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Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in
mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature
phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing
and reduced Th1 responses. However, an Mtb derived DfbpA attenuated mutant underwent limited phagosome maturation,
enhanced immunogenicity and was as effective as BCG in protecting mice against TB. To facilitate phagosome maturation
of DfbpA, we disrupted an additional gene sapM, which encodes for an acid phosphatase. Compared to the wild type Mtb,
the DfbpADsapM (double knock out; DKO) strain was attenuated for growth in mouse macrophages and PMA activated
human THP1 macrophages. Attenuation correlated with increased oxidants in macrophages in response to DKO infection
and enhanced labeling of lysosomal markers (CD63 and rab7) on DKO phagosomes. An in vitro Antigen 85B peptide
presentation assay was used to determine antigen presentation to T cells by APCs infected with DKO or other mycobacterial
strains. This revealed that DKO infected APCs showed the strongest ability to present Ag85B to T cells (.2500 pgs/mL in
4 hrs) as compared to APCs infected with wild type Mtb or DfbpA or DsapM strain (,1000 pgs/mL in 4 hrs), indicating that
DKO strain has enhanced immunogenicity than other strains. The ability of DKO to undergo lysosomal fusion and vacuolar
acidification correlated with antigen presentation since bafilomycin, that inhibits acidification in APCs, reduced antigen
presentation. Finally, the DKO vaccine elicited a better Th1 response in mice after subcutaneous vaccination than either
DfbpA or DsapM. Since DfbpA has been used in mice as a candidate vaccine and the DKO (DfbpADsapM) mutant is more
immunogenic than DfbpA, we propose the DKO is a potential anti-tuberculosis vaccine.
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Introduction

Tuberculosis (TB), a major disease due to Mycobacterium

tuberculosis (Mtb), kills about 1.8 million people and is the cause

of latent infection in about a third of the human population.

Control of tuberculosis has become more complicated due to

multi-drug resistant (MDR) and extensively drug resistant (XDR)

Mtb strains and AIDS. The attenuated Mycobacterium bovis Bacillus

Calmette-Guérin (BCG) vaccine, administered for fifty years to

over a billion people, does not protect against adult TB, while it

affords variable protection against childhood TB and tuberculous

meningitis [1,2].

During the last decade, many novel vaccines have been tested in

mouse or guinea pig models including DNA, subunit proteins,

recombinant BCG and attenuated strains of Mtb [3,4,5]. Most

DNA or subunit vaccines are based on immuno-dominant Mtb

proteins like MPT32, Phos, DnaK, GroES, MPT46, MPT53,

MPT63, 19 kDa lipoprotein, Antigen 85 (Ag85) complex (Ag 85A,

Ag85B and Ag85C), RD1 encoded proteins like early secretory

antigen target-6 (ESAT-6), culture filtrate protein 10 (CFP10), and

antigen TB10.4 [5]. Some have been tested as combinations and

others as fusion vaccines. Hybrid 1 (H-1) and HyVac-1 consisting

of Ag85B-ESAT-6, and Ag85B-TB10.4 [6,7] are some examples.

Most DNA and subunit vaccines show efficacy more or less similar

to BCG. However, recombinant BCG strains like BCG30 that

overexpresses Ag85B [8], BCG::RD1-2F9 that has RD1 region

integrated with chromosome to express ESAT-6 and related

proteins [9] and rBCG: DureC-Hly that expresses listeriolysin are

more effective than BCG in animal models [10,11]. Some of these

are in phase I and II clinical trials [5,12].

Since the RD1 region encoded major antigens ESAT-6 and

CFP-10 are deleted in BCG, efforts have been made to examine

whether attenuated mutants of wild type Mtb could serve as

candidate vaccines. We reported first that the fbpA gene disrupted

mutant (DfbpA) from wild type Mtb was attenuated for growth

within macrophages [13] and was an effective vaccine in mice

against tuberculosis [14]. Purine [15], leucine [16], proline/

tryptophan [17] and lysine [18] auxotroph vaccines were
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described earlier as being attenuated in mice as well as protective

against tuberculosis in mice. The pantothenate auxotroph vaccine

followed these mutants [19,20,21,22,23,24] and set the trend for

multiple candidate vaccines derived from Mtb. The latter now

include Mtb fad26 [25], mec-2/mec-3 [26], RD1/panCD [21], phoP

[27,28,29], 19 kDa [30], sigE [31] and secA2/lysA [32]. Despite

inducing better protection in animal models, Mtb derived

candidates are still far from human application due to safety

concerns. More importantly, there seems to be a decreased

understanding of the molecular basis of vaccine induced protection

in comparing BCG vs. Mtb derived vaccines.

