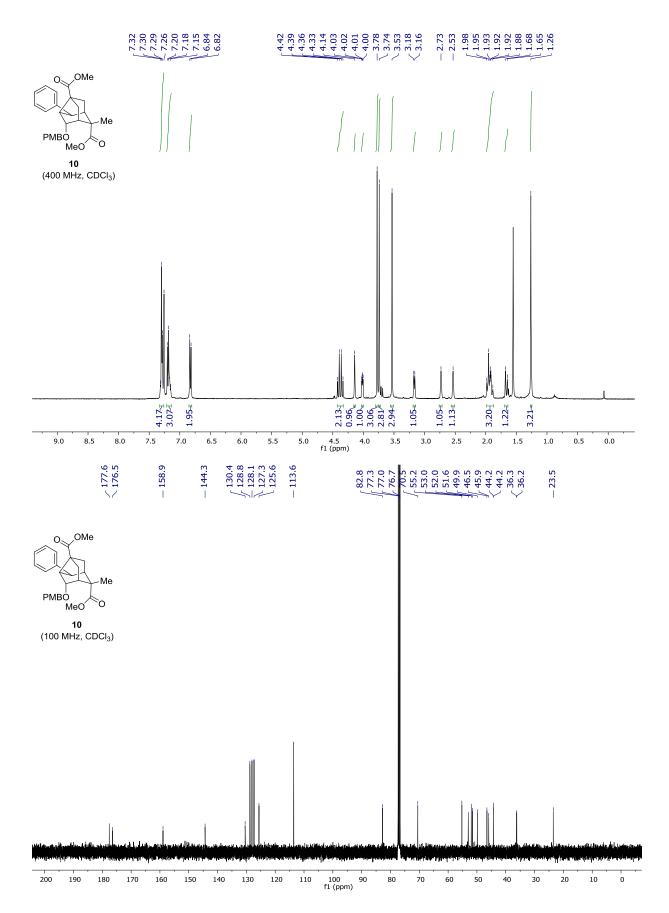


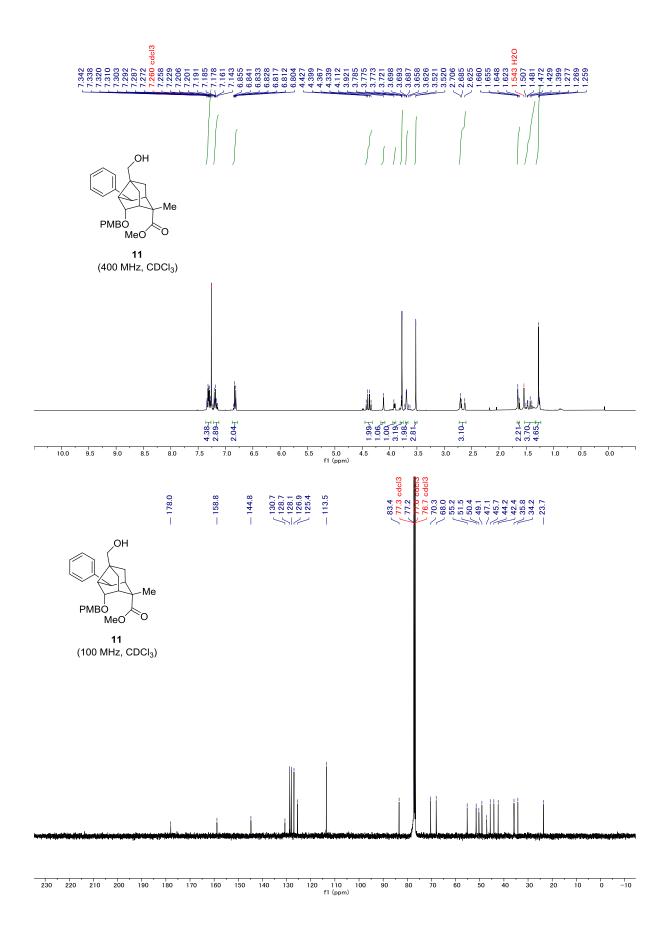


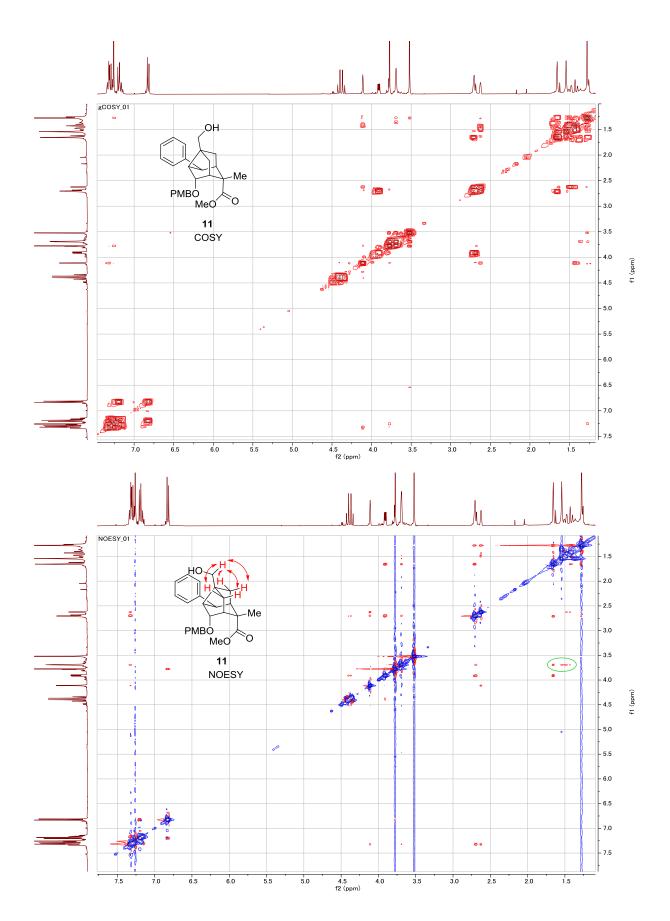


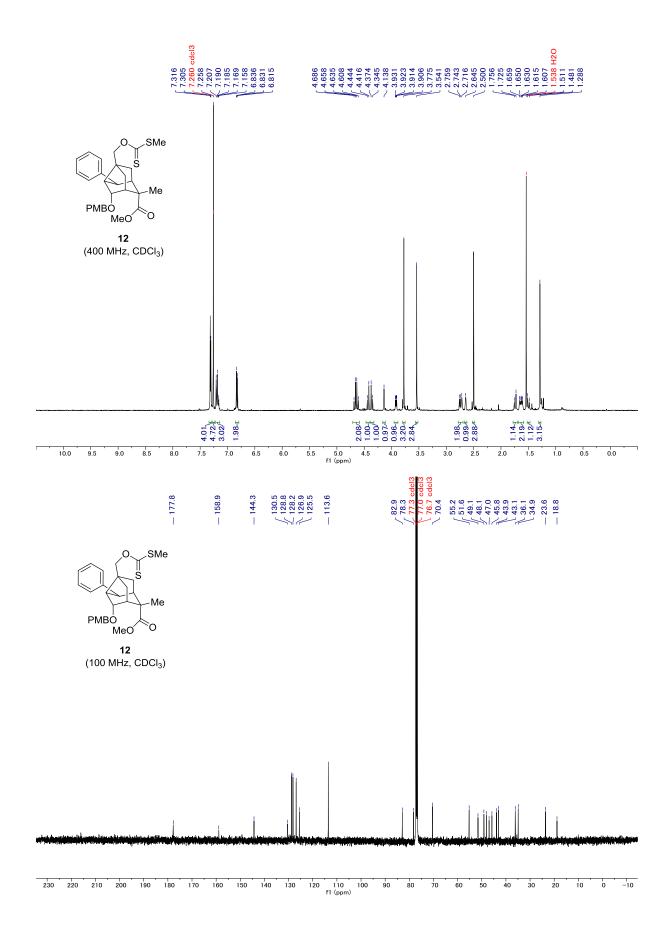


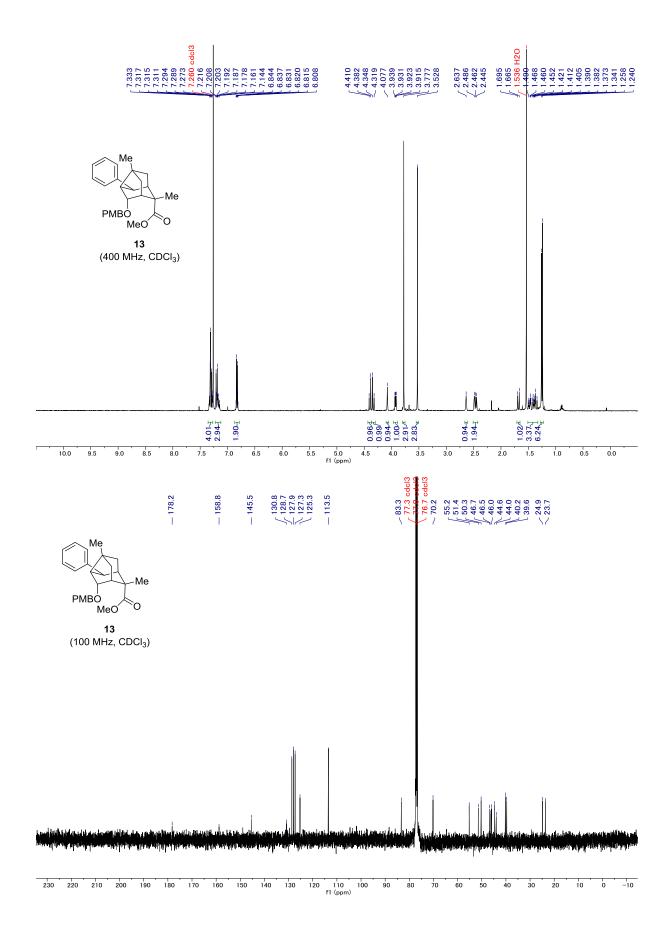


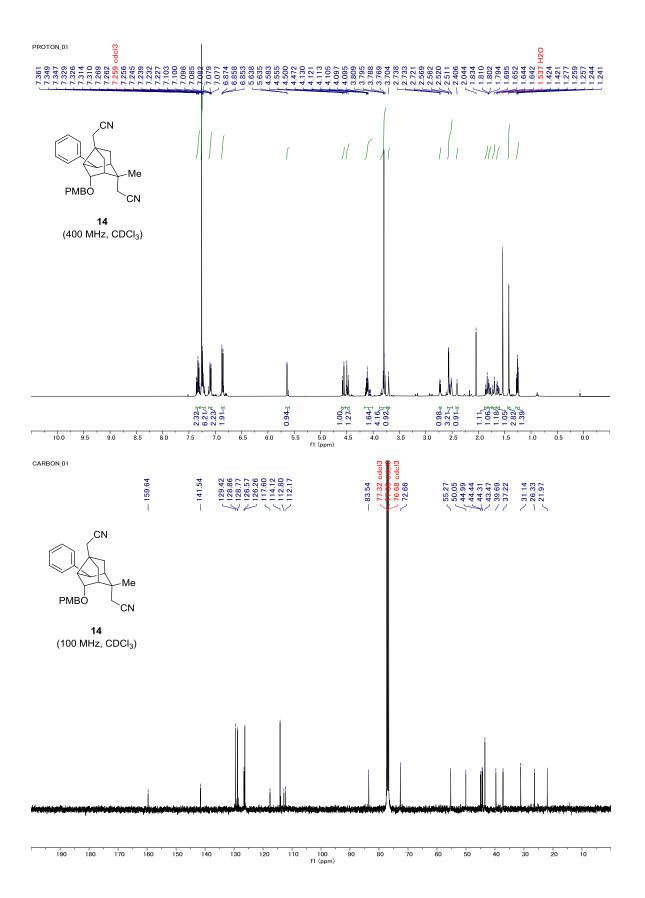


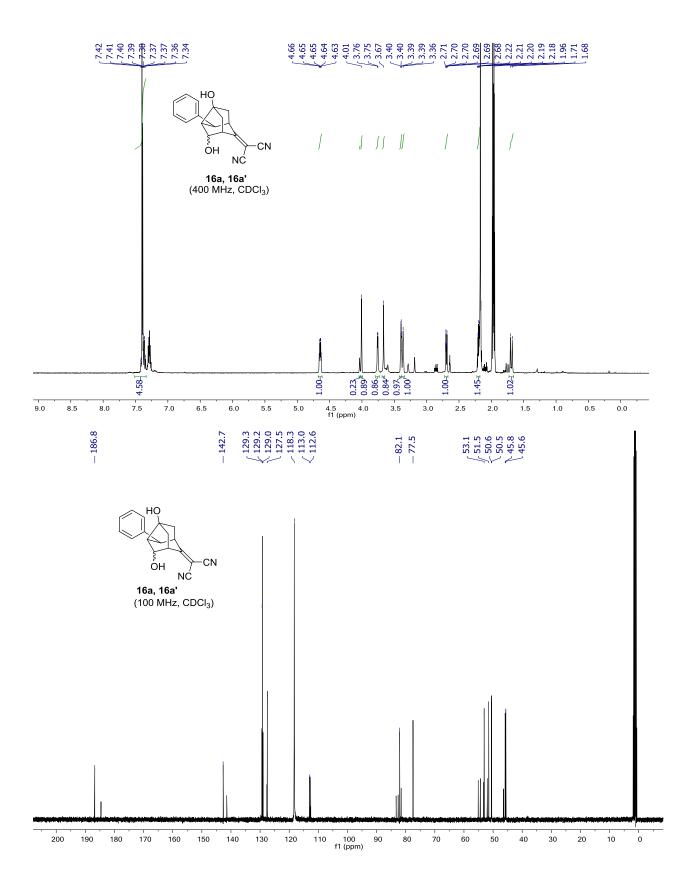


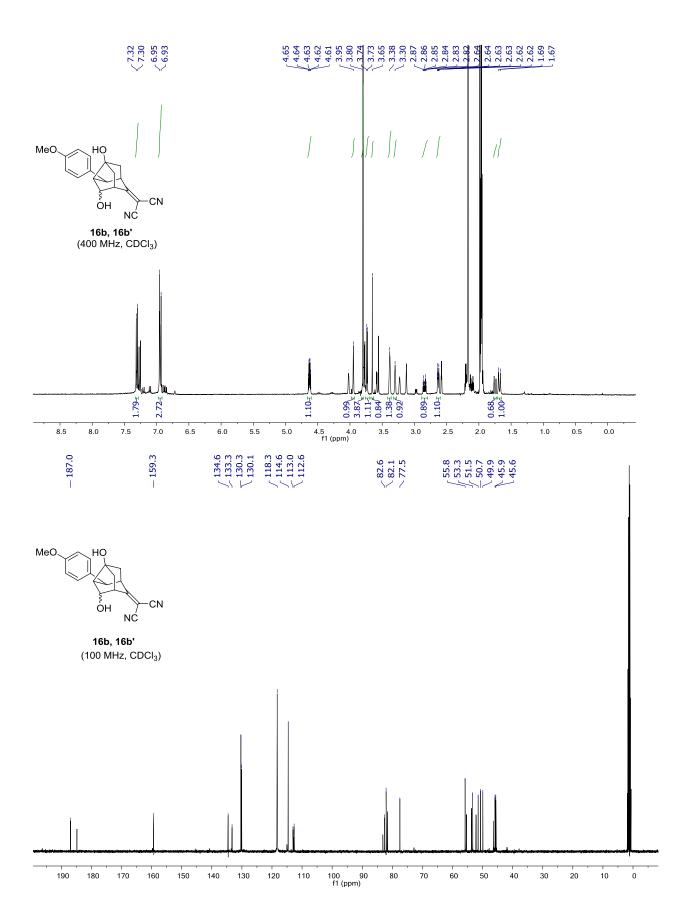


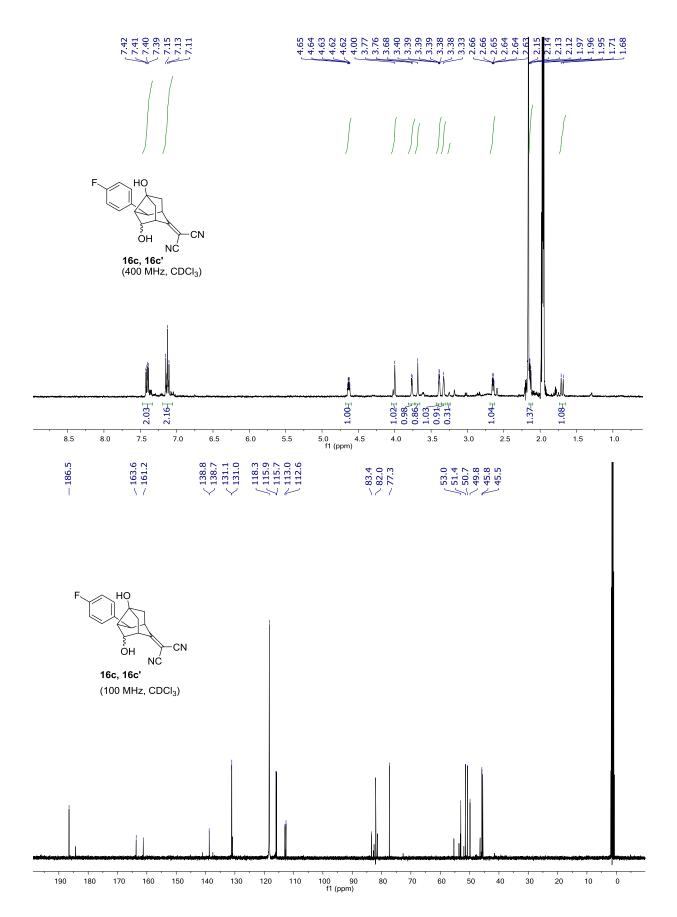


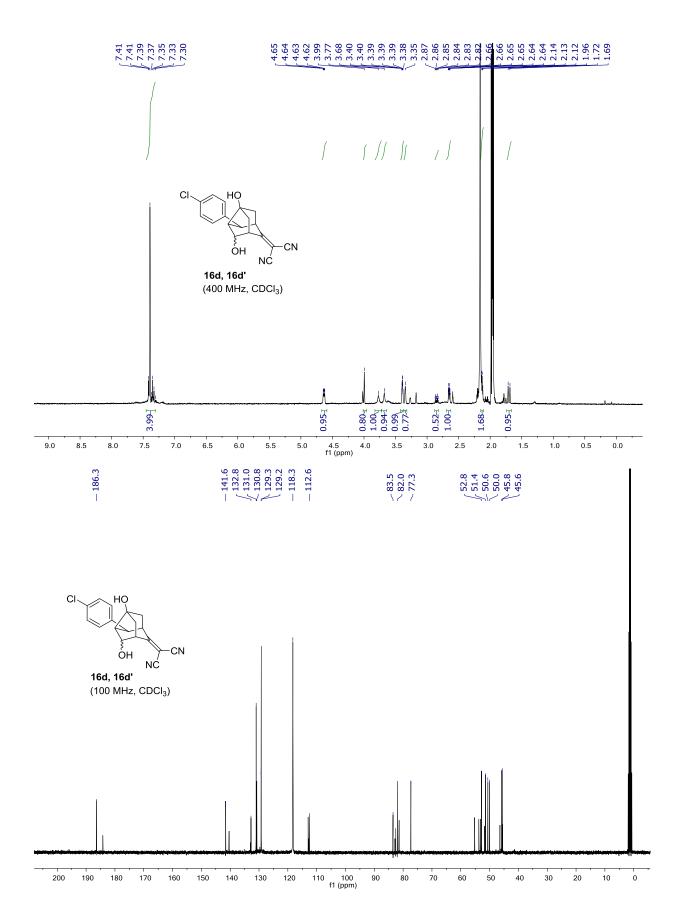


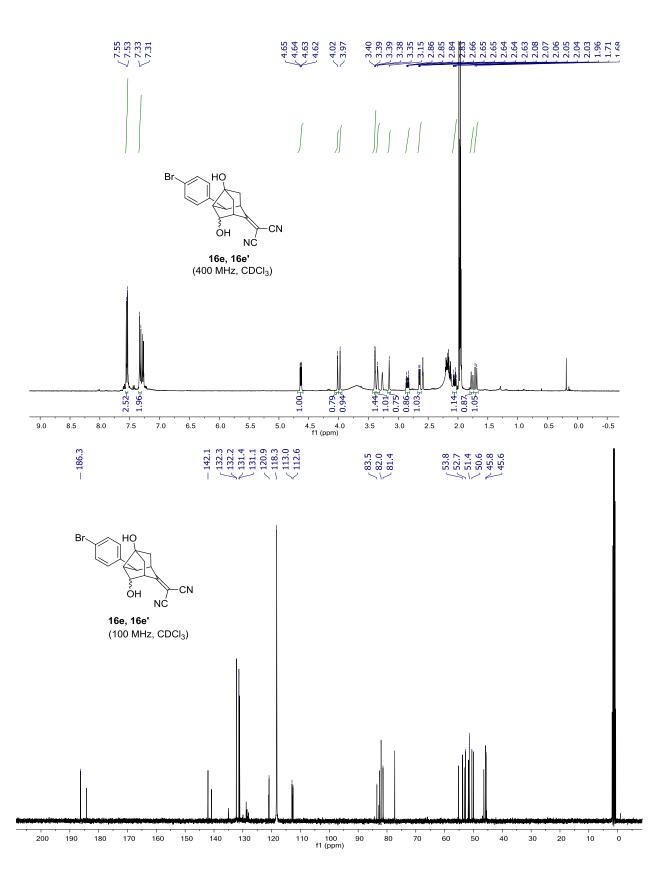


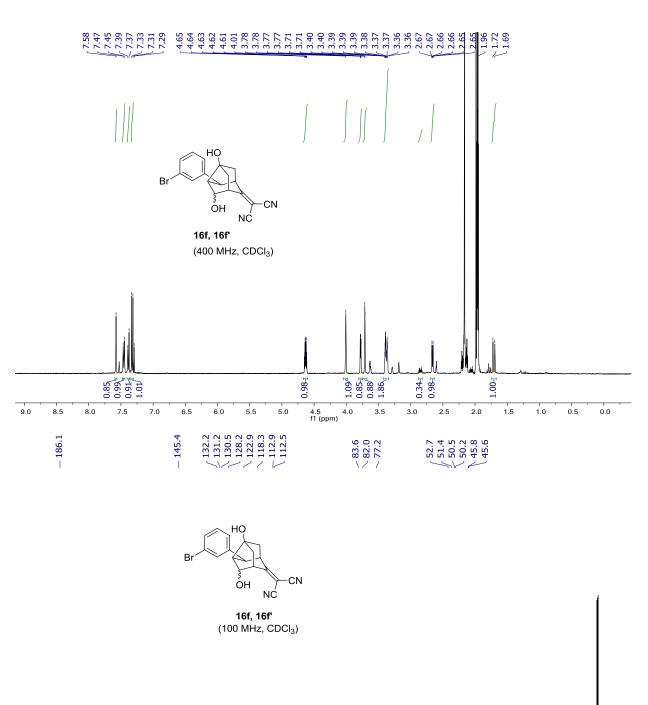


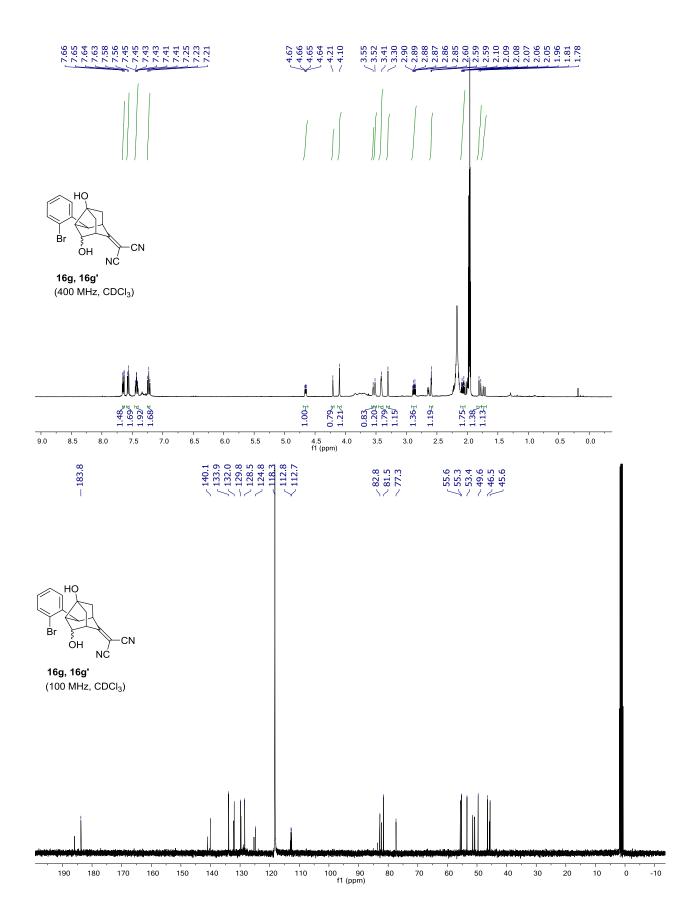


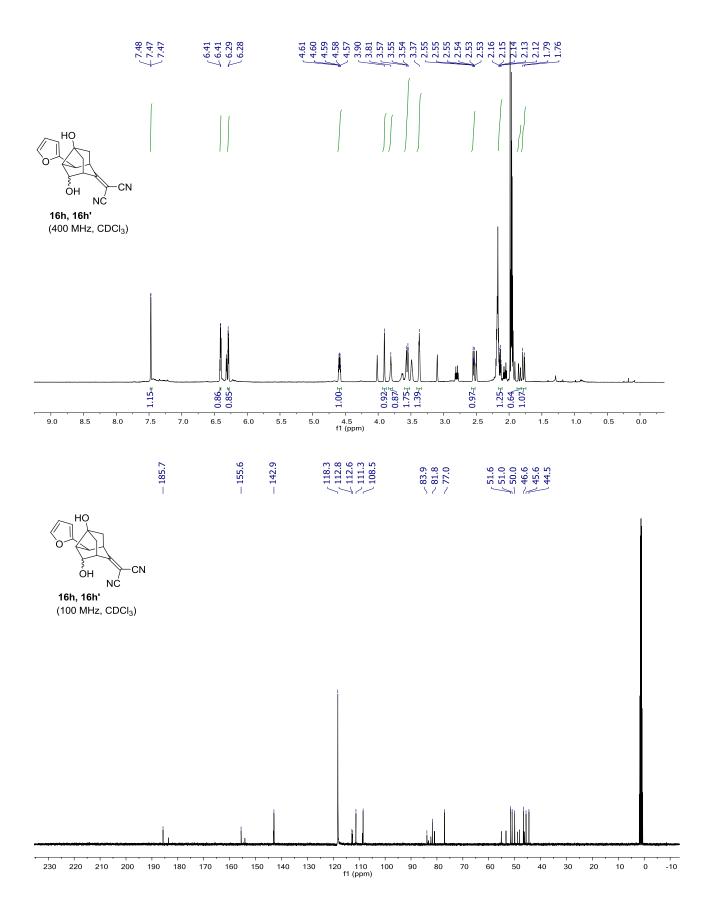


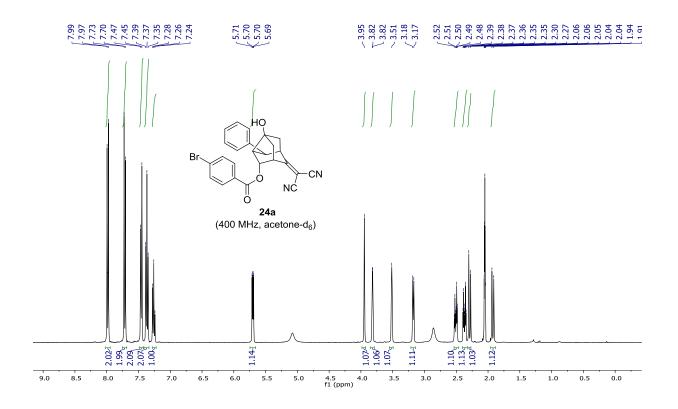


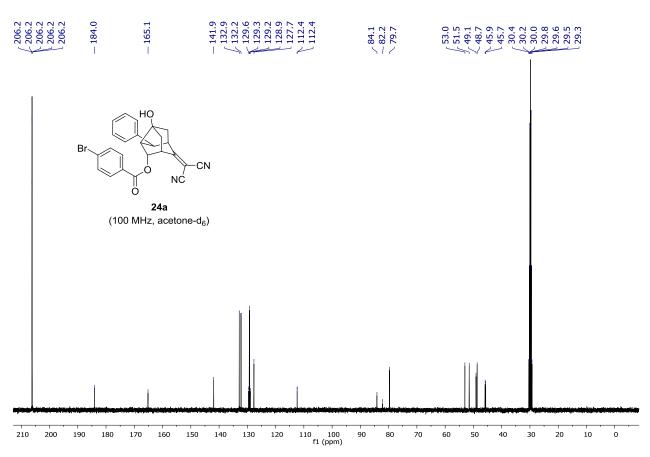


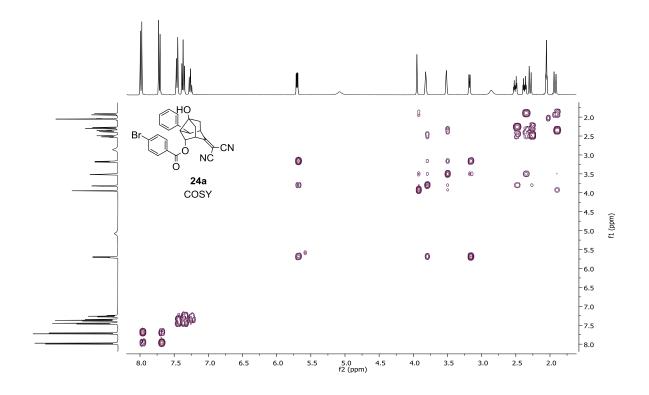


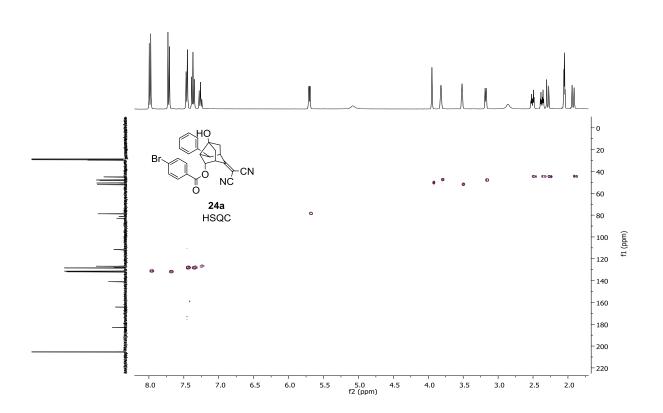


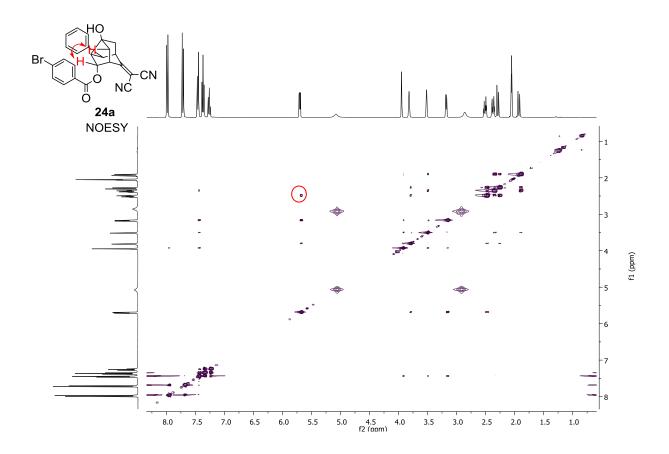


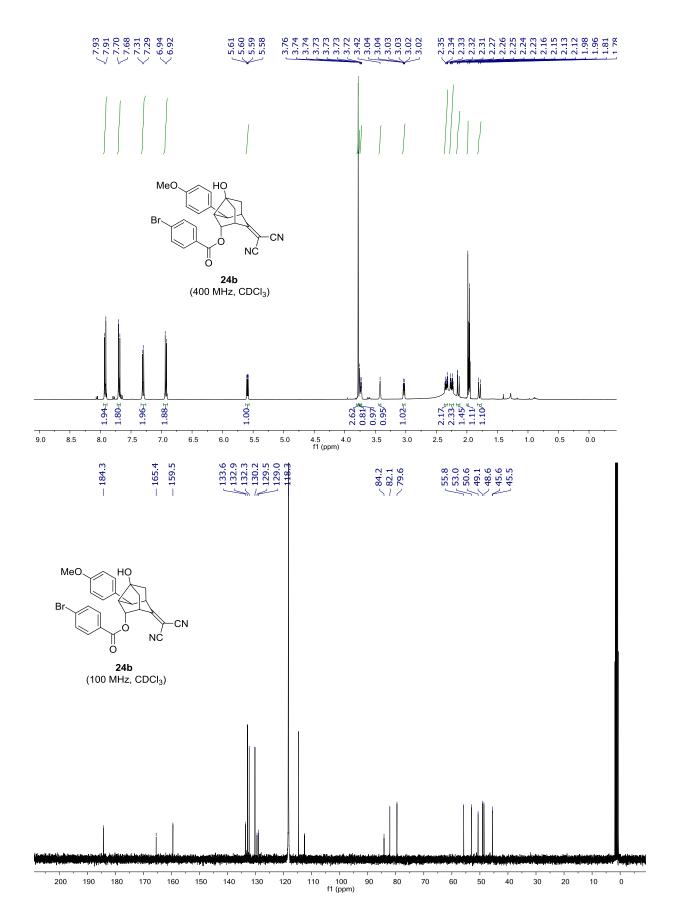


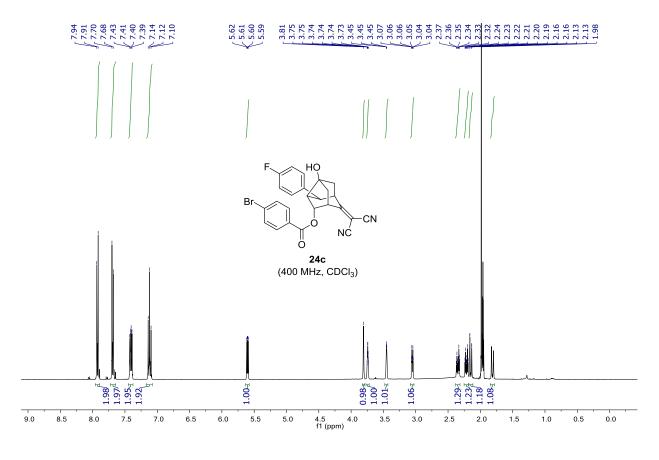


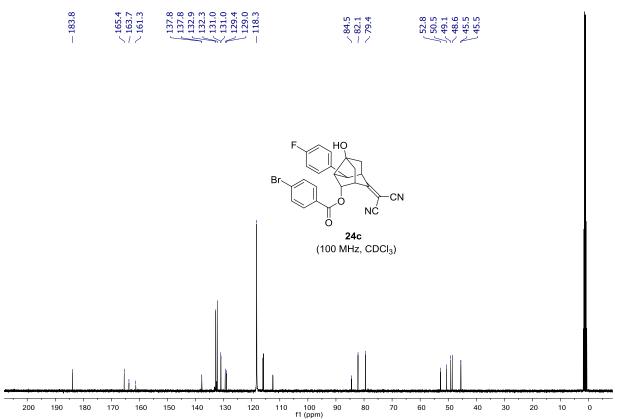


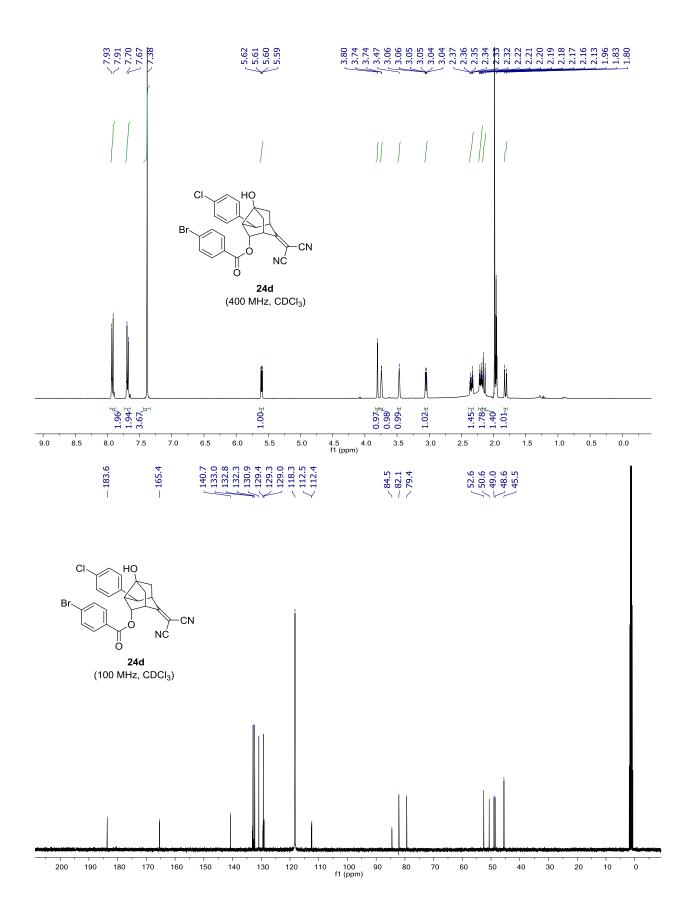