Protective Th1 immune response against TB depends on CD4

T cells secreting IFN-c, IL-2 and TNF-a, and CD8 T cells

secreting similar cytokines and producing perforin and granulysin

[33,34,35]. CD4 and CD8 T cells are in turn, primed through

MHC-II and MHC-I dependent pathways of peptide presentation

by mycobacteria infected APCs. Furthermore, peptides are usually

generated by lysosomal proteases, which mean that mycobacteria

like Mtb or BCG vaccine need to be delivered into lysosomes for

efficient peptide production. Paradoxically, it is a well-established

fact that wild type Mtb and even BCG vaccine avoid phago-

lysosomal fusion [36,37,38,39,40,41].

It is becoming apparent that the inability of BCG vaccine to fuse

with lysosomes affects its efficacy. Initially, Pancholi et al. found

BCG growing in human monocytes sequestered from CD4 T cells

[42]. We reported that the presence of BCG in near neutral pH

phagosomes of macrophages leads to a reduced ability of

macrophages to present the immune-dominant antigen 85B

[43]. We also showed that Cathepsin-D was an important protease

that produced Ag85B and was not activated in neutral pH of the

phagosomes. Others reported that macrophages infected with

recombinant BCG expressing Cathepsin-S protease were able to

present Ag85B better since the novel BCG bypassed the need for

lysosomal fusion [44]. Finally, we reported that enhanced delivery

of BCG over-expressing Ag85B to lysosomes through autophagy

increased antigen presentation in vitro and vaccine efficacy in mice

[45]. Since Ag85B is a major component of anti-tuberculosis

vaccines, and anti-tuberculosis vaccines need to be processed

through the lysosomes to produce MHC-II dependent peptides,

we have proposed the ability of APCs to present Ag85B as a good

in vitro surrogate marker for vaccine efficacy.

In this context, very few attempts have been made to examine

Mtb derived vaccines for their ability to undergo PL fusion. Our

initial reports showed that Mtb derived attenuated DfbpA mutant

that lacks Ag85A of the Ag85 complex is immunogenic in mice,

partially phagosome maturation competent [13,14,46], protects

against tuberculosis, and is capable of priming T cells more

effectively than BCG. In this study, we examined the effect of

deleting another gene in DfbpA mutant to render it more

competent for PL fusion, presumably rendering it a better vaccine

candidate. We hypothesized that deletion of sapM gene in Mtb

DfbpA strain would further enhance the ability to undergo PL

fusion. The gene sapM codes for an acid phosphatase [47], which

plays a critical role during phagosome maturation by interfering

with the levels of phosphotidylinositol 3-phosphate (PI3P) on the

phagosomes [48]. PI3P is a lipid component required for docking

of rab and rab effector proteins which regulate endosome

trafficking and eventual acquisition of lysosomal constituents by

phagosomes. Mtb sapM has been shown to hydrolyze (aka.depho-

sophorylation) PI3P to avoid maturation of Mtb containing

phagosomes [48]. We demonstrate here that the DfbpADsapM

double knock out (DKO) mutant is not only more attenuated than

DfbpA, but is also PL fusion competent and consequently, more

immunogenic in macrophages and mice.

Results

Generation of DfbpADsapM Double Knockout (DKO)
Strain

The creation of Mtb DfbpA strain and its characterization in

macrophages and mice have already been described [13,14,46].

To generate an additional sapM gene deletion in DfbpA, the

plasmid construct pTBSAPM5 was electroporated into this strain

and cultures were plated initially on 7H10-TW-OADC agar with

hygromycin and X-gal to obtain hygromycin resistant blue

colonies. This selection resulted in several blue colonies out of

which one colony designated as DKO/C was subjected to further

screening to obtain sucrose resistant colonies lacking b-galactosi-

dase activity. This screening resulted in three white colonies

namely DKO/C1, DKO/C2 and DKO/C7. To verify if deletion

of sapM gene had occurred in these colonies, a Southern blot was

made with genomic DNA from these strains and also with Mtb

H37Rv and Mtb DfbpA. Upon hybridization with 3.3 kb radiola-

beled DNA probe containing sapM region, and subsequent

autoradiography, the blot showed two signals (2.1 and 2.9 kb)

for Mtb H37Rv and Mtb DfbpA strains and only one signal (4.4 kb)

for DKO strains (DKO/C1 is shown here) (Fig. 1a). These signals

were on the predicted line, based on restriction sites in this region

of the genome (Fig. S1), and indicate that sapM gene is deleted by

allelic replacement in DKO strain. To further confirm the deletion

of sapM in DKO strain, we also performed PCR using primers

specific for this region (please see Fig. S1 for the location of the

primers). While primers located at the 59end (RV3310EX1) and 39

end (RV3310EX2) of the sapM gene yielded the expected sizes of

900 bp and 165 bp DNA, respectively for the Mtb H37Rv and

DKO strain (Fig. 1b), an internal primer RV3310RT2 with the

primer at the 59end of sapM (RV3310EX1) failed to amplify a

530 bp product in the DKO strain (Fig. 1c), again reinforcing the

deletion of sapM gene in this strain. Finally, we determined

whether the deletion of sapM gene in DKO strain led to the

disruption of the expression of this gene by RT-PCR, using the

internal primers RV3310RT1 and RV3310RT2. This revealed

that only cDNA obtained from Mtb H37Rv and Mtb DfbpA strain

only yielded the expected size DNA fragment (350 bp) but not the

DKO strain (Fig. 1d), thus confirming the absence of sapM

expression in DKO strain. This concluded the generation of Mtb

fbpA/sapM double knockout (DKO) strain.

DfbpADsapM DKO Strain is Attenuated in Macrophages
The ability of mycobacterial strains to grow inside macrophages

is a virulence trait, and macrophages are routinely used to

determine their virulence [14,46]. Fig. 2a & d illustrate the

growth of strains within mouse bone-marrow derived macrophag-

es (BMs) and human THP1 macrophages. The DKO strain was

relatively attenuated in both BMs and THP1 macrophages,

compared to DfbpA and DsapM mutants or the wild type Mtb

H37Rv (Fig. 2a,d). To determine if the enhanced attenuation of

DKO was due to sapM, we complemented the DKO mutant strain

with sapM gene and named the strain as DKOcom. BMs infected

with the DKOcom showed a growth curve similar to that of its

parental strain DfbpA (Fig. S2), indicating that the increased

attenuation of DKO was due to deletion of sapM.

Since, the intracellular death of mycobacteria is partly due to

oxidative radicals like reactive oxygen species (ROS) and nitric oxide

(NO), macrophages and culture supernatants were evaluated

respectively for ROS using a fluorescent probe and NO derived

nitrite with Griess reagent. The BMs showed no significant

differences in ROS responses but a marginally elevated NO

response was induced by the DKO strain (Fig. 2b,c). In contrast,

fbpA/sapM Mutant Is Attenuated & Immunogenic
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the ROS response was elevated for THP1 macrophages infected

with DKO compared to other strains (Fig. 2e). There was no

significant NO response observed among THP1 macrophages

infected with either wild type or mutants (not shown). This

observation was consistent with the notion that human macrophages

produce barely detectable NO during mycobacterial infection [49].

ROS cascade begins with the generation of superoxide by

phagocyte oxidase [43]. Superoxide and inducible nitric oxide

synthase derived NO have bacteriostatic and bactericidal activity,

respectively against mycobacteria. To confirm the susceptibility of

DKO to oxidants, the superoxide and NO donor, 3-morpholino-

sydnonimine (SIN-1) was used to treat a highly viable culture of

wild type and mutants in broth culture. Fig. 2f shows that DKO

strain was again more susceptible to oxidants compared to others.

These data suggest that the decreased growth of DKO was

attributable in part to elevated oxidant responses in macrophages.

Similar studies were done using macrophages infected with DKO,

although it was difficult to rule out artifacts arising due to the dose-

dependent toxic effects of oxidants on macrophages.

DfbpADsapM DKO Strain is Processed Efficiently Through
Phago-lysosomal Fusion

Although Mtb H37Rv resists phago-lysosomal fusion [37,41,50],

certain mutant Mtb strains have a decreased ability to prevent PL

fusion, and this decreased ability correlates with reduced

intracellular viability for these mutants [46,51]. Since lysosomes

present an acidified hostile environment, and the parent DfbpA

mutant was partially PL fusion competent, we reasoned that PL

fusion is one additional mechanism through which, intracellular

viability of DKO strain could be reduced. To test this hypothesis,

BMs and THP1 macrophages were infected with either GFP

tagged Mtb wild type (H37Rv) or Oregon green stained mutants

(DfbpA, DsapM and DKO).The PL fusion was monitored using

microscopic colocalization of lysosomal markers like CD63 and

rab7 (Fig. 3a). An antibody to lysosome associated membrane

protein-1 (LAMP-1), was used as a positive control since LAMP-1

is present on all mycobacterial phagosomes but at varying levels

between virulent and avirulent bacteria [46]. The DKO strain

extensively colocalized with LAMP-1 followed by DsapM, DfbpA

and H37Rv (Table, Fig. 3b). Significantly, CD63 and rab7 were

found to be more enriched on DKO phagosomes compared to

either DsapM or DfbpA or H37Rv. Since CD63 and rab7 are

definitive markers of lysosomes, and LAMP1 is present both on

late endosomes and lysosomes, these data indicated that DKO

phagosomes are lysosome fusion competent. It was also significant

to note that DsapM and DfbpA stained for CD63 and rab7 more

densely than wild type H37Rv, indicating that deletion of either

fbpA or sapM renders these mutants comparatively more lysosome

fusion competent than wild type H37Rv (Fig. 3b).