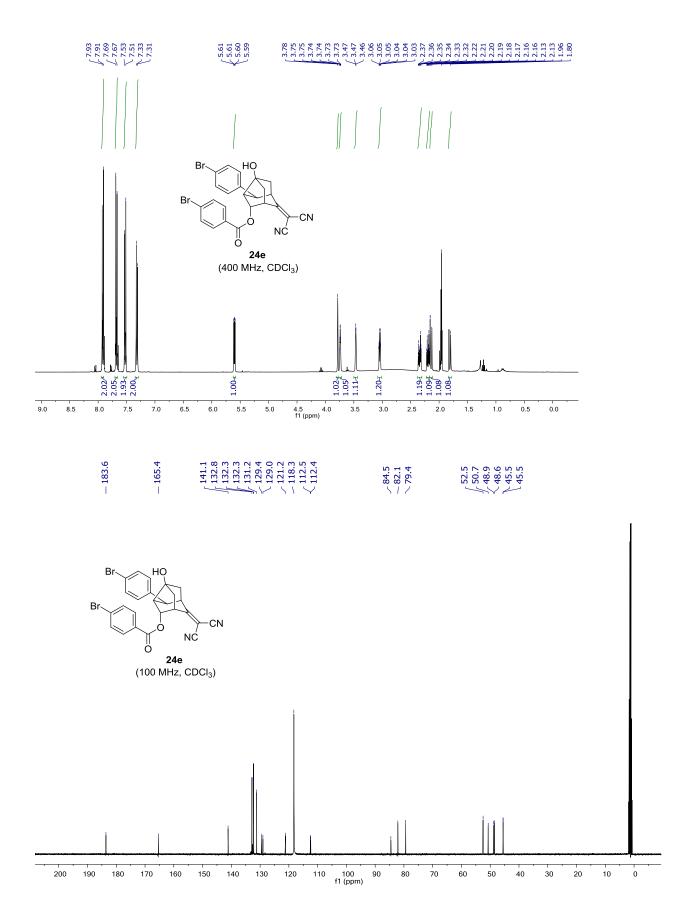


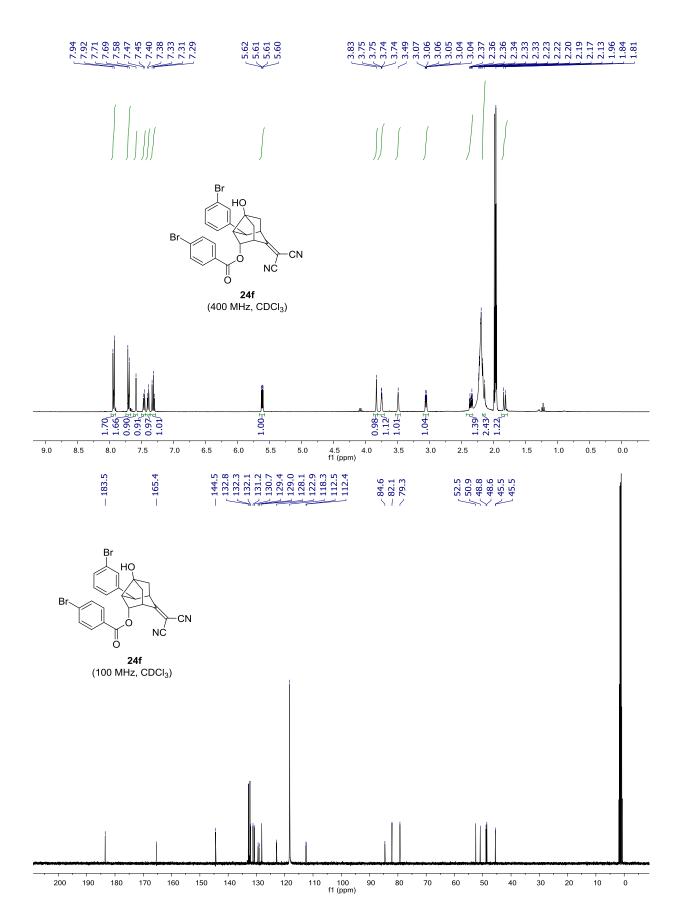


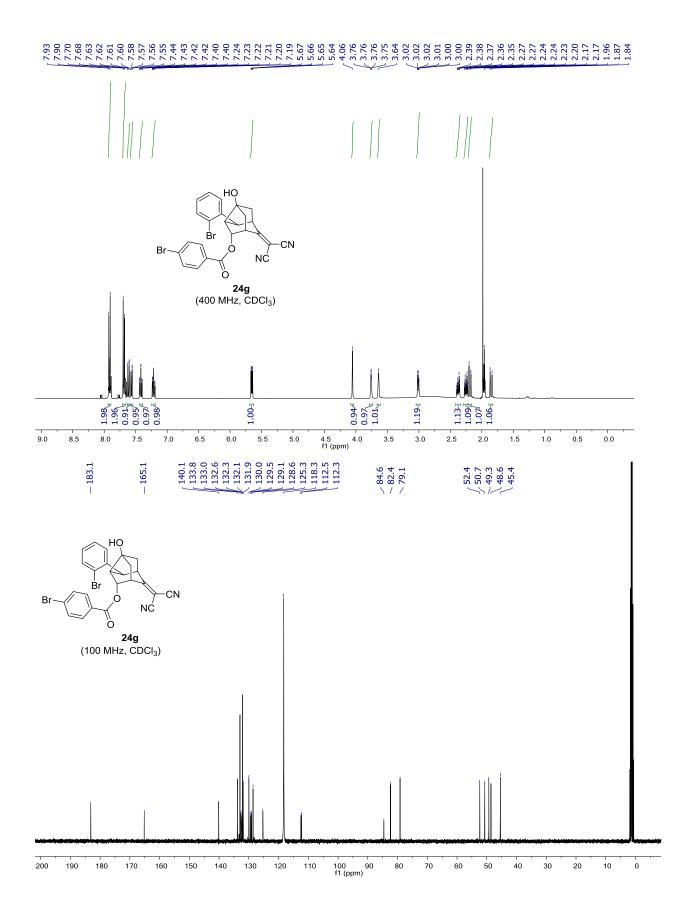


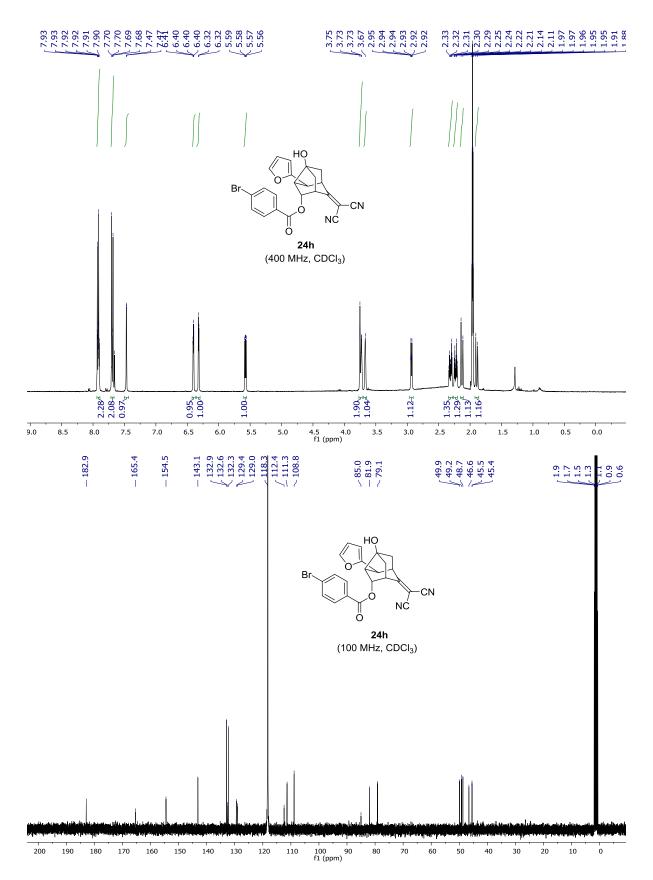


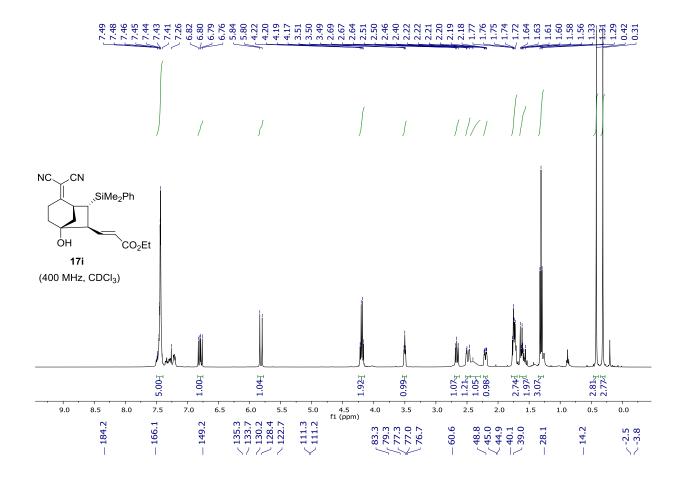


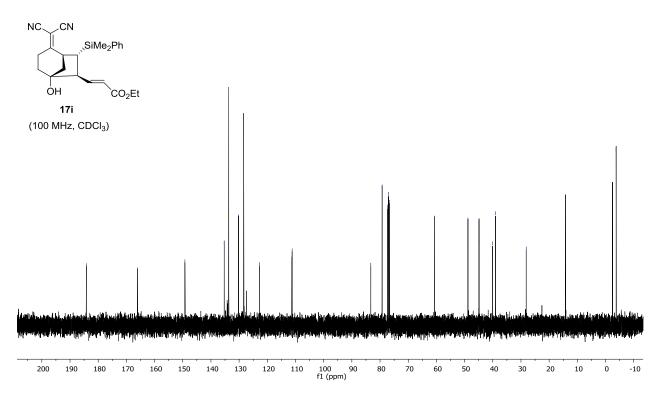


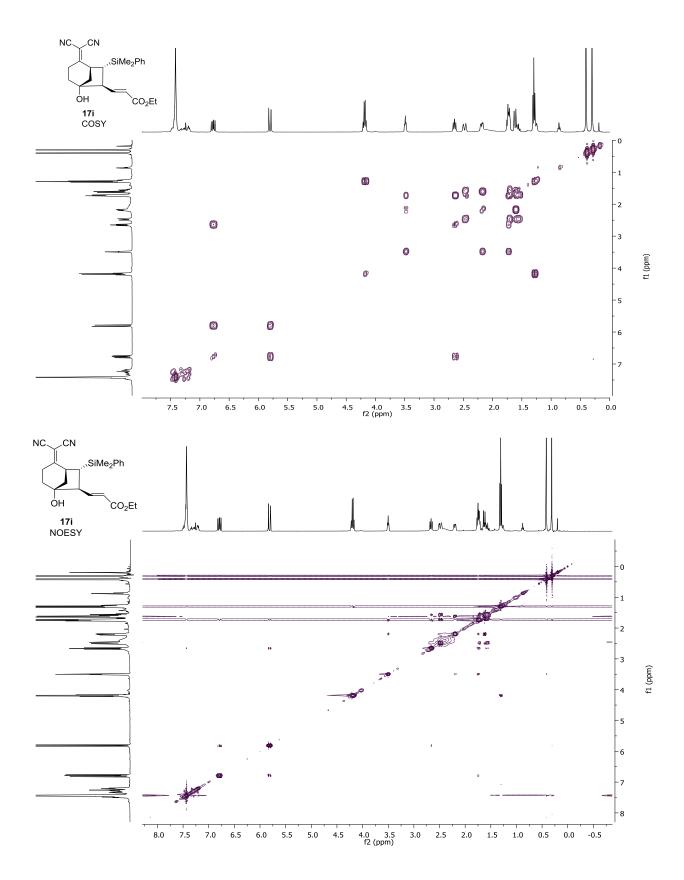


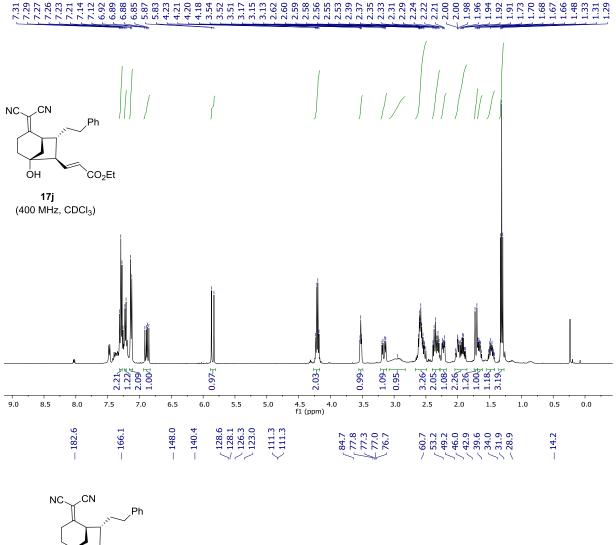


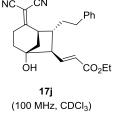


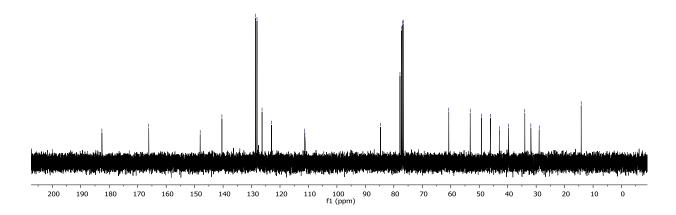


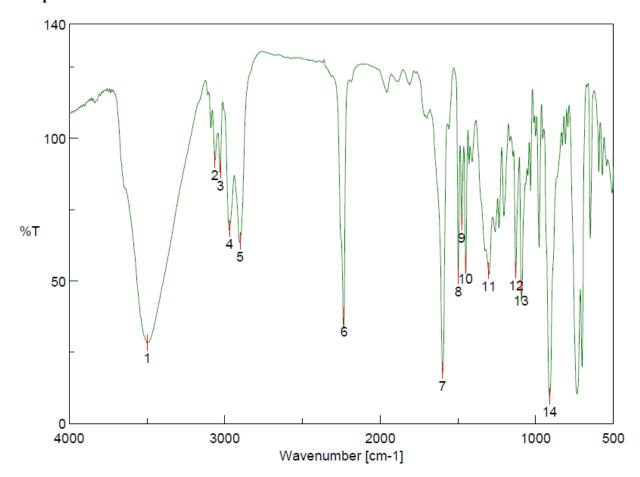


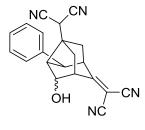




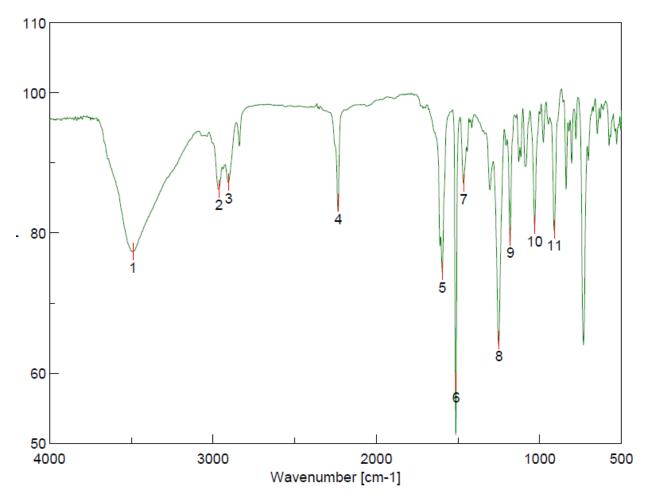




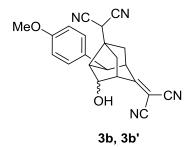


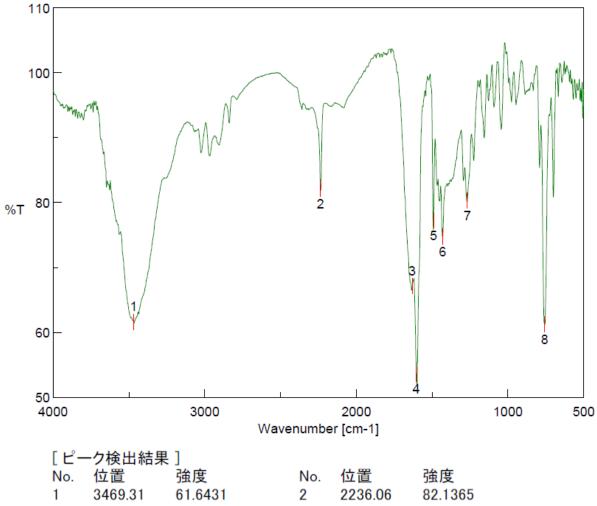


6. IR spectral data

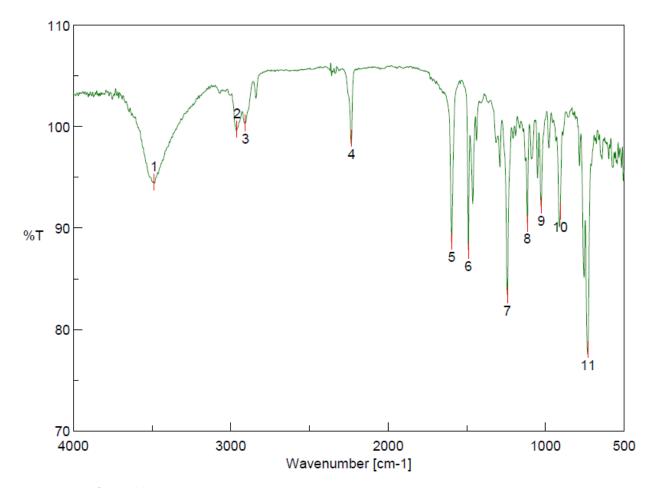


[Ł	ピーク検出結果]
	A A PROPER	_

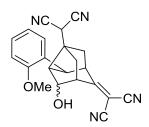

No.	位置	強度	No.	位置	強度
1	3498.24	28.2678	2	3063.37	92.3386
3	3027.69	88.8309	4	2967.91	68.3192
5	2900.41	63.9862	6	2232.2	37.7308
7	1599.66	18.5289	8	1497.45	51.6815