Figure 1. Southern and PCR analyses of M. tuberculosis strains. a). Southern analysis of genomic DNA of M. tuberculosis (Mtb) wild type
(H37Rv), fbpA mutant (DfbpA) and fbpA/sapM double knock out (DKO) strains. Genomic DNA was digested with NdeI and BamHI, separated on 1%
agarose gels and transferred to nitrocellulose membranes. Membranes were hybridized with [32P]dCTP labeled 3.3 kb DNA fragment containing sapM
region and signals captured by autoradiography. Arrows indicate the sizes of the signals. b–c). PCR analysis for sapM region in M. tuberculosis H37Rv,
DfbpA and DKO strains. PCR was performed using standard protocols with genomic DNA from the above strains as templates. Primer pairs
RV3310EX1 and Rv3310EX2 (b) and RV3310EX1 and RV3310RT2 (c) were used to amplify DNA. d. RT-PCR analysis for sapM expression in M.
tuberculosis H37Rv, DfbpA and DKO strains. Total RNA was used to synthesize cDNA from these strains. RT+ and RT- indicate cDNA templates
generated in the presence or absence of reverse transcriptase (Superscript II; Invitrogen). The products obtained from both reactions were used as
templates in RT-PCR to prove the absence of DNA contamination in total RNAs used for reverse transcriptions. PCR was performed using primers
RV3310RT1 and RV3310RT2. MW: molecular weight marker; arrow indicates the size of the band. PCR products were separated on 1% agarose gels.
doi:10.1371/journal.pone.0036198.g001
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DfbpADsapM DKO Strain is More Immunogenic in
Macrophages and in Mice

Since DKO strain showed increased PL fusion and enhanced

susceptibility to killing within macrophages, we hypothesized that

DKO could be more immunogenic since PL fusion leads to

degradation of mycobacterial antigens facilitating their presenta-

tion through the MHC-II pathway. When mycobacteria infect

macrophages, an Ag85B derived peptide-25 epitope is rapidly

presented to T cells [52]. We demonstrated that, in vitro

presentation of Ag85B is a measure of immunogenicity of

mycobacteria in macrophages [43] and PL fusion of mycobacteria

within macrophages enhances Ag85B production predicting

vaccine efficacy against tuberculosis [45]. In vitro antigen

presentation using dendritic cells and macrophages, indicated that

the DKO strain was more efficiently processed since overlaid T

cells secreted more IL-2 (.2500 pgs/mL in 4 hrs) than either

DsapM (1000 pgs/mL) or DfbpA (950 pgs/mL) infected APCs

(Fig. 4a).

Finally, in vitro immunogenicity was correlated with the ability of

DKO to prime Th1 immunity in vivo. Mice were vaccinated

subcutaneously with 106 CFU of mutants and analyzed for Ag85B

specific T cells using Elispot. The DKO strain again induced an

increase in the number of Ag85B specific T cells in mouse spleens

(Fig. 4b). These data indicate that the DKO (DfbpADsapM) has a

highly immunogenic phenotype in macrophages and DCs as well

as in mice. It may be noted that the numbers of spot forming cells

(SFU) increased over 14 days followed by a decline. This is

consistent with the splenic immune response following mycobac-

terial vaccines. For example, SFUs for Ag85B increase after a

single vaccination with BCG over 2 weeks, and then decline [45].

Discussion

The use of BCG as a vaccine against tuberculosis is mainly due

to its genetic identity (over 90%) with Mtb, including genes

encoding immunodominant antigens. However, comparison of

genome sequences of M. bovis BCG with that of Mtb in late 90s

raised several new issues. It was noticed that M. bovis, the parent

strain of BCG, lacked approximately 120 ORFs in comparison

with Mtb genome, which includes sequences that code for some

regulatory proteins [53,54]. In addition, BCG lacked the RD1

region that encodes the major immunogens ESAT-6 and CFP-10

[55,56]. These differences indirectly implied that the antigenic

profiles of BCG vaccine would vary considerably from Mtb, and

BCG might not fully protect against tuberculosis. Attenuated

mutants from wild type Mtb were therefore generated to be used as

vaccines against tuberculosis [23]. Although the attenuated Mtb

mutants reported so far have been found to be variably effective

against experimental tuberculosis, some candidates have shown

better efficacy against tuberculosis in mice compared to BCG

vaccine. The selection of these vaccines was based primarily on the

growth attenuation within macrophages [21,23,24], although

some induced better levels of IFN-c secreting T cells in mice

Figure 2. The DfbpADsapM double knockout (DKO) strain is attenuated in macrophages and induces stronger oxidant responses
that reduce its viability: Macrophages from C57Bl/6 mouse bone marrow (BMs) and human THP1 macrophages (pre-activated with phorbol ester)
were infected with mycobacteria (MOI 1:1), washed, incubated, lysed and plated for viable colony counts (CFUs). a). The DKO strain is more
attenuated compared to wild type Mtb in BMs. b-c) Intracellular reactive oxygen species (ROS) and nitric oxide (NO) were measured respectively
using dihydro-dichloro-fluorescein acetate (DCFDA) fluorescent probe and Greiss reagent. DKO induced elevated NO responses (p value by t test;
panel c) but not ROS (panel b). d-e) DKO was attenuated in THP1 macrophages compared to DfbpA, DsapM or wild type H37Rv in BMs (p,0.01) that
correlated with increased ROS responses (panel e). Nitric oxide responses of THP1 were not detectable (not shown). f). Mycobacteria (105 CFU/mL;
baseline shown as dotted line) were exposed to the bactericidal action of the superoxide and NO donor 3-morpholinosydnonimine (10 mM; SIN-1) in
7H9 broth and viable counts determined at intervals (24 and 72 hr post treatment) by plating on 7H11 agar. DKO is markedly susceptible by 72 hrs in
vitro to the oxidants released by SIN-1 (p value by t test).
doi:10.1371/journal.pone.0036198.g002
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Figure 3. The DfbpADsapM double knockout (DKO) strain shows enhanced lysosomal localization in mouse macrophages: gfpMtb
H37Rv or Oregon green stained mutant strains were phagocytosed into BMs, incubated, fixed 24 hrs later and stained with primary antibodies to
lysosomal markers LAMP1 (IDB4), CD63 and rab7 followed by Texas red conjugated conjugates. Mycobacteria colocalizing with antibodies were
scored using a Nikon fluorescence microscope and Metaview deconvolution software. a) Illustration that the DKO mutant colocalizes better with rab7
lysosomal marker. b) Percent colocalization was determined by counting 200 macrophages per well each with 1–3 mycobacteria and averaging
counts from triplicate chambers (SD). One of three similar experiments is shown. Text below the bar diagram indicates the colocalization of each
marker in relation to different strains (*p,0.01, t test).
doi:10.1371/journal.pone.0036198.g003
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compared to BCG. Nevertheless, there are no striking differences

in modulation of host immune system by these vaccines and the

parameters of Mtb-derived vaccine induced immunogenicity

continue to be unclear. We sought to develop a novel DKO

strain that is both attenuated and immunogenic.

The criteria for defining immunogenicity of a vaccine have

remained diffuse and a surrogate marker has not been available to

predict vaccine efficacy. Our initial studies proposed an in vitro

Ag85B presentation as a surrogate marker to predict the

immunogenicity of genetically altered BCG vaccine strains and

mutants from wild type Mtb. Initially described by Harding’s

group, this assay depends on the rapid processing and presentation

of the immuno-dominant Ag85B by APCs to T cells that secrete

IL-2 upon antigen recognition. This assay has also been used by

others to monitor antigen processing within APCs [57]. We found

that the ability of mycobacterial vaccines to produce Ag85B

epitope within APCs generally correlated with the ability to

protect against tuberculosis in mice [43,44,45,58]. In this study, we

therefore used the ability of APCs to process Ag85B as a marker

for determining the immunogenicity of DKO. This seemed to be a

valid approach since MHC-II-bound peptides drive CD4-depen-

dent anti-tuberculosis TH1 response, and CD4 T cell deficient

human HIV-1 infected patients rapidly succumb due to tubercu-

losis [59].

We propose that the increased processing of DKO in

macrophages that led to enhanced in vitro antigen presentation,

was due to an increased delivery of DKO to the lysosomes, which

in turn, was due to the double-gene deletions. In our earlier

studies, we found that DfbpA phagosomes fused readily with late

endosomes but still avoided lysosomes [46]. This was presumably

due to the phosphatase like activity of fbpA enzyme (unpublished

observations). By deleting sapM encoded phosphatase, we

enhanced the ability of DKO to bypass maturation inhibition

and DKO showed enhanced lysosomal localization in macro-

phages (Fig. 3). Thus, our intended plan to disrupt sapM and alter

trafficking of DKO succeeded.

It should be noted however that, a previous attempt to disrupt

sapM, only marginally affected the phenotype of BCG vaccine

[60]. In this regard, we propose following explanations. First, sapM

presumably needs to be released out of the phagosomes to cause

dephosphorylation of PI3P, and BCG phagosome membrane is

not known to be easily permeable. Cloning of listeriolysin into

BCG for example, enhances antigen release from phagosomes of

BCG and better CD8 T cell responses [10]. Secondly, we

disrupted sapM within DfbpA which is known to mature better than

wild type Mtb H37Rv and deletion of sapM had a complementing

effect on its ability to fuse with lysosomes [46]. On the other hand,

reconstitution of sapM increased the growth within macrophages of

the complemented DKOcom strain.