9	1476.24	70.435	10	1451.17	56.146
11	1302.68	53.5311	12	1126.22	53.7852
13	1094.4	48.368	14	910.236	9.60326



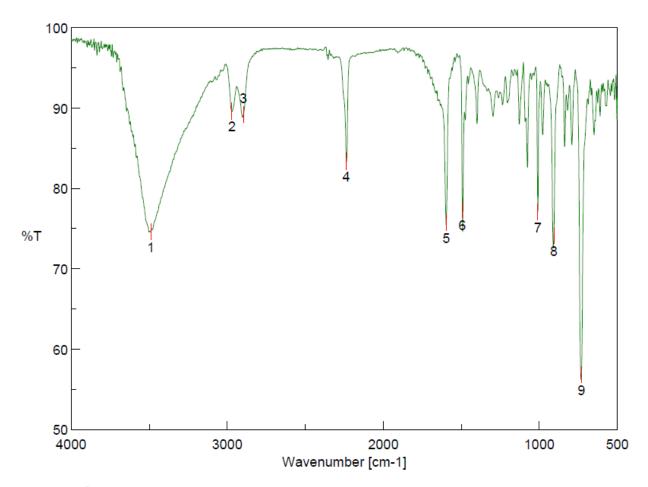
3a, 3a'



[ピー	-ク検出結り	₹]			
No.	位置	強度	No.	位置	強度
1	3490.53	77.3437	2	2964.05	86.2714
3	2904.27	87.2365	4	2232.2	84.3079
5	1595.81	74.5682	6	1510.95	58.8484
7	1465.63	87.0857	8	1249.65	64.7125
9	1179.26	79.5619	10	1030.77	81.1652
11	910.236	80.495			

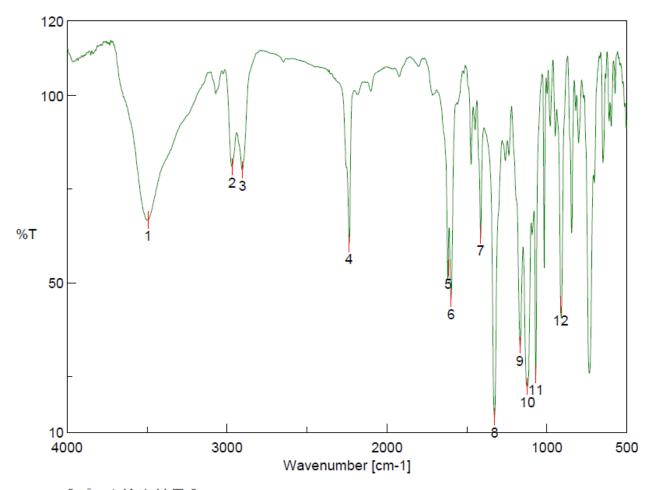


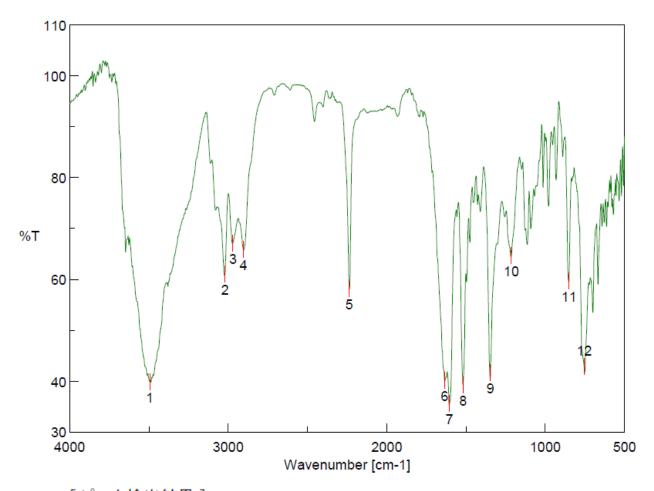
No.	位置	強度	No.	位置	強度
1	3469.31	61.6431	2	2236.06	82.1365
3	1631.48	67.1308	4	1603.52	53.6979
5	1489.74	77.2261	6	1429.96	74.7829
7	1267	80.342	8	757.888	61.2965



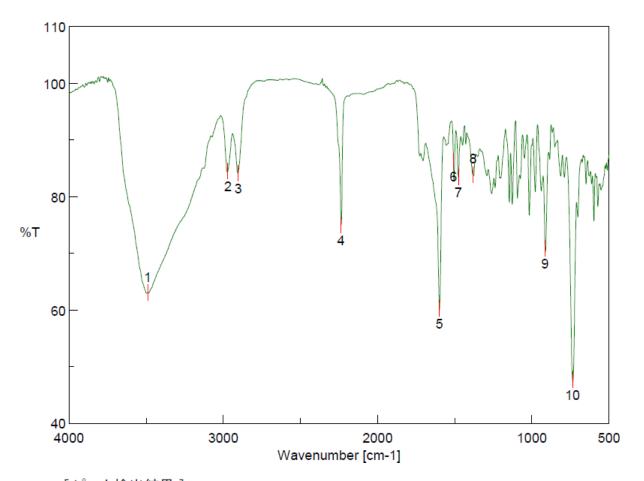
ピ	一ク	検	出	結:	果]

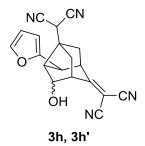
_					
No.	位置	強度	No.	位置	強度
1	3487.63	94.5102	2	2960.2	99.732
3	2907.16	100.326	4	2232.2	98.8326
5	1595.81	88.7236	6	1489.74	87.8053
7	1242.9	83.4233	8	1115.62	90.471
9	1026.91	92.2718	10	906.379	91.6341
11	729.925	78.0536			