We therefore propose a novel concept that, the immunogenicity

of mycobacterial vaccine candidates can be enhanced by rational

deletion of mycobacterial genes that adversely regulate phagosome

traffic. This approach is in contrast with earlier approaches, where

the immunogenicity of candidate vaccines was enhanced by

adding more genes through recombinant DNA technology

[8,9,10].

Enhanced delivery to lysosomes and the apparent susceptibility

of DKO to oxidants rendered the mutant more attenuated for

growth in macrophages. This may be a benefit since candidate

vaccines need to be safer in animal models and humans. In

summary, our study suggests that Mtb derived candidates

developed with emphasis on enhanced antigen processing are

more likely to be useful vaccines against tuberculosis, and DKO

mutant appears to be a potential vaccine candidate.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations of the Guide for the Care and Use of

Laboratory Animals of the National Institute of Health. The

protocol was approved by the Institutional Animal care and Use

Committee of the University of Texas Health Science Center,

Houston (Protocol number AWC-09-175 under Animal Welfare

Assurance Number A3413-01).

Figure 4. The DfbpADsapM double knockout (DKO) strain is
more immunogenic in mouse macrophages and elicits stronger
immune responses in mice: a) BMs and DCs from C57Bl/6 mice were
infected with mycobacteria (MOI 1:1), washed and overlaid with
Antigen 85B specific BB7 hybridoma T cells (1:20 ratio). After 4 hrs,
the supernatants collected were tested for IL-2 using sandwich ELISA.
DKO induces BMs and DCs to prime T cells to secrete larger amounts of
IL-2, indicating a better processing of DKO for Ag85B (4 experiments,
SEM, * ,0.009 vs. DfbpA or DsapM; by t test). b). C57Bl/6 mice (3 per
group) were vaccinated with mycobacterial strains at 106 CFU per
mouse given once subcutaneously. At time intervals, the spleen derived
T cells were tested for Ag85B responsive T cells using IFN-c coated
plates and Elispot assay. DKO vaccination leads to a larger expansion of
Ag85B specific T cells. All Elispot numbers represent Ag85B stimulated
numbers subtracted from KLH protein stimulated T cells. T cells from
naı̈ve mice were stimulated with KLH alone (3 separate experiments, 3
mice per group per time point).
doi:10.1371/journal.pone.0036198.g004
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Bacterial Strains, Media, and Growth Conditions
All bacterial strains, unless specified, were grown at 37uC.

Escherichia coli strain DH5a was used to subclone M. tuberculosis

DNA. LB broth or LB agar plates were used to grow E. coli. The

above media with the antibiotic ampicillin (100 mg/mL) or

kanamycin (25 mg/mL) or hygromycin (100 mg/mL) were used

to grow E. coli strains containing plasmids. Mtb H37Rv (27294) is

from ATCC. M. tuberculosis DfbpA strain is a derivative of H37Rv,

which we published earlier [13]. M. tuberculosis DsapM strain was

from NIH TB resources Center at Colorado State University

(currently BEI, ATCC). Middlebrook 7H9 broth medium

containing OADC (10%) and Tween (0.05%) (7H9 broth), or

Middlebrook 7H10 agar medium containing OADC (10%) and

Tween (0.05%) (7H10 Agar) or Middlebrook 7H11 agar medium

containing OADC (10%) (7H11 Agar) was used to grow M.

tuberculosis strains. Kanamycin (25 mg/mL) or hygromycin (50 mg/

mL) was added to the Middlebrook media to grow M. tuberculosis

strains harboring plasmids.

Disruption Plasmid for M. tuberculosis sapM
To disrupt sapM (Rv3310) gene in Mtb DfbpA strain, we first

downloaded the DNA sequences of sapM gene and its adjacent

region from NCBI databases. Based on the sequences, we

synthesized four oligonucleotide primers namely RV3310A,

RV3310B, RV3310C and RV3310D (Table 1). Synthesis of

oligonucleotide primers were performed at the Center for DNA

Technology, University of Texas Health Science Center at San

Antonio. While the primers RV3310A, RV3310B were designed

to amplify the 59 prime region of sapM and its upstream 1306 bp

fragment (Frag I), primers RV3310C and RV3310D were

designed to amplify the 39 region of sapM and its downstream

934 bp fragment (Frag II). Also primers Rv3310B and RV3310C

were engineered to have StuI sites in them. Using these primers

and Mtb H37Rv DNA, we amplified fragments I and II in PCR

and these fragments were cloned into pCR2.1 Vector (Invitrogen)

to create plasmids pTBSAPM1 and pTBSAPM2, respectively.