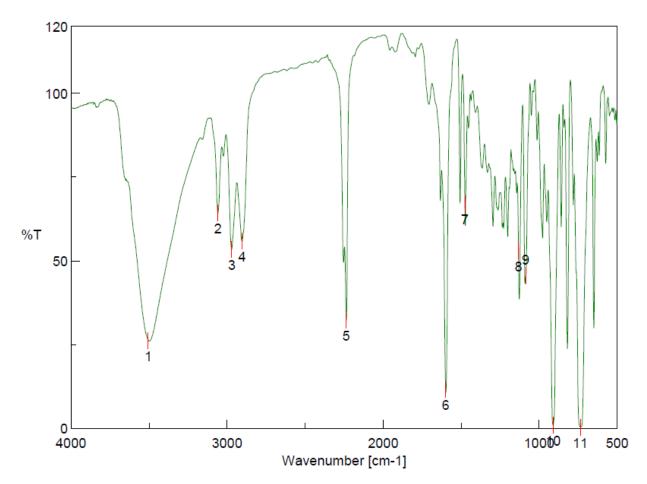

3d, 3d'


[ピ	ーク検出結果]
		-

No.	位置	強度	No.	位置	強度
1	3490.53	74.5917	2	2970.8	89.5906
3	2896.56	89.2058	4	2236.06	83.3586
5	1595.81	75.723	6	1493.6	77.3678
7	1009.55	77.0503	8	906.379	74.1459
9	729.925	56.7737			

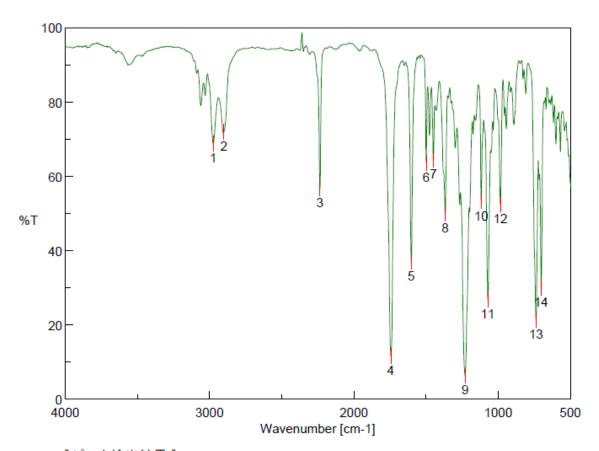

3e, 3e'


[ピー	-ク検出結り	果]			
No.	位置	強度	No.	位置	強度
1	3494.38	66.7254	2	2967.91	81.0283
3	2904.27	80.1127	4	2236.06	60.4984
5	1617.02	53.995	6	1599.66	45.8865
7	1415.49	62.7907	8	1327.75	14.1339
9	1168.65	33.3841	10	1122.37	22.3068
11	1069.33	25.5295	12	914.093	44.1325

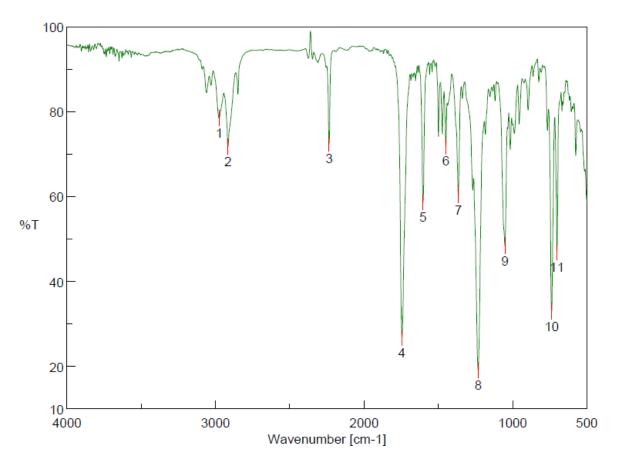


[ピー	・ク検出結果]			
No.	位置	強度	No.	位置	強度
1	3494.38	39.9185	2	3020.94	61.0061
3	2970.8	67.1466	4	2904.27	65.8497
5	2236.06	58.2156	6	1635.34	40.1429
7	1603.52	35.6409	8	1518.67	39.3013
9	1345.11	41.7082	10	1213.97	64.6612
11	850.454	59.7284	12	754.995	42.8648

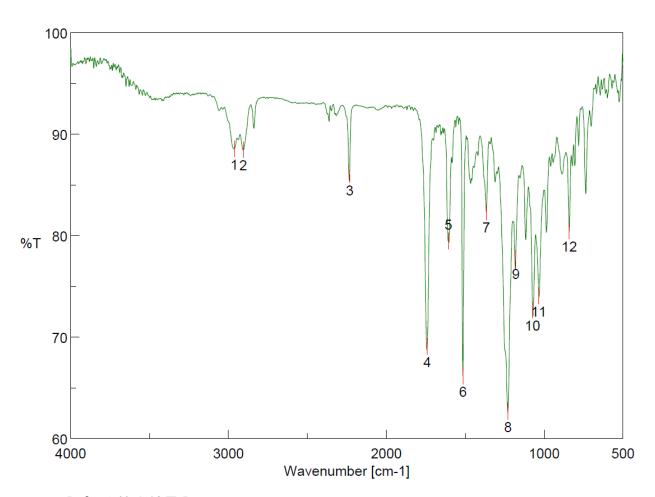
[ピー	ーク検出結り	₹]			
No.	位置	強度	No.	位置	強度
1	3490.53	63.0112	2	2970.8	84.4402
3	2904.27	84.139	4	2236.06	75.0272
5	1599.66	60.2629	6	1508.06	86.1732
7	1476.24	83.425	8	1380.78	83.8445
9	914.093	70.8742	10	736.674	47.6923



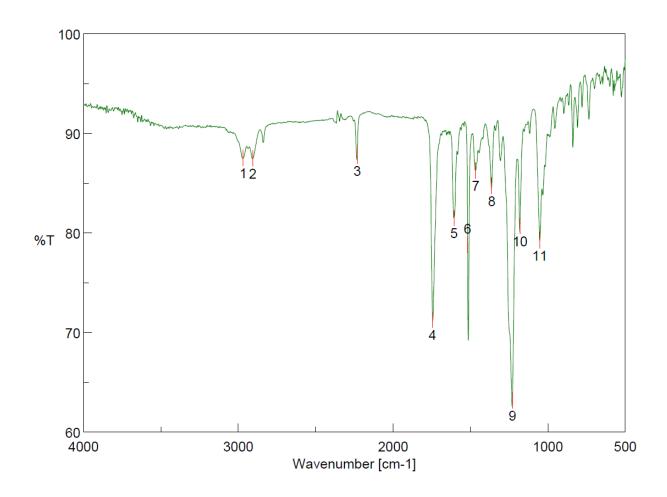
しし ノ1火山心木	液出結果]	[ピーク
-----------	-------	------


	ノ 1天 LLI 小口 2	★ 」			
No.	位置	強度	No.	位置	強度
1	3504.99	26.2364	2	3059.51	64.2385
3	2970.8	53.3515	4	2904.27	55.78
5	2236.06	32.2307	6	1599.66	11.6305
7	1476.24	66.9353	8	1132.97	52.9961
9	1086.69	45.4547	10	910.236	0.963325
11	736 674	0.35362			

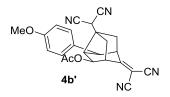
SI-122

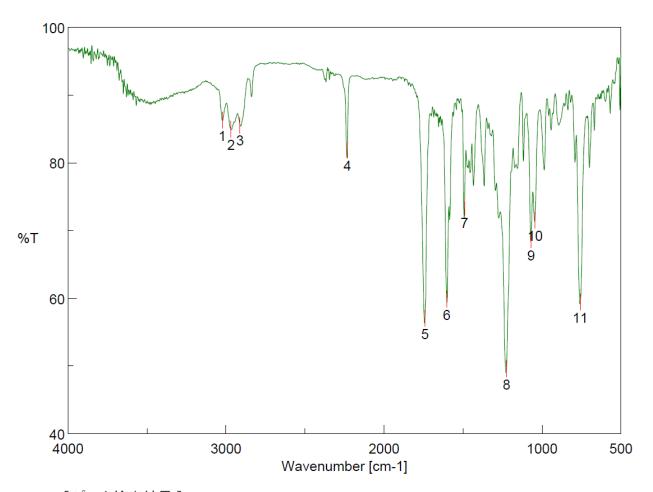

[ピーク検出結果]

No.	位置	強度	No.	位置	強度
1	2974.66	68.7951	2	2900.41	71.8985
3	2235.09	56.6976	4	1743.33	11.6102
5	1602.56	36.9963	6	1498.42	63.6449
7	1449.24	64.363	8	1367.28	49.8635
9	1229.4	6.34712	10	1117.55	53.21
11	1071.26	26.7963	12	984.482	52.4229
13	737 639	21 323	14	701 962	29 9762

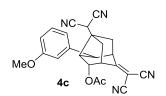

[ピーク検出結果]

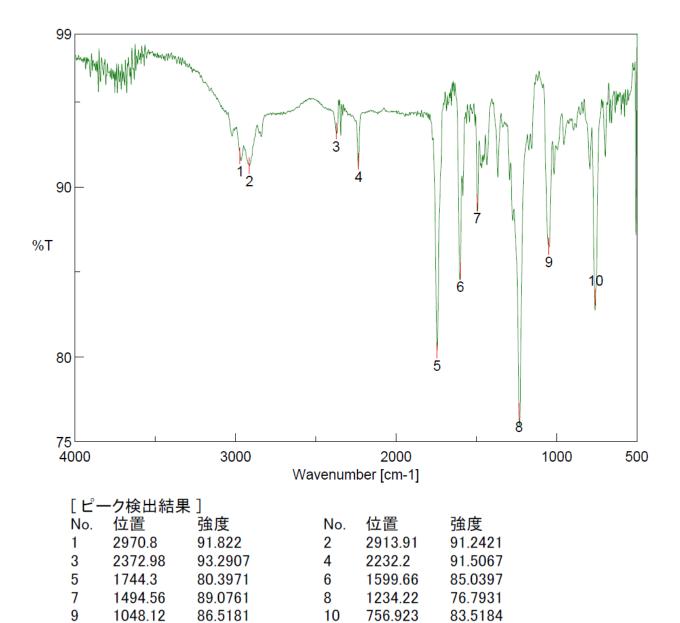
No.	位置	強度	No.	位置	強度
1	2974.66	78.4916	2	2915.84	71.7129
3	2235.09	72.4017	4	1744.3	26.7582
5	1602.56	58.6621	6	1449.24	71.8176
7	1365.35	60.2861	8	1231.33	19.0556
9	1051.01	48.3971	10	736.674	32.9249
11	700.998	46.9275			

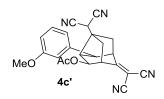


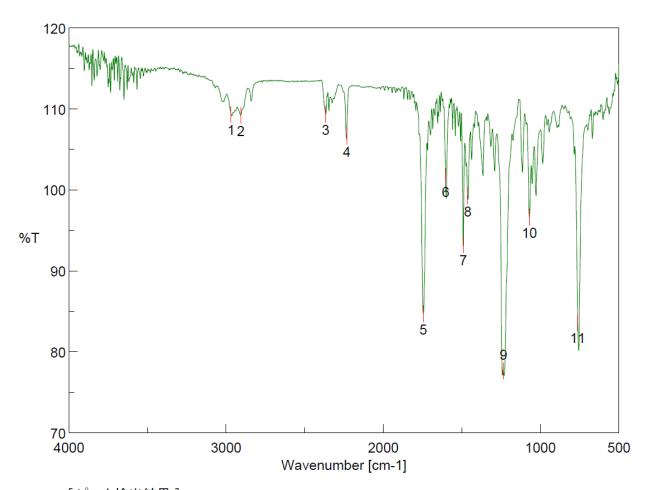

[ピーク検出結果]

_	/ // I/II/I/	1 2			
No.	位置	強度	No.	位置	強度
1	2964.05	88.5162	2	2907.16	88.4406
3	2232.2	85.9976	4	1740.44	69.0782
5	1606.41	79.4933	6	1514.81	66.18
7	1366.32	82.3381	8	1228.43	62.6827
9	1179.26	77.7555	10	1073.19	72.6759
11	1033.66	74.0739	12	839.847	80.476

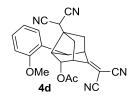


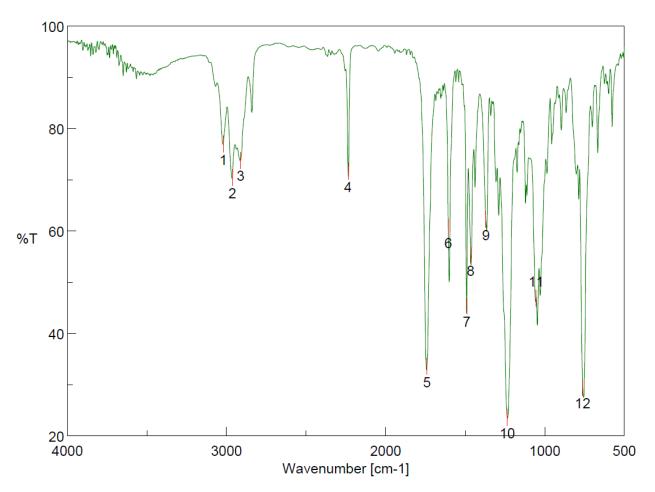

[ピー	-ク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	2967.91	87.5137	2	2907.16	87.4599
3	2232.2	87.7665	4	1744.3	71.2692
5	1606.41	81.4889	6	1518.67	78.7998
7	1465.63	86.2776	8	1362.46	84.7303
9	1228.43	63.1743	10	1179.26	80.7046
11	1051 98	79 2324			

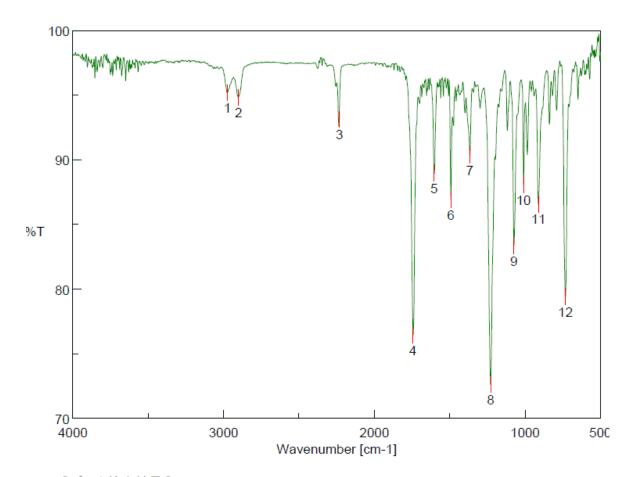




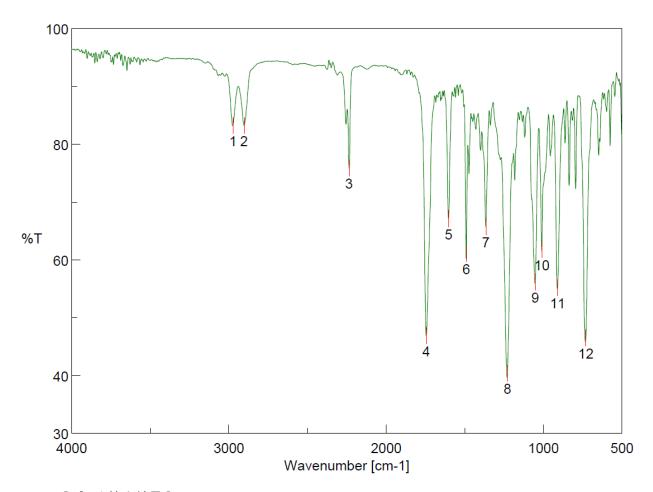
[ピ-	ーク検出結り	果]			
No.	位置	強度	No.	位置	強度
1	3023.84	86.2484	2	2967.91	84.9078
3	2911.02	85.5747	4	2232.2	81.8648
5	1740.44	57.0516	6	1603.52	59.8686
7	1489.74	73.42	8	1224.58	49.5328
9	1069.33	68.6398	10	1044.26	71.5133
11	757.888	59.4452			

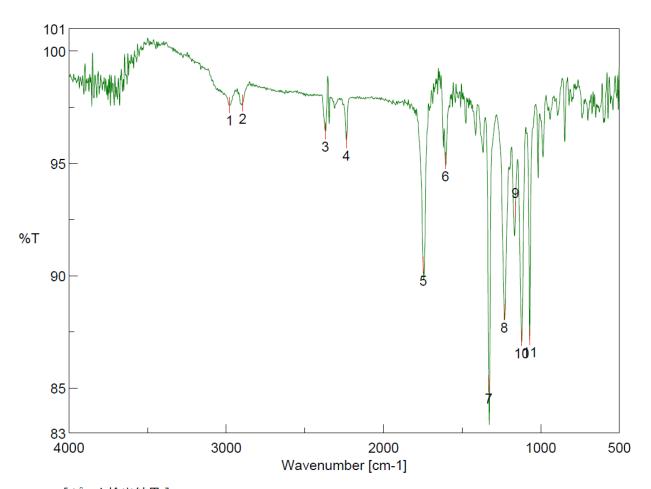






[ピ-	ーク検出結り	果]			
No.	位置	強度	No.	位置	強度
1	2967.91	109.304	2	2907.16	109.201
3	2366.23	109.305	4	2232.2	106.642
5	1744.3	84.6854	6	1603.52	101.671
7	1489.74	93.2709	8	1461.78	99.2513
9	1235.18	77.6669	10	1069.33	96.6375
11	761.744	83.6228			



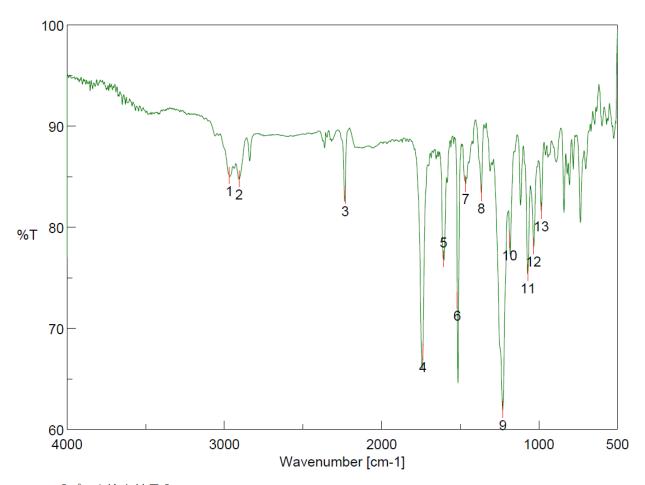

[ピーク検出結果]							
No.	位置	強度	No.	位置	強度		
1	3020.94	77.0098	2	2964.05	70.4506		
3	2911.02	73.795	4	2236.06	71.5961		
5	1740.44	33.5637	6	1606.41	60.6881		
7	1489.74	45.307	8	1465.63	55.264		
9	1370.18	62.2436	10	1235.18	23.5787		
11	1054 87	46 9168	12	761 744	29 4201		


[ピ-	-ク検出結り	果]			
No.	位置	強度	No.	位置	強度
1	2974.66	95.1903	2	2900.41	94.8456
3	2232.2	93.1193	4	1742.37	76.4378
5	1602.56	88.939	6	1491.67	86.8898
7	1366.32	90.3471	8	1227.47	72.6066
9	1073.19	83.3038	10	1009.55	88.0467
11	911.201	86.5592	12	731.853	79.3696

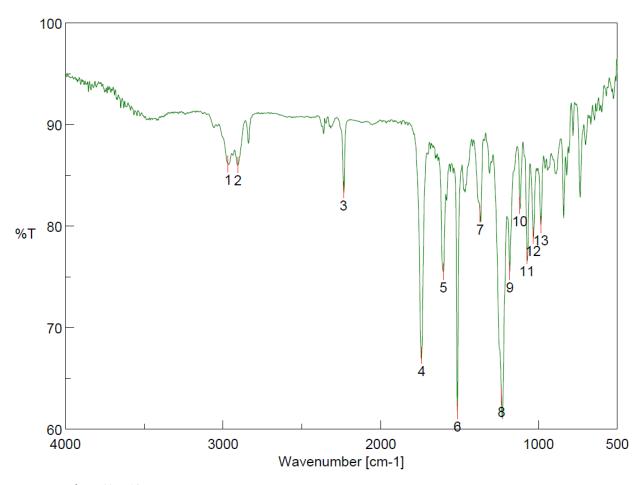
[ピー	-ク検出結果	:]			
No.	位置	強度	No.	位置	強度
1	2974.66	83.2459	2	2904.27	83.2274
3	2236.06	75.8476	4	1744.3	46.823
5	1603.52	67.1153	6	1489.74	61.0755
7	1366.32	65.6774	8	1228.43	40.3769
9	1051.98	56.1852	10	1009.55	61.7419
11	910.236	55.1726	12	729.925	46.4577

[ピ-	ーク検出結り	果]			
No.	位置	強度	No.	位置	強度
1	2978.52	97.5901	2	2896.56	97.6715
3	2370.09	96.4447	4	2236.06	96.0393
5	1748.16	90.4657	6	1606.41	95.1147
7	1330.64	85.212	8	1232.29	88.3748
9	1160.94	92.964	10	1122.37	87.2417
11	1069.33	87 2883			

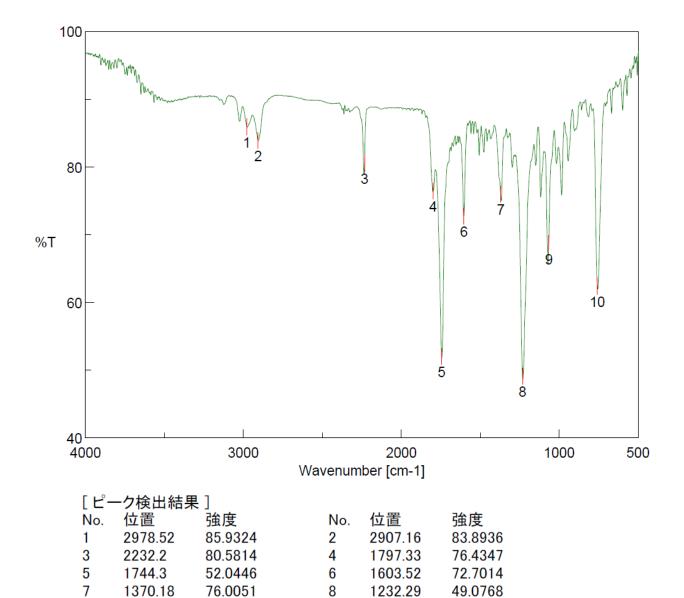
L L	ノ沢山心木」		
No.	位置	強度	
1	2974.66	95.102	
_	000000	00070	

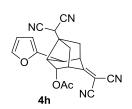

2 93.8709 2366.23 5 7 1744.3 79.2177 1603.52 88.1776 9 1232.29 73.4606

83.3416


1073.19

11

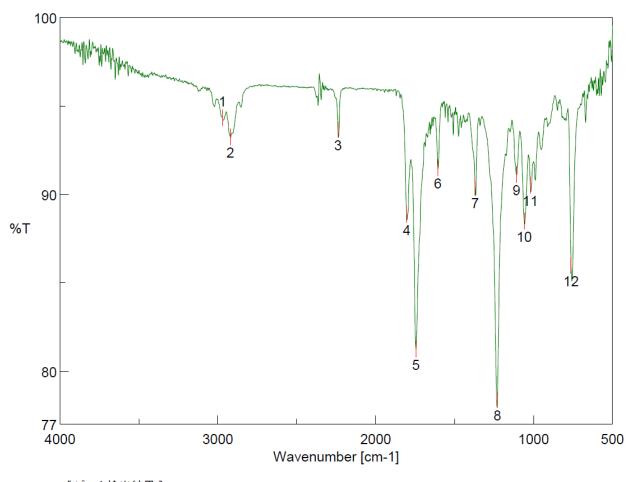

No.	位置	強度
2	2896.56	95.2703
4	2236.06	92.3878
6	1617.02	88.4687
8	1327.75	64.6282
10	1122.37	75.2206



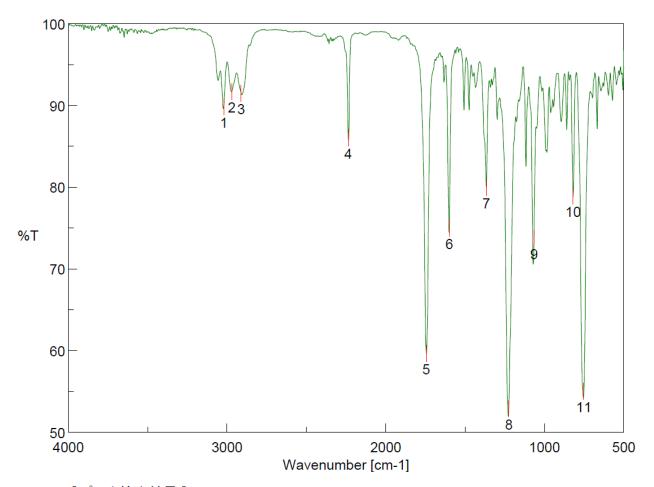
[ピー	-ク検出結果]			
No.	位置	強度	No.	位置	強度
1	2967.91	85.0793	2	2907.16	84.7495
3	2232.2	83.1226	4	1737.55	67.6677
5	1606.41	76.8808	6	1518.67	72.7844
7	1465.63	84.3015	8	1366.32	83.3938
9	1228.43	61.9713	10	1186.01	78.7309
11	1069.33	75.5142	12	1033.66	78.1589
13	984.482	81.6048			

	ピーク検出網	吉果]			
Ν	o. 位置	強度	No.	位置	強度
1	2967.91	86.0946	2	2907.16	86.0163
3	2236.06	83.5616	4	1740.44	67.2681
5	1603.52	75.4821	6	1514.81	61.7971
7	1370.18	81.1803	8	1235.18	63.2446
9	1182.15	75.5106	10	1118.51	82.0042
11	1 1073.19	77.0899	12	1033.66	79.0745
13	3 984.482	80.1177			

1065.48

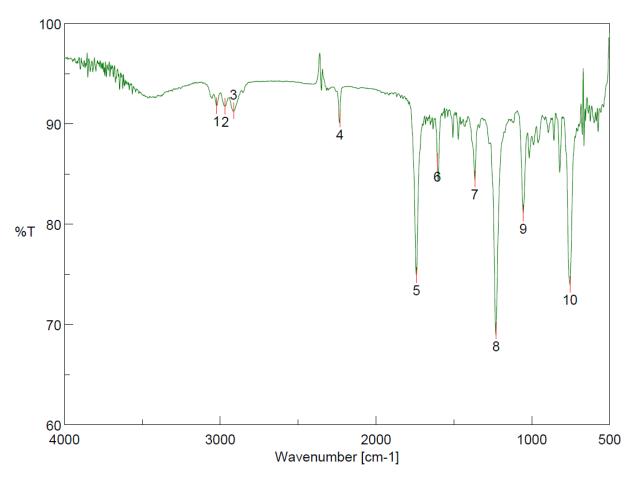

68.6974

9

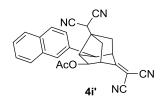

10

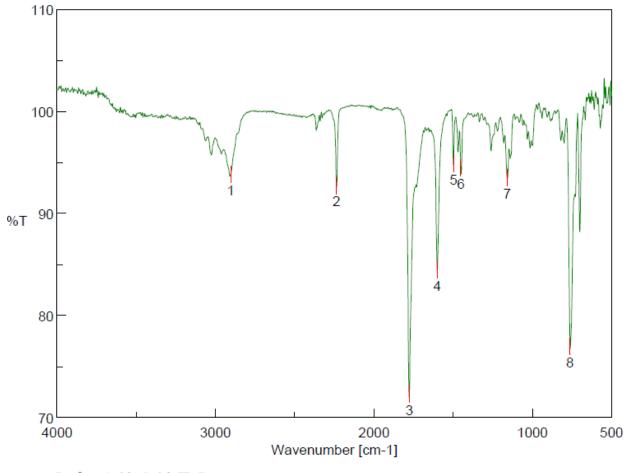
757.888

62.4203

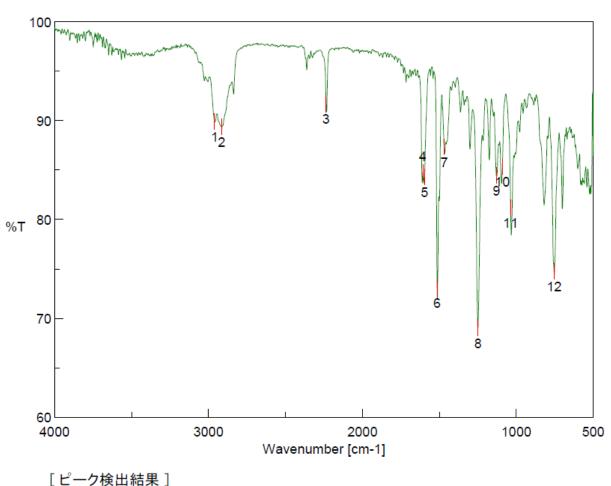


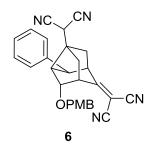
[ピー	-ク検出結昇	₹]			
No.	位置	強度	No.	位置	強度
1	2970.8	94.3217	2	2921.63	93.2474
3	2238.95	93.6628	4	1804.08	88.872
5	1744.3	81.2322	6	1606.41	91.4975
7	1370.18	90.4023	8	1228.43	78.3815
9	1107.9	91.1266	10	1058.73	88.4863
11	1020.16	90.5036	12	761.744	85.9565

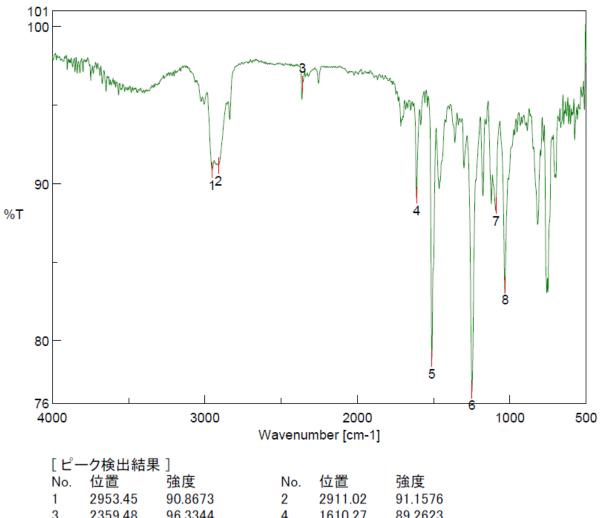

「 ピ ー/	ケ☆	出結	甲门
	ノ作火	山小口	木」


No.	位置	強度	No.	位置	強度
1	3020.94	89.8012	2	2970.8	91.6822
3	2911.02	91.4896	4	2236.06	85.9981
5	1744.3	59.6575	6	1599.66	74.9435
7	1366.32	79.9324	8	1224.58	52.8819
9	1065.48	73.7166	10	818.634	78.9217
11	751.138	54.9647			

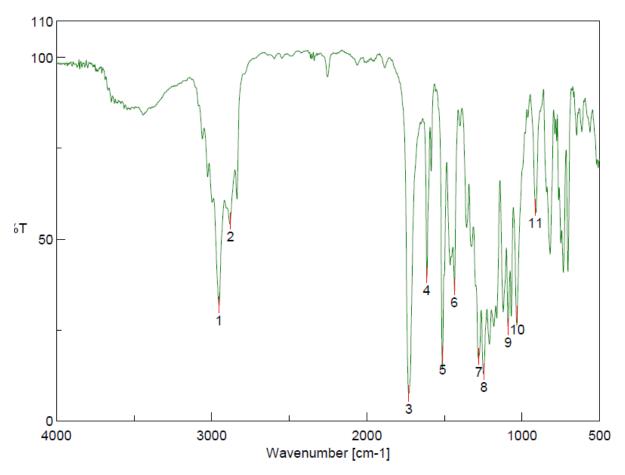
[ピーク検出結果]


No.	位置	強度	No.	位置	強度
1	3023.84	91.8061	2	2967.91	91.7298
3	2914.88	91.2835	4	2232.2	90.4691
5	1740.44	74.9093	6	1606.41	86.2504
7	1366.32	84.5267	8	1228.43	69.3378
9	1054.87	81.0794	10	754.995	73.981

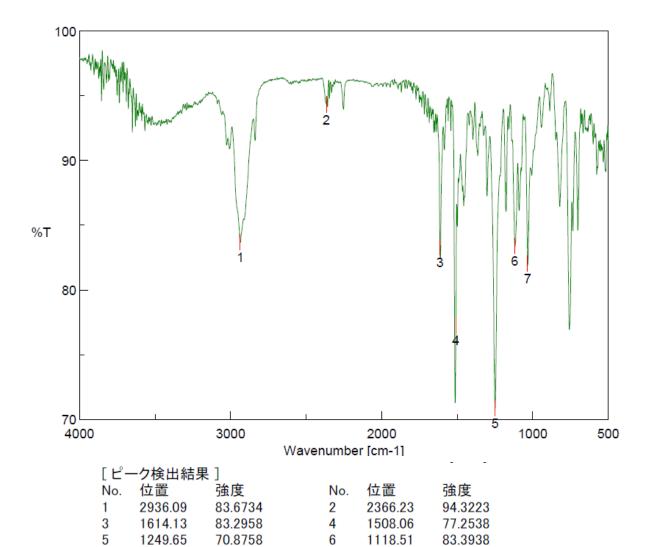



ΓĽ	一ク	焓	ж.	結	里	٦
		1天	щ	ᄱᄆ	ᄍ	J

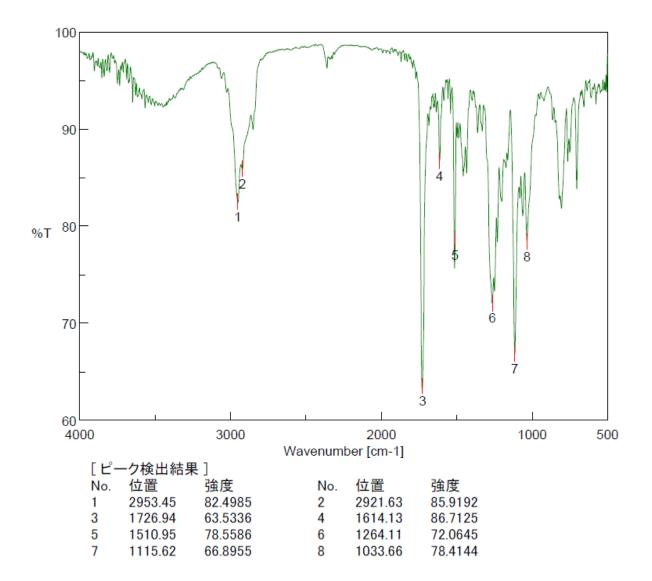
No.	位置	強度	No.	位置	強度
1	2904.27	93.8154	2	2236.06	92.7204
3	1776.12	72.2742	4	1599.66	84.4245
5	1497.45	94.8718	6	1451.17	94.4281
7	1158.04	93.4885	8	761.744	76.9304

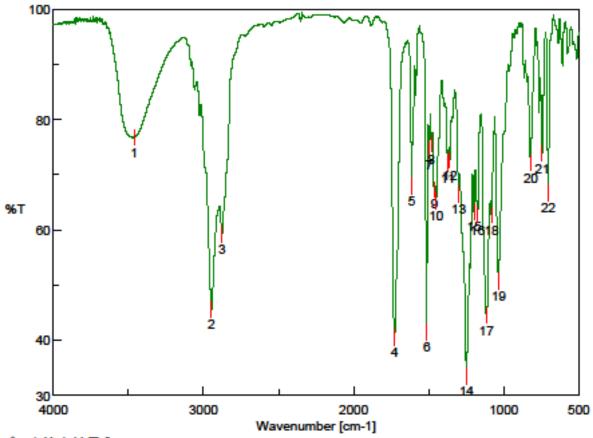


[ピ	一ク検出結り	果]			
No.	位置	強度	No.	位置	強度
1	2960.2	89.8738	2	2914.88	89.3431
3	2236.06	91.6785	4	1606.41	84.7765
5	1595.81	84.3083	6	1514.81	73.086
7	1468.53	87.3024	8	1249.65	68.9916
9	1129.12	84.416	10	1090.55	85.3752
11	1037.52	81.2274	12	754.995	74.7363



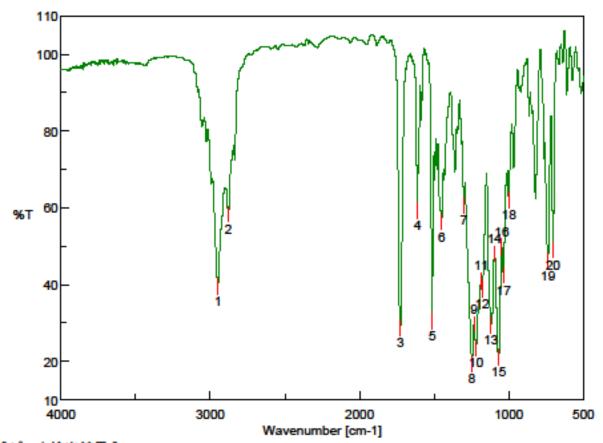
	つ 使出 結果]			
No.	位置	強度	No.	位置	強度
1	2953.45	90.8673	2	2911.02	91.1576
3	2359.48	96.3344	4	1610.27	89.2623
5	1510.95	78.8628	6	1249.65	76.8347
7	1090.55	88.5644	8	1030.77	83.5619


[ピーク検出結果]					
No.	位置	強度	No.	位置	強度
1	2953.45	31.8761	2	2879.2	55.0091
3	1729.83	7.45139	4	1614.13	40.1524
5	1510.95	18.2558	6	1436.71	36.916
7	1277.61	17.7083	8	1245.79	13.5034
9	1090.55	25.9188	10	1030.77	29.2586
11	914.093	58.6553			


NC_	CN	
		∠Me
PMBO	NC	`CN
	9	

1033.66

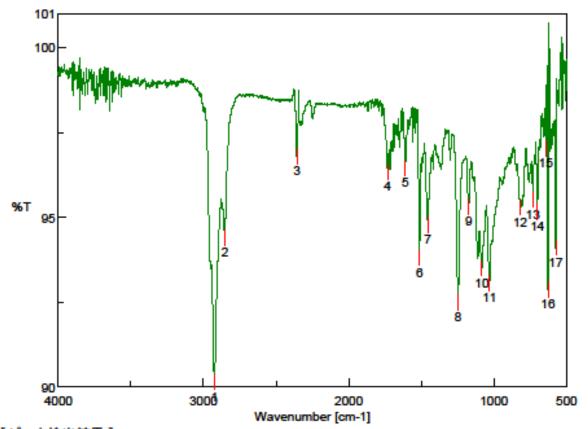
82.0423



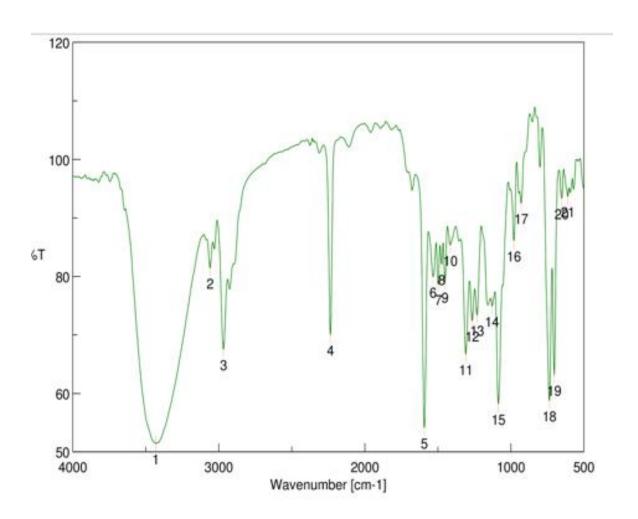
O _ൣ OMe
Me
РМВО МеО О
10

		_			-		ъ
	_		200	ж	200	-	
L	_	ーク	125	-	4764		
			_				

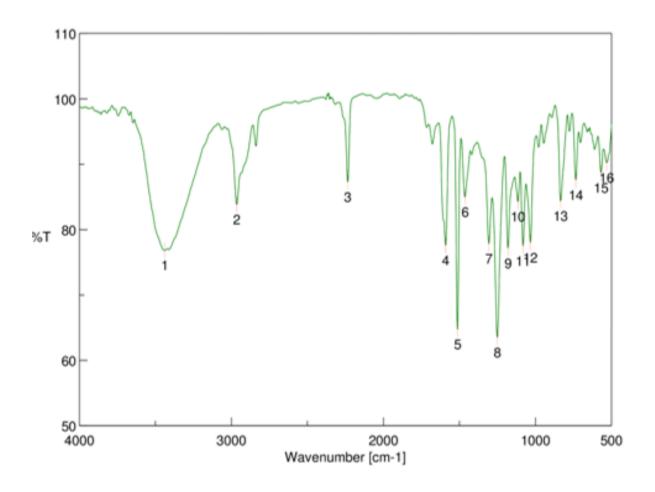
_	/ IX III MIX 1					
No.	位置	強度	No.	位置	強度	
1	3462.56	76.7154	2	2947.66	45.5461	
3	2877.27	59.1691	4	1726.94	40.3964	
5	1613.16	67.9303	6	1513.85	41.3954	
7	1497.45	74.3953	8	1481.06	75.5136	
9	1463.71	67.3248	10	1450.21	65.1809	
11	1373.07	71.9571	12	1359.57	72.5668	
13	1300.75	66.408	14	1247.72	33.4244	
15	1197.58	63.2226	16	1174.44	62.6901	
17	1115.62	44.4041	18	1080.91	62.5973	
19	1034.62	50.6061	20	820.563	72.1039	
21	744,388	73.8415	22	703.89	66,6393	