The fragment II from plasmid pTBSAPM2 was released by

cutting with StuI and BamHI and cloned into the pTBSAPM1 cut

with the same restriction enzymes. The resulting plasmid

pTBSAPM3 has a DNA fragment, which has upstream and

downstream regions of sapM but with substantial deletion in sapM

coding region (Fig. S1). The DNA fragment in pTBSAPM3 was

released from the plasmid by digesting the plasmid with restriction

enzymes HindIII and NotI and the released fragment cloned into

p1NIL to create plasmid pTBSAPM4. A 7939 bp PacI fragment,

that contains sacB and lacZ genes and a gene for hygromycin

resistance, was then isolated from the plasmid pGOAL19 [61] and

cloned into the PacI site of the plasmid pTBSAPM4. The resulting

plasmid pTBSAPM5 was used to generate a markerless sapM

mutant in Mtb DfbpA strain. Plasmid DNA from E. coli was isolated

by using a Qiaperp kit (Qiagen Inc.,Valencia, Calif.).

Electroporation and Screening for the DfbpADsapM
Mutant

To obtain DfbpADsapM double mutant, we used DfbpA strain

reported earlier [13]. This mutant strain was grown to mid-

logarithmic phase (OD600 = 0.8–1.0) in 7H9 broth and competent

cells prepared according to Jacobs et al. [62]. Four hundred

microliter of Dfbp cells were mixed with 5 mg pTBSAPM5 DNA,

linearized with NaOH treatment, in 0.2 mm cuvettes (BioRad)

and electroporated using standard protocols. After electroporation,

1 mL 7H9 medium without any antibiotic was added to each

cuvette and left overnight at 37uC. Then, the cell suspension from

the cuvettes was plated on 7H10 agar plates containing the

antibiotic hygromycin (50 mg/mL) and X-gal (40 mg/mL). Trans-

formants showing blue color, resulting from single crossover event,

were selected after three weeks of incubation at 37uC. Further

screening of the transformants for the deletion of sapM region was

performed by a two-step selection method [61]. First, the blue

colonies were streaked onto 7H10 agar plates containing no

antibiotics. Following growth, a loop-full of cells were resuspended

into liquid medium, diluted serially to several folds and plated onto

7H10- agar plates containing 2% sucrose. Sucrose resistant

colonies resulting from double crossover event were streaked onto

plates with or without hygromycin. Colonies showing no resistance

to hygromycin were finally streaked onto plates containing

kanamycin, since fbpA mutant is kanamycin resistant. The DNA

from these colonies were further examined in Southern and PCR

to confirm the deletion of sapM region.

Complementation of DKO Strain
To complement the DKO strain with sapM gene, we

constructed an integration plasmid carrying sapM gene as follows.

First, we amplified the whole sapM gene and its upstream

promoter region (2116 bp) by PCR using primers RV3310A

and RV3310EX2 (Table 1) and Mtb H37Rv genomic DNA. The

fragment was cloned in pCR2.1 vector to result in plasmid

pTBSAPMA. This plasmid was digested with KpnI and XbaI to

release the fragment which was cloned in KpnI and XbaI digested

pMV306H, a derivative of pMV306 in which kanamycin resistant

marker is replaced with hygromycin marker, to get plasmid

pM306SAPMA. This plasmid was transformed into DKO/C1

(DfbpA/DsapM double mutant) strain by electroporation. The

colonies were selected in 7H10 hygromycin plates and the

integration of the plasmid was confirmed by Southern blot (data

not shown). The resulting strain was named as DKOcom.

Southern and PCR Analysis
To confirm the deletion of sapM gene in Mtb DfbpA strain, we

performed Southern analysis [63]. We isolated chromosomal

DNA from Mtb H37Rv, Mtb DfbpA and Mtb DfbpADsapM strains

using CTAB (cetyltrimethylammonium bromide) method [64] and

3 mg of each DNA was digested with NdeI and BamHI. The

digested fragments were separated on 1% agarose gel and

Southern transferred to nitrocellulose membrane (BioRad). The

blot was hybridized with a [a-32P]dCTP labeled probe generated

by random primer method using the 3300 bp DNA fragment

(generated by primers Rv3310A and Rv3310D) as template.

Southern hybridization and final washing of the blot were

performed at 68uC. In addition to Southern, we also carried out

Table 1. Oligonucleotide primers used in this study.

Primer Primer sequence (59––39)

Rv3310A TGGTGTACGCCTACGAGGAA

Rv3310B TAGGCCTAGCAACGATGCTGCCAGGAC

Rv3310C GAGGCCTCTACAACGTGCTGTCCACAT

Rv3310D TCGGTCGATCATCCAGGTAA

Rv3310EX1 CATGAGGATCCCATGCTCCGCGGAATCCAGGCTC

Rv3310EX2 CGAGGATCCCTAGTCGCCCCAAATATCGGTTATTGG

Rv3310RT1 GTCATCGTGGTGGAGGAGAA

Rv3310RT2 GTCGTCGGCACGTTACTGAA

doi:10.1371/journal.pone.0036198.t001
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PCR to confirm the deletion of sapM region in Mtb DfbpADsapM

strain using standard protocol [63] with Taq polymerase (Perkin-

Elmer, Foster City, Calif.). We used primers Rv3310EX1,

Rv3310EX2 and Rv3310RT2 (Table 1) for this analysis.