[ピ	一ク検出結果]
No.	位置	ï

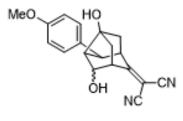
No.	位置	強度	No.	位置	強度
1	2949.59	39.5054	2	2879.2	58.3879
3	1726.94	28.7491	4	1612.2	59.2527
5	1513.85	30.535	6	1450.21	56.2574
7	1301.72	60.6916	8	1246.75	19.4626
9	1233.25	29.602	10	1218.79	23.6004
11	1186.01	40.87	12	1179.26	38.7894
13	1119.48	29.4378	14	1096.33	48.0329
15	1068.37	21.0177	16	1048.12	49.8833
17	1035.59	42.4765	18	999.91	61.9822
19	737.639	46.2502	20	703.89	48.9979


[ピーク検出結果]

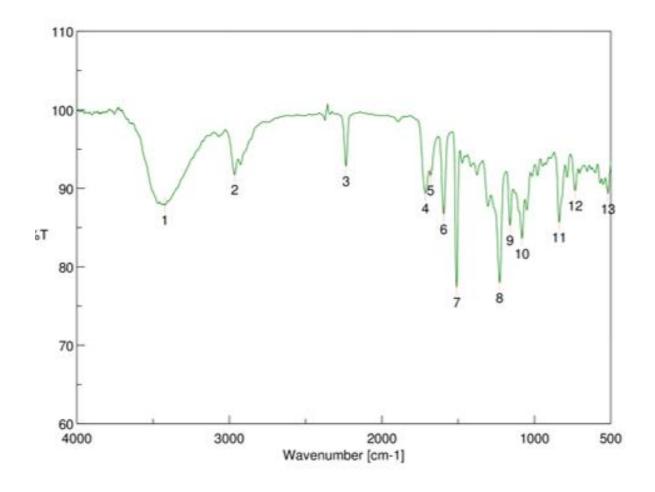
No.	位置	強度	No.	位置	強度
1	2946.7	85.1814	2	2874.38	91.6239
3	1727.91	82.2207	4	1613.16	93.5291
5	1513.85	84.1458	6	1452.14	92,2197
7	1247.72	81.4387	8	1203.36	91.0816
9	1172.51	90.0097	10	1127.19	84.3356
11	1110.8	84.91	12	1034.62	90.1411
13	820 563	93.6409	14	702 926	91.3667


[ピーク検出結果]

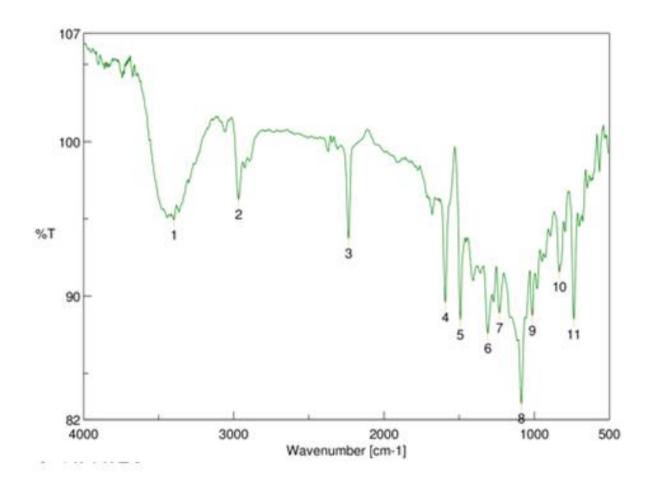
No.	位置	強度	No.	位置	強度
1	2924.52	90.1364	2	2854.13	94.3802
3	2357.55	96.7901	4	1731.76	96.3415
5	1612.2	96.4368	6	1512.88	93.7916
7	1455.99	94.7707	8	1246.75	92.4711
9	1174.44	95.2963	10	1082.83	93.499
11	1030.77	93.0479	12	820.563	95.283
13	731.853	95.5083	14	700.998	95.161
15	642.179	97.0126	16	627.716	92.8563
17	573.719	94.0973			



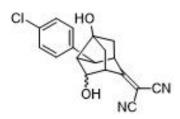
[4.	ーク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3431.71	51.449	2	3060.48	81.4409
3	2967.91	67.5255	4	2236.06	70.0209
5	1592.91	54.1249	6	1533.13	79.9543
7	1497.45	78.6294	8	1474.31	82.0666
9	1451.17	79.0596	10	1414.53	85.3547
11	1308.46	66.6997	12	1265.07	72.4376
13	1231.33	73.4111	14	1129.12	74.918
15	1085.73	58.2236	16	979.661	86.0836
17	929.521	92.499	18	736.674	58.7628
19	703.89	63.1563	20	651.822	93.3352
21	610.36	93.6685			


16a, 16a'

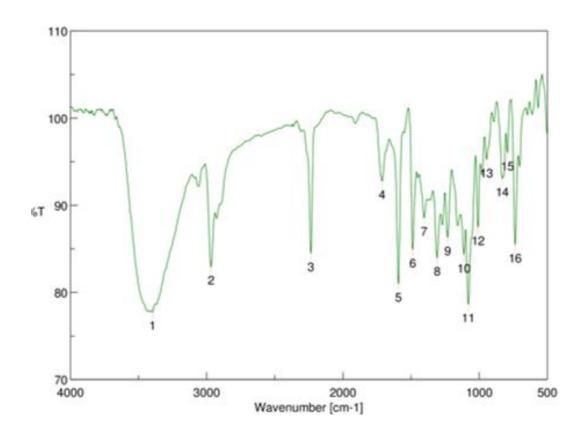
[ピーク検出結果]						
No.	位置	強度	No.	位置	強度	
1	3439.42	76.8516	2	2965.02	83.8205	
3	2235.09	87.3086	4	1590.99	77.5839	
5	1512.88	64.7466	6	1463.71	84.9839	
7	1306.54	77.8438	8	1251.58	63.5398	
9	1181.19	77.1539	10	1115.62	84.3045	
11	1081.87	77.5205	12	1033.66	78.0052	
13	835.026	84.3744	14	734.746	87.6044	
15	568.898	88.6869	16	532.257	90.2389	

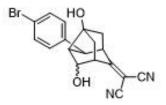


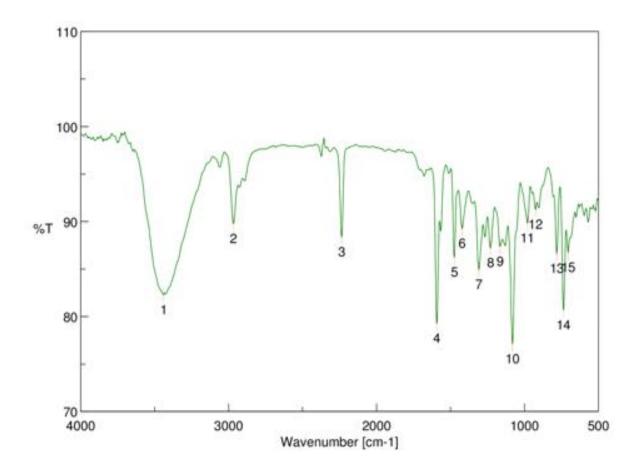
16b, 16b'

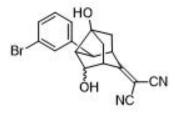


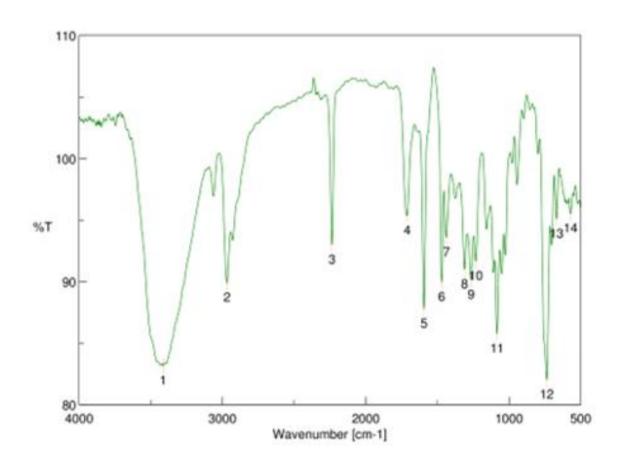
[2.	ーク検出語!	R.1			
No.	位置	強度	No.	位置	強度
1	3423.03	87.8514	2	2965.98	91.721
3	2235.09	92.8158	4	1714.41	89.358
5	1680.66	91.6454	6	1594.84	86.7254
7	1509.99	77.4042	8	1228.43	77.9511
9	1159.97	85.2878	10	1081.87	83.6033
11	837.919	85.6589	12	733.782	89.7186
13	517.793	89.2978			

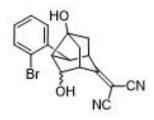

16c, 16c'

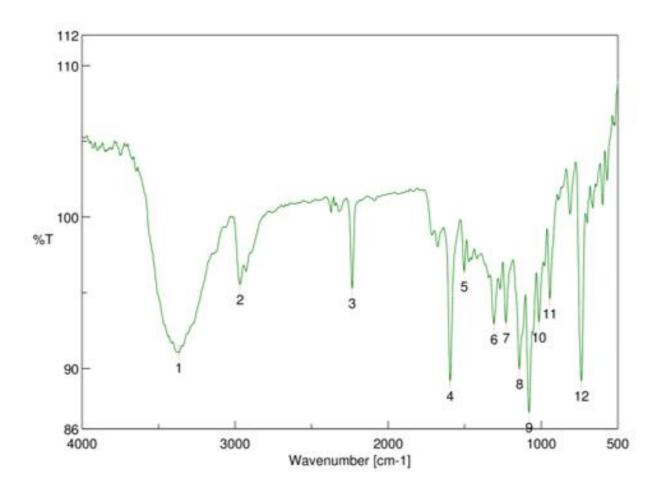

[4.	ーク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3398.92	94.9194	2	2967.91	96.2506
3	2236.06	93.7287	4	1591.95	89.5951
5	1491.67	88.4705	6	1309.43	87.5832
7	1232.29	88.9068	8	1085.73	83.051
9	1012.45	88.7404	10	833.098	91.5563
11	736.674	88.4928			

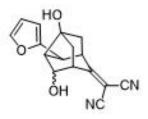

16d, 16d'

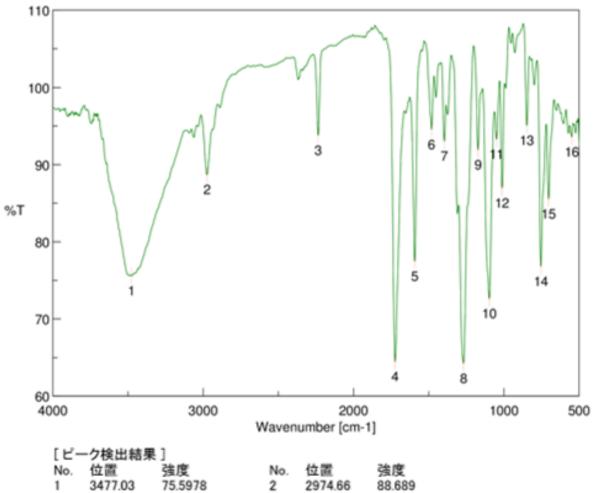

[ピー	ーク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3397.96	77.7417	2	2967.91	82.9282
3	2235.09	84.4867	4	1712.48	92.7776
5	1592.91	80.9664	6	1488.78	84.8953
7	1403.92	88.5262	8	1309.43	83.9693
9	1232.29	86.3087	10	1112.73	84.3235
11	1079.94	78.6061	12	1008.59	87.4634
13	945.913	95.2301	14	830.205	93.0698
15	792.6	96.0273	16	736.674	85.473


16e, 16e'

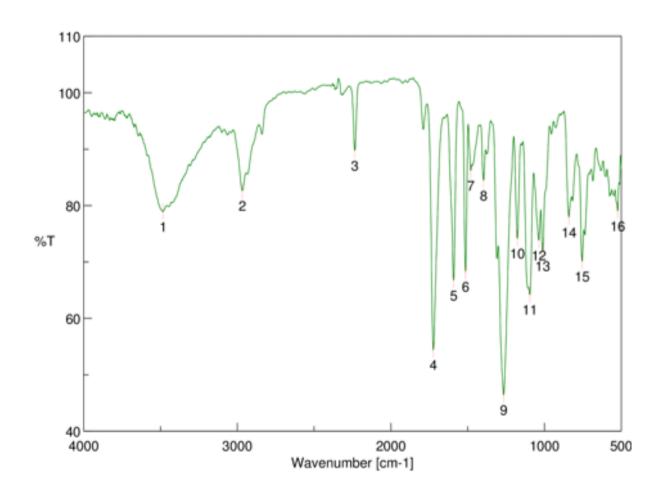

[4.	ーク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3439.42	82.2776	2	2966.95	89.7741
3	2236.06	88.3719	4	1592.91	79.2687
5	1474.31	86.2536	6	1422.24	89.2563
7	1308.46	84.9506	8	1230.36	87.2238
9	1165.76	87.3851	10	1080.91	77.1324
11	980.625	89.8499	12	925.664	91.2785
13	781.993	86.6474	14	736.674	80.6878
15	704 955	96 721			


16f, 16f'


[ピ-	-ク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3414.35	83.1641	2	2967.91	89.8978
3	2236.06	92.9889	4	1711.51	95.3557
5	1593.88	87.7797	6	1470.46	89.9671
7	1437.67	93.5814	8	1310.39	90.9889
9	1266.04	90.1277	10	1232.29	91.6659
11	1083.8	85.767	12	737.639	82.0267
13	669.178	95.0704	14	570.826	95.5145

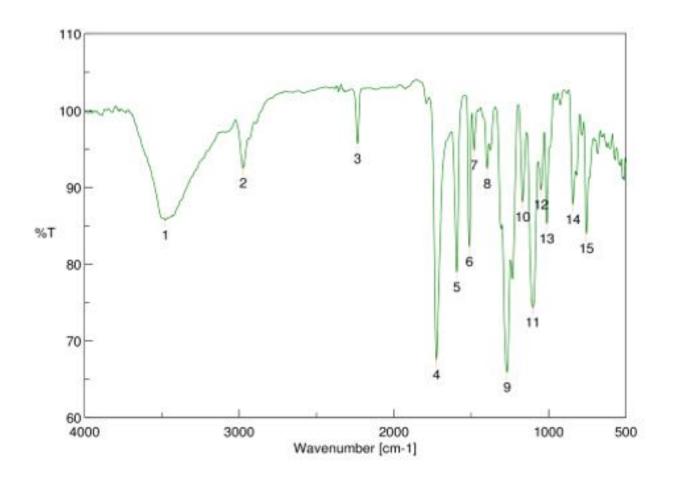

16g, 16g'

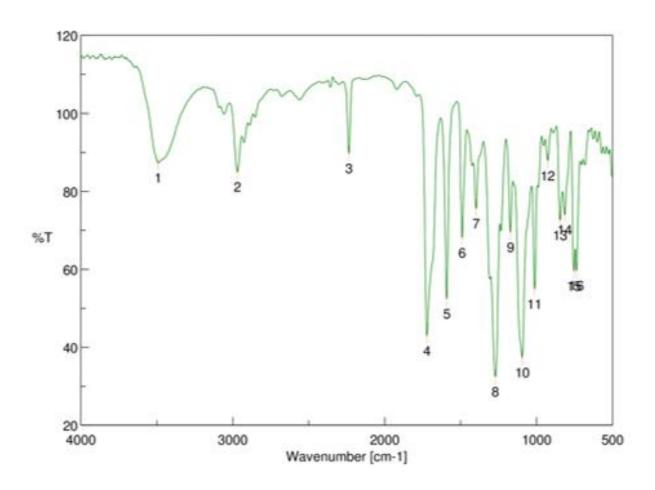
[ピ-	-ク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3367.1	91.0407	2	2967.91	95.5439
3	2235.09	95.2943	4	1594.84	89.1837
5	1503.24	96.3926	6	1308.46	92.9294
7	1230.36	93.0023	8	1142.62	89.9735
9	1079.94	87.0908	10	1015.34	93.0423
11	943.985	94.5979	12	737.639	89.1666



16h, 16h'

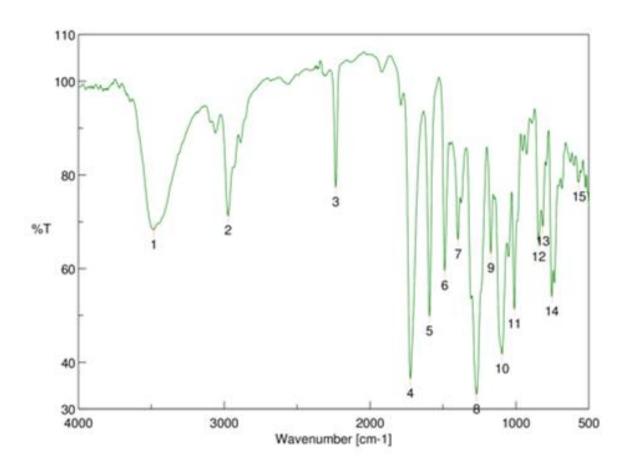
[ピ	ーク検出結り	具]			
No.	位置	強度	No.	位置	強度
1	3477.03	75.5978	2	2974.66	88.689
3	2235.09	93.7828	4	1724.05	64.4638
5	1592.91	77.4568	6	1481.06	94.5437
7	1396.21	93.0331	8	1268.93	64.2537
9	1172.51	91.8894	10	1097.3	72.6232
11	1049.09	93.2708	12	1012.45	86.965
13	847.561	95.0606	14	754.031	76.8189
15	702.926	85.547	16	548.649	93.5519


24a

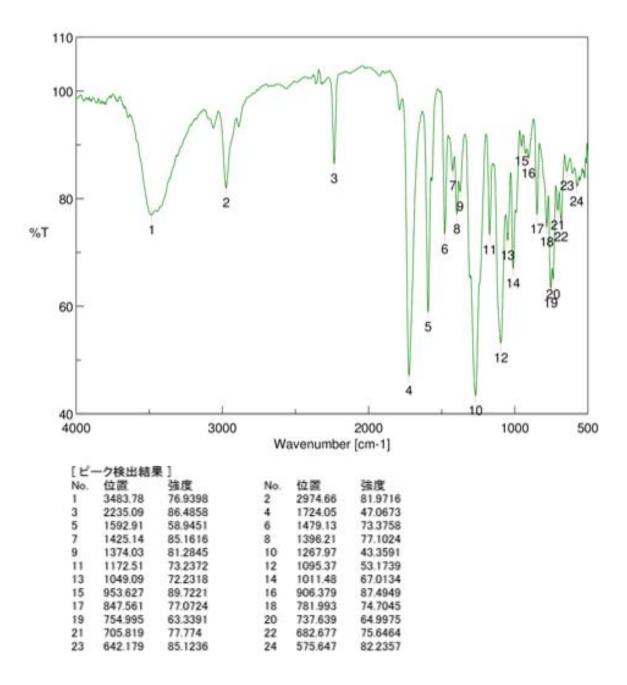

しヒーク検出結果	·ク検出結果]
----------	--------	---

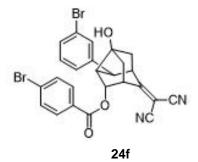
_	S. INCHES ARES	14 3			
No.	位置	強度	No.	位置	強度
1	3483.78	78.9186	2	2967.91	82.6444
3	2235.09	89.7422	4	1724.05	54.4195
5	1591.95	66.7378	6	1513.85	68.3034
7	1480.1	86.1915	8	1396.21	84.458
9	1266.04	46.4242	10	1176.36	74.1831
11	1095.37	64.193	12	1036.55	73.8382
13	1011.48	71.9527	14	840.812	77.9262
15	754.995	70.1077	16	523.579	79.0446

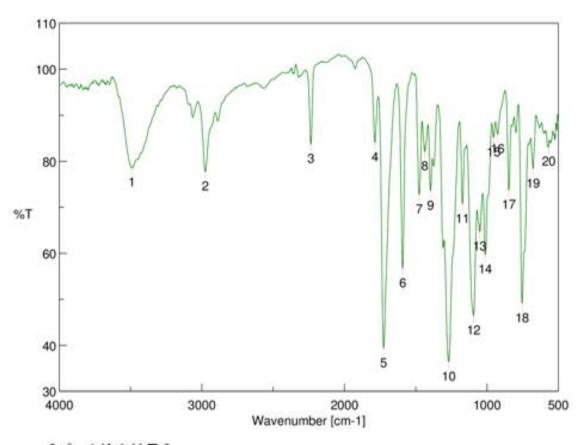
24b



[4-	-ク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3477.03	85.7204	2	2974.66	92.4769
3	2235.09	95.6637	4	1724.05	67.5163
5	1592.91	78.9265	6	1511.92	82.2688
7	1481.06	94.7773	8	1396.21	92.4199
9	1267.97	65.8815	10	1167.69	88.0753
11	1102.12	74.3297	12	1049.09	89.6811
13	1011.48	85.2367	14	842.74	87.7662
15	755.959	83.9547			

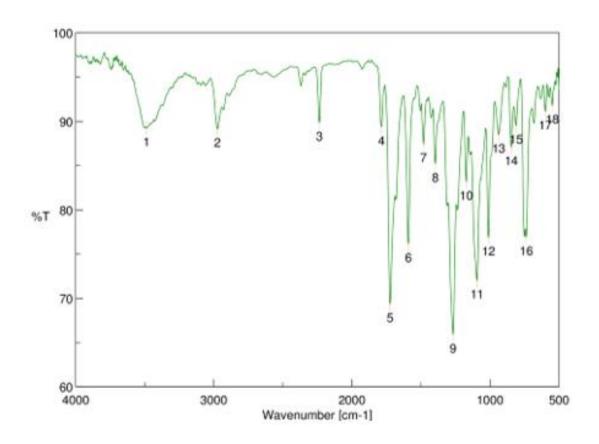

[4-	ーク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3491.49	87.2967	2	2969.84	84.965
3	2236.06	89.745	4	1722.12	42.9537
5	1591.95	52.4301	6	1489.74	68.1009
7	1398.14	75.5772	8	1271.82	32.4969
9	1172.51	69.511	10	1094.4	37.4074
11	1013.41	54.9367	12	926.628	87.8369
13	845.633	72.5909	14	814.777	73.971
15	754.031	59.5945	16	737.639	59.6529

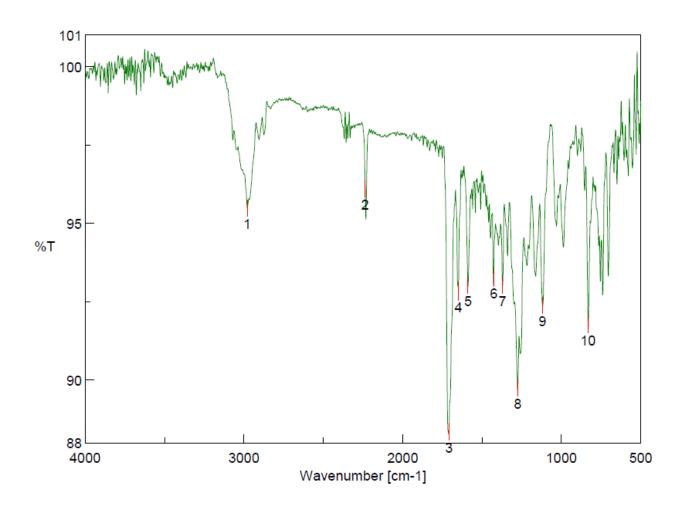

24d



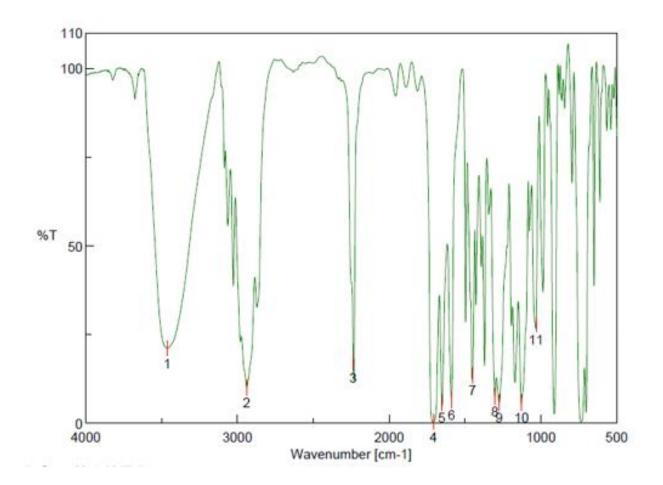
[ピ	ーク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3482.81	68.2612	2	2973.7	71.3043
3	2235.09	77.3731	4	1724.05	36.5216
5	1592.91	49.8328	6	1488.78	59.5467
7	1397.17	66.2241	8	1269.9	33.1139
9	1172.51	63.2686	10	1095.37	41.7483
11	1010.52	51.3648	12	844.669	65.6798
13	815.742	68.9697	14	754.031	54.0297
15	567 024	79 4947			

24e



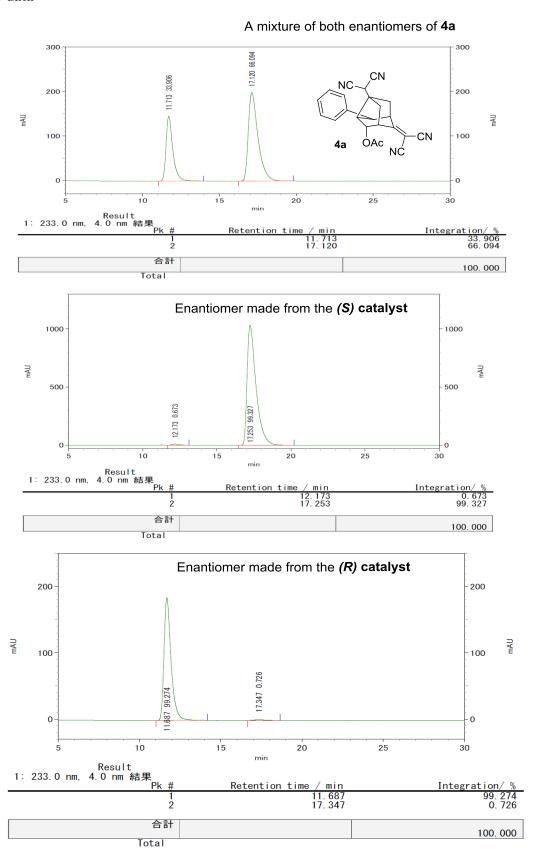

[]	-ク検出結	果]
No.	位置	5

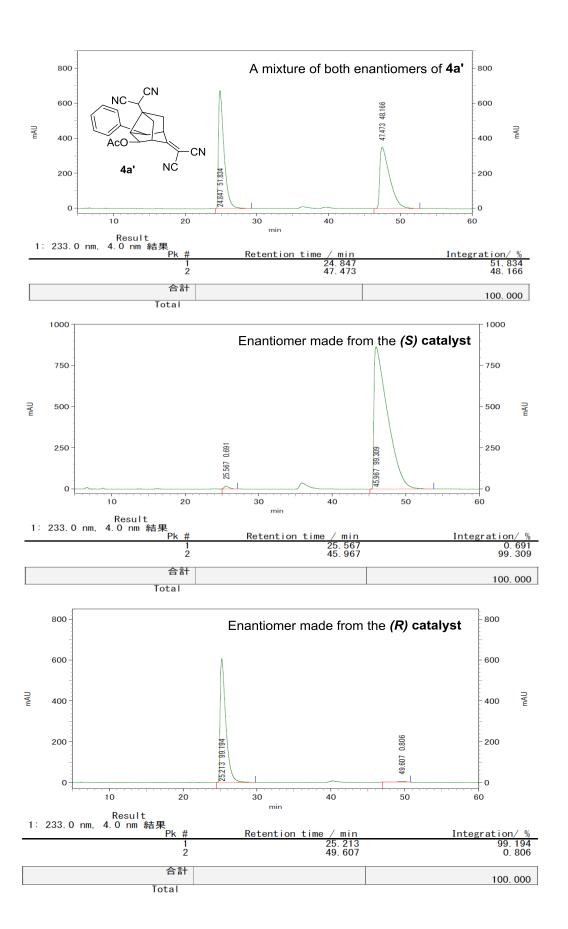
No.	位置	強度	No.	位置	強度
1	3492.45	78.6031	2	2975.62	77.7165
3	2236.06	83.7189	4	1786.72	84.0556
5	1725.01	39.3094	6	1591.95	56.7097
7	1476.24	72.7461	8	1436.71	82.1064
9	1396.21	73.5309	10	1268.93	36.3861
11	1172.51	70.6613	12	1094.4	46.4112
13	1051.01	64.6578	14	1012.45	59.6866
15	953.627	85.1196	16	925.664	85.8388
17	846.597	73.7173	18	754.031	49.0629
19	676.892	78.2909	20	567.934	83.1024

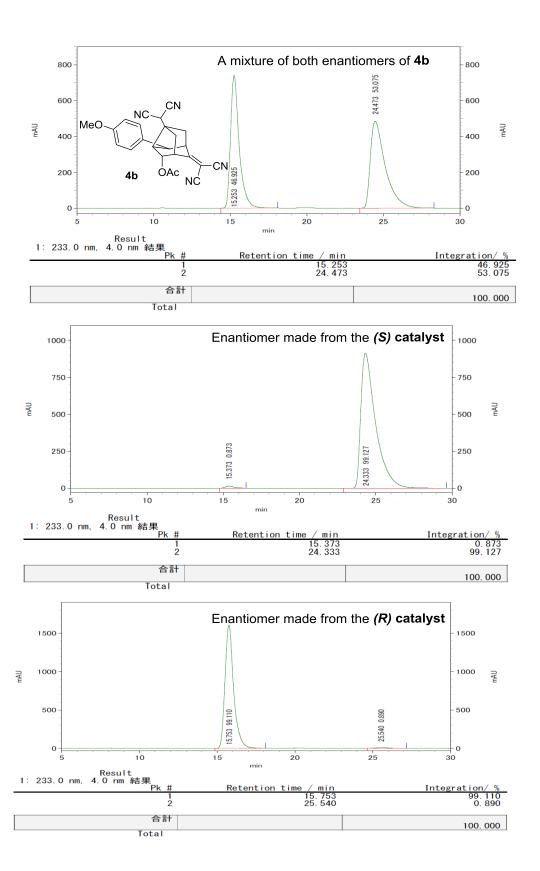


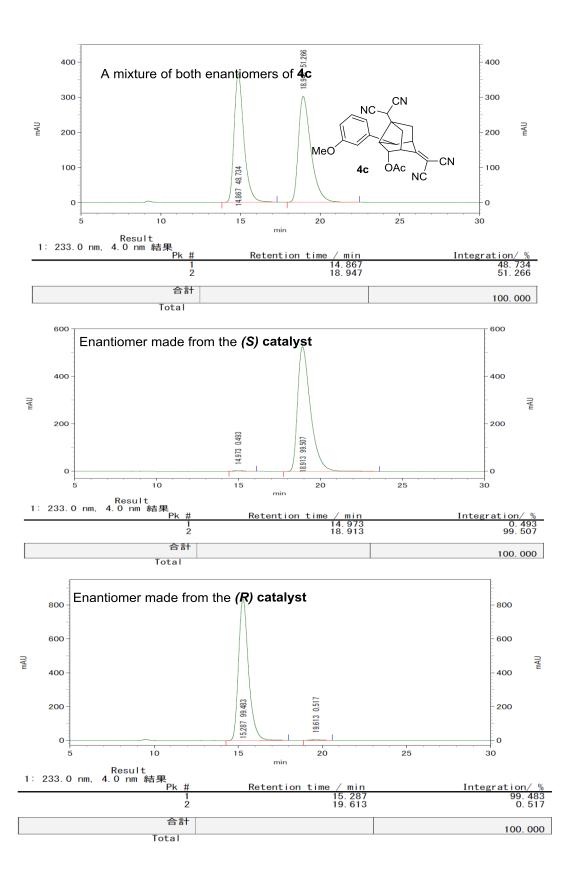
[ピー	-ク検出結!	果]			
No.	位置	強度	No.	位置	強度
1	3488.6	89.2363	2	2973.7	89.1388
3	2235.09	89.8539	4	1786.72	89.3604
5	1723.09	69.3444	6	1591.95	76.1459
7	1481.06	87.4117	8	1396.21	85.1796
9	1267	65.8989	10	1172.51	83.1658
11	1094.4	72.012	12	1010.52	76.8862
13	937.235	88.4801	14	845.633	87.0776
15	810.92	89.5054	16	737.639	76.9139
17	599.753	91.1203	18	548.649	91.784

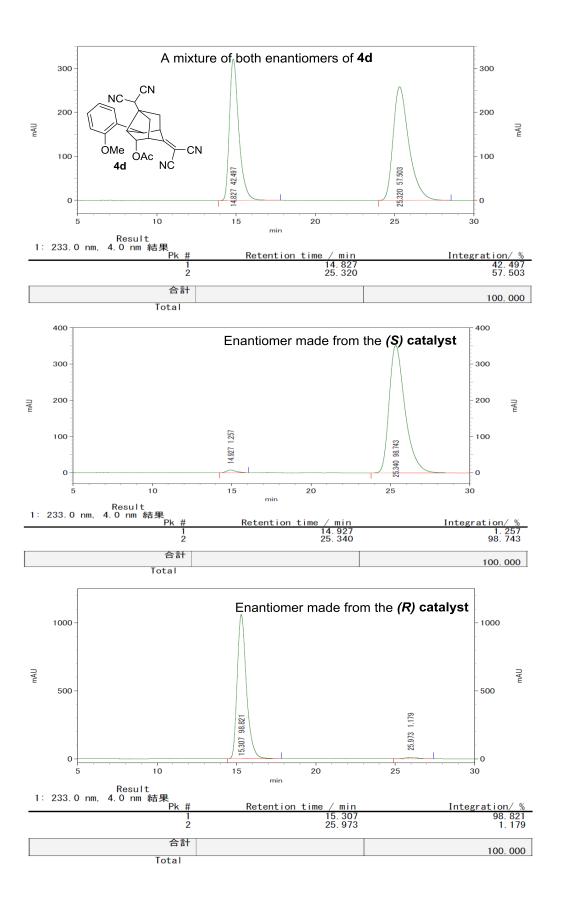
24h

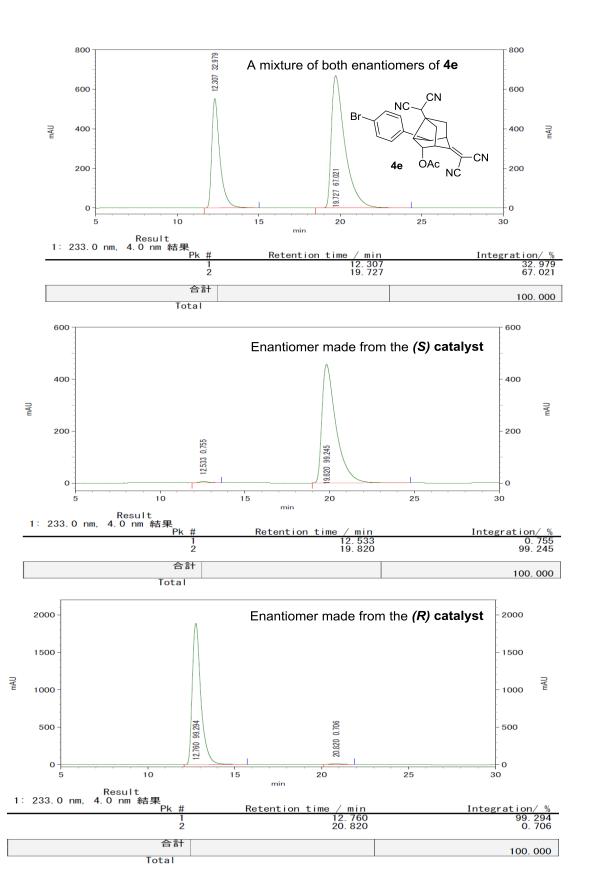

[ビーク検出結果]						
No.	位置	強度	No.	位置	強度	
1	2978.52	95.483	2	2236.06	96.1044	
3	1708.62	88.3464	4	1648.84	92.809	
5	1589.06	93.0133	6	1426.1	93.253	
7	1370.18	93.0173	8	1274.72	89.7484	
9	1118.51	92.3818	10	832.133	91.7642	

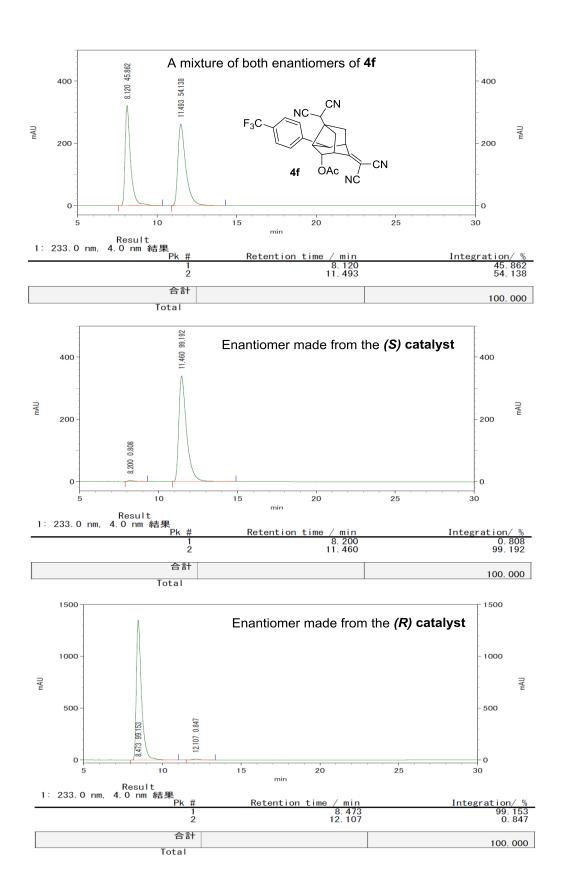


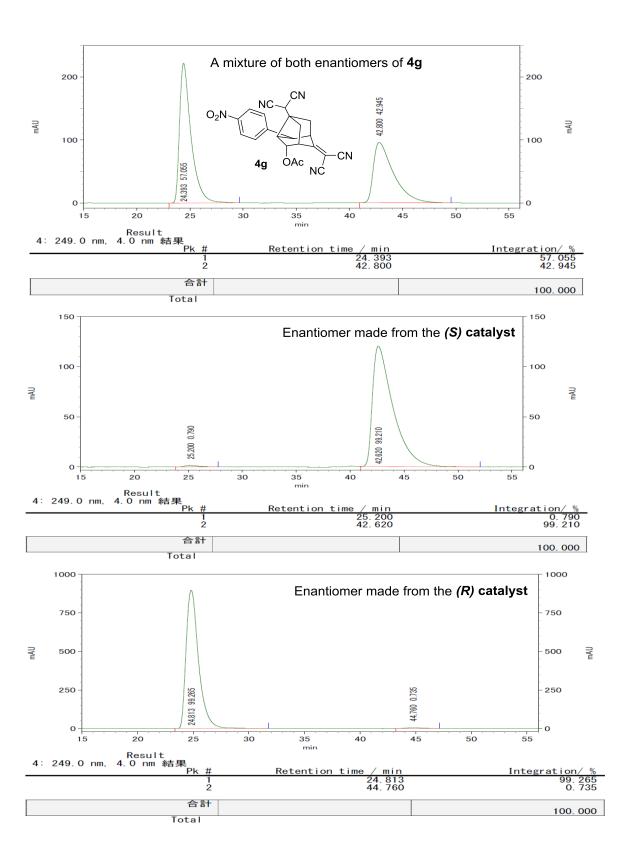

F 1 2	
P — /7 环 中 彩	
[ピーク検出網	375

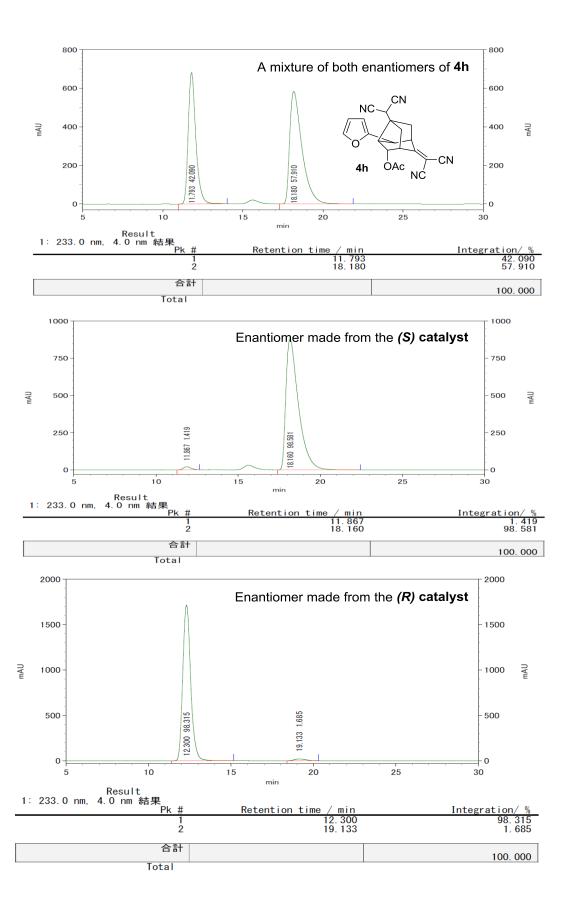

_	- 12 mm d.m.				
No.	位置	強度	No.	位置	強度
1	3462.56	21.1152	2	2938.98	10.0286
3	2236.06	17.001	4	1708.62	0.368164
5	1652.7	5.69139	6	1589.06	6.47535
7	1451.17	13.4461	8	1302.68	7.51137
9	1274.72	5.76774	10	1126.22	5.81212
11	1030.77	27.847			

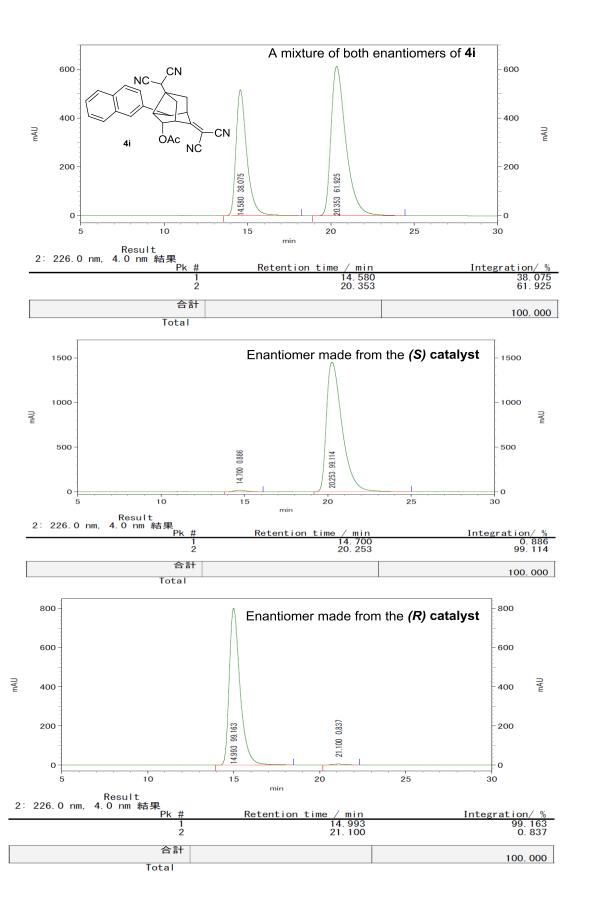

7. HPLC data

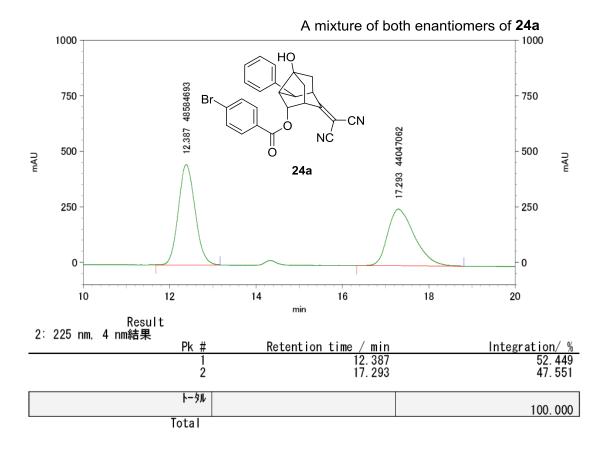


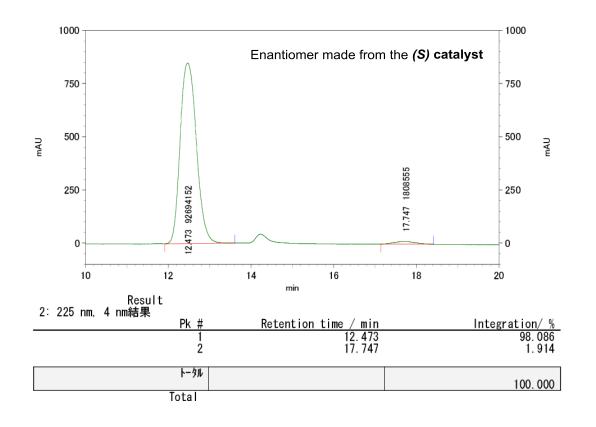


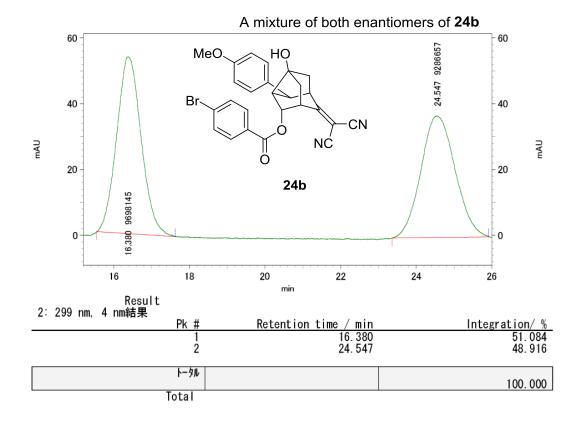


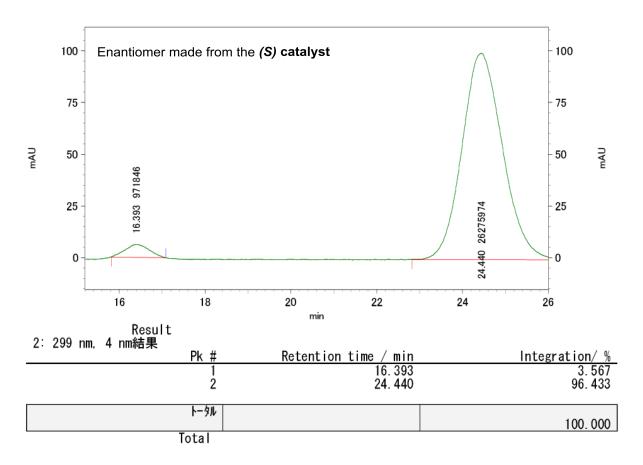


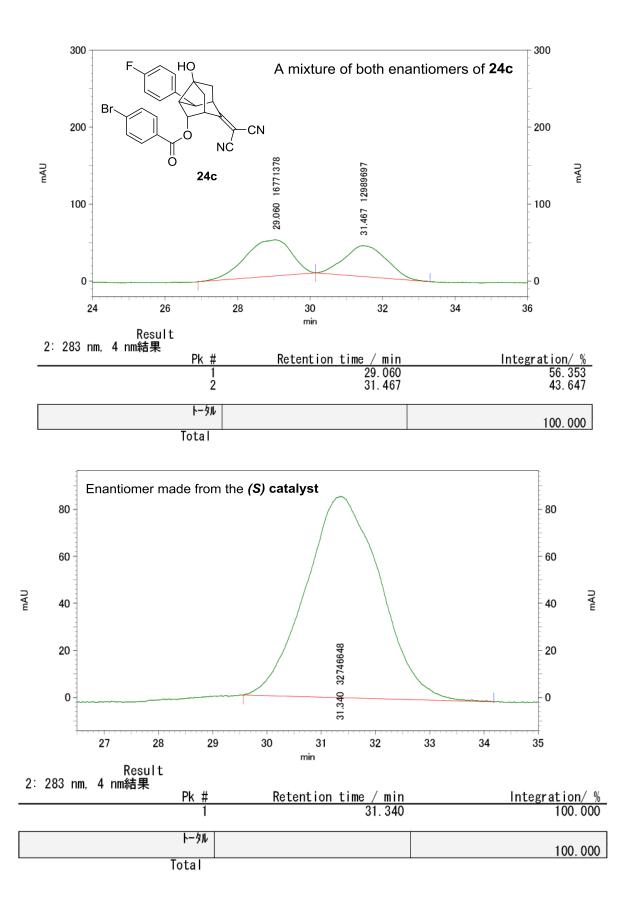


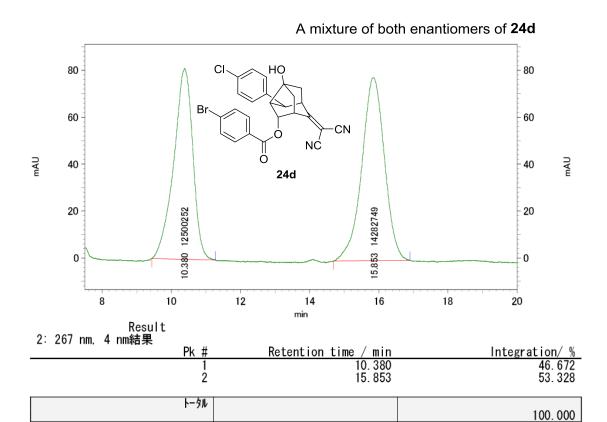


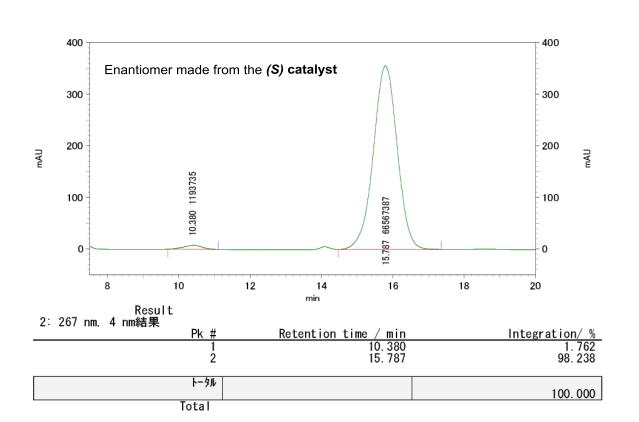


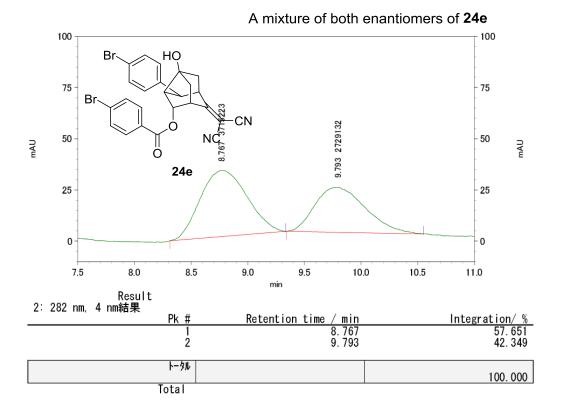


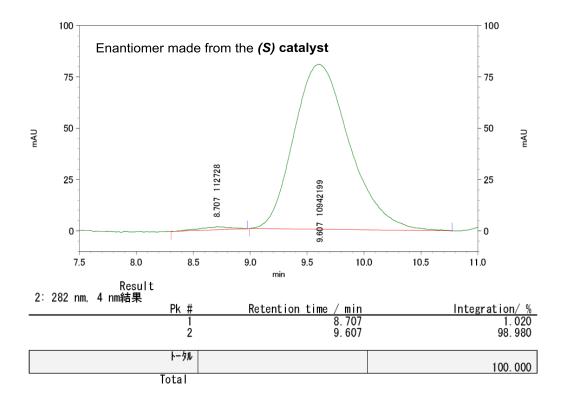


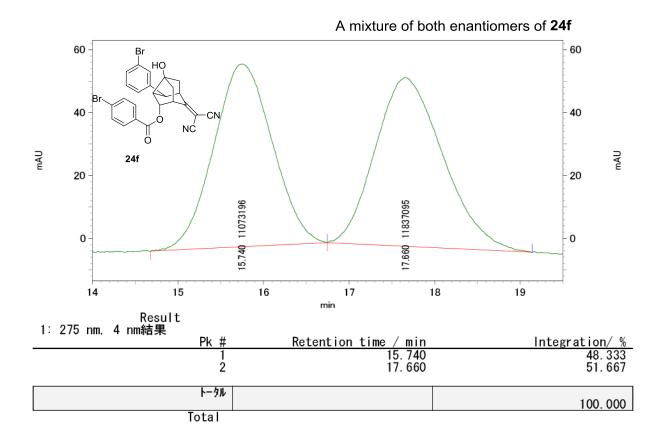


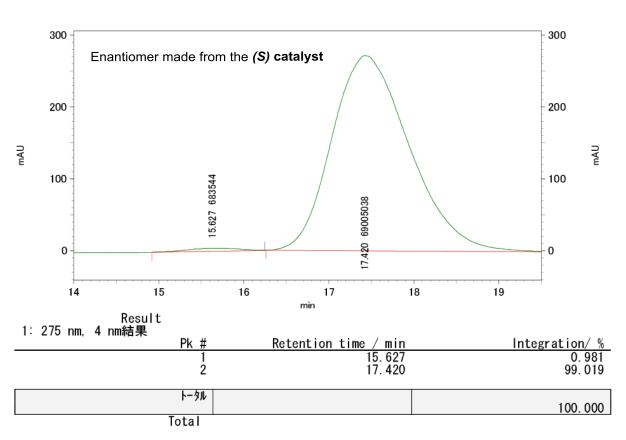




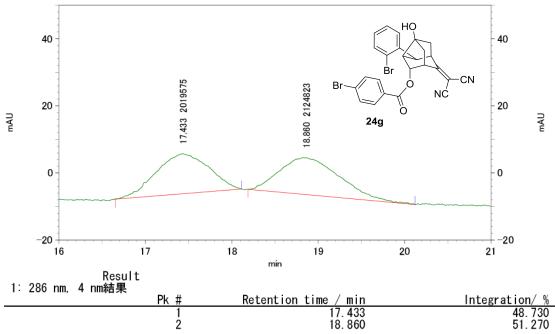


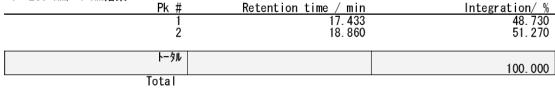


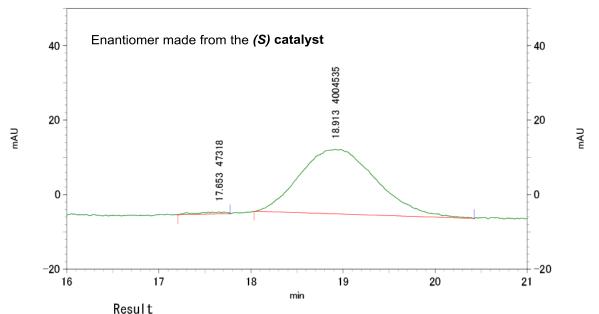


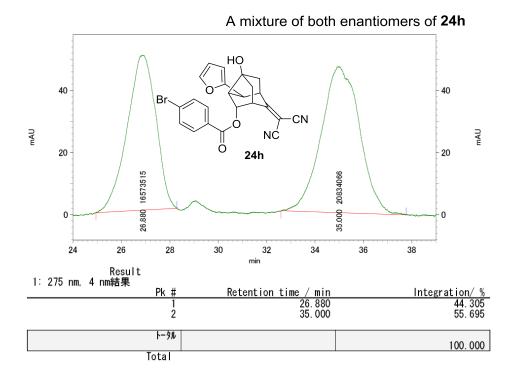


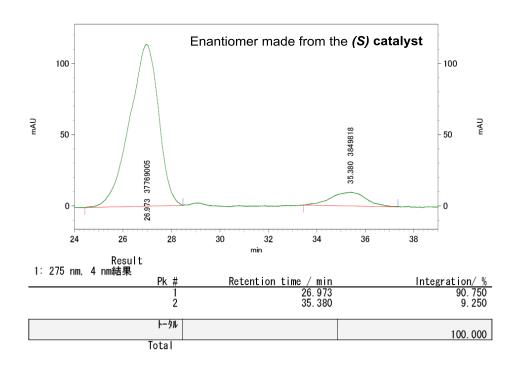
Total

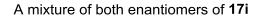


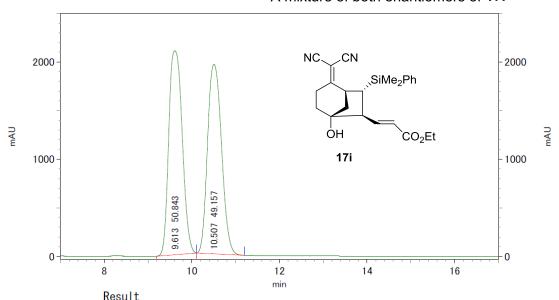


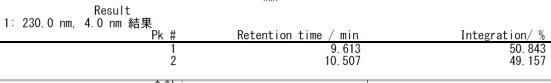


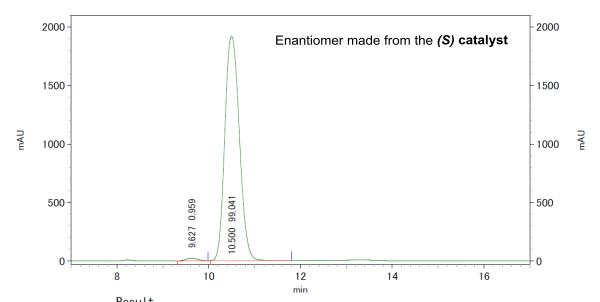

A mixture of both enantiomers of 24g

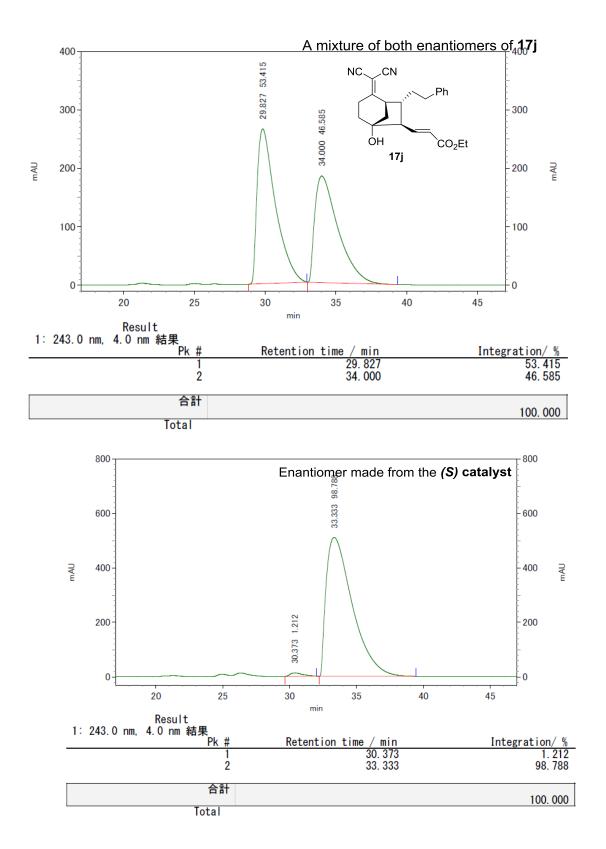







1:	286 nm, 4 nm結果	Pk #	Retention time / min	Integration/ %_
_		111 1		
		ı	17. 653	1. 168
		2	18. 913	98. 832
		_	10.010	00.002
		トータル		
		. ,		100.000
				100.000
	•	Γotal		





合計 100.000 Total

Result
1: 230.0 nm, 4.0 nm 結果
Pk # Retention time / min Integration/%
1 9.627 0.959
2 10.500 99.041

合計 100.000 Total