RNA Isolation and RT-PCR
Total RNA from Mtb strains was isolated using Tri reagent as

described previously [65]. cDNA from total RNA was synthesized

using Superscript (Invitrogen) and random hexamers. PCR

analysis was performed with primers RV3310RT1 and

RV3310RT2 (Table 1) and using the cDNA from the previous

step as the template for the reaction.

Macrophages and T Cells
Bone marrows from C57BL/6 (4–8 weeks) mice were cultured

for 7–10 days in Iscove’s modification of Dulbecco’s modified

Eagles medium (IDMEM) with 10% FBS and 10 ng/mL GM-

CSF (Cell Sciences, USA). The macrophages (BMs) and dendritic

cells (DCs) were purified using CD11c bead fractionation kit

(Miltenyi Inc, USA) yielding .95% pure DCs and .95%

adherent BMs (effluent of bead fractionation) [46]. They were

plated onto 24 well plates (for colony counts, oxidant measure-

ment) or 8-well slide chambers (for antibody stains) and were

rested in IDMEM without GM-CSF before infections. In addition

to mouse derived cells, phorbol mystyl acetate (PMA) (10 nM)

activated human THP1 cells were used to test the intracellular

growth of mycobacteria. The T cell hybridoma (BB7) cell line

specific for an epitope (241–256) of Ag85B of Mtb was used in

antigen presentation assays (kindly provided by Dr. C. Harding,

Case Western University, Cleveland, OH). The culture of these

cell lines were described earlier [43,46].

Determination of Intracellular Growth or Survival of Mtb
Strains

To determine the growth curves in macrophages, the wild type

and mutants were used to infect (MOI of 10) naı̈ve BMs and PMA

activated THP1 cells using procedures described earlier

[14,43,46]. Phagocytosis was allowed to take place for 4 h, after

which the monolayers were washed to remove the non-phagocy-

tosed bacteria. One mL of fresh IDMEM medium was added to

each well and the culture plates were incubated at 37uC in the

presence of 5% CO2. After each time point, macrophages were

harvested and lysed with 0.05% sodium dodecyl sulfate (SDS) for

15 min at room temperature. Tenfold dilutions of the lysed

macrophage suspensions were made in PBS and 100 mL of each

dilution was examined for Mtb growth on triplicate 7H11 agar

plates that were incubated for 3 weeks at 37uC. Each Mtb strain

was examined in quadruplicate wells and three independent

experiments were performed.

Oxidant Assay and Oxidant Susceptibility of
Mycobacteria in Macrophages

BMs and THP1 macrophages infected with mycobacteria were

tested for ROS using the fluorescent probe H2-dichlorodihydro-

fluorescein diacetate (H2DCFDA)(Invitrogen, USA) that is cleaved

within the cells by esterases and oxidized into fluorescent DCF

reactive oxygen species (ROS) induced by infection [43].

Fluorescent DCF was measured by reading BMs or THPs of 24

well plates using in Ascent fluoroscan at 485 nm/530 nm.

Triplicate wells of macrophages were read for each mutant at

different time intervals in two separate experiments and plotted as

average fluorescence units (AFU). The enzyme inducible nitric

oxide synthase generated nitric oxide (NO) was measured in the

supernatants of similar cultures using Griess reagent and expressed

as mM nitrite in the medium. The susceptibility of mycobacteria to

superoxide and NO released by the donor 3-morpholinosydnoni-

mine N-ethylcarbamide (SIN-1)(Invitrogen, USA) was determined

by incubating 105 CFU/mL of mycobacteria in a broth culture

with 10 mM of SIN-1 for 24 and 72 hrs and plating organisms on

7H11 agar for viable counts.

Phago-lysosomal Localization of Mtb Strains
Macrophages were infected with GFP expressing Mtb H37Rv

and Oregon green stained DfbpA, DsapM and DKO (DfbpADsapM)

strains. These strains were sonicated slightly to disperse the

bacteria, centrifuged at 500 rpm and the supernatant containing

the single CFUs were used for infection. BMs of slide chambers

were infected with Mtb strains (MOI, 1) for 4 h at 37uC in the

presence of 5% CO2, washed, and incubated with fresh medium

up to 72 h. Washing, fixing of the cells, staining for different

markers and mounting of the slides were performed as reported

earlier [66]. Texas red conjugated antibodies to primary

antibodies were from Jackson Immunochemicals (West Grove,

PA). Colocalization was examined and scored using a Nikon

fluorescence microscope equipped with a Metaview deconvolution

software as described [67].

In vitro Antigen 85B Presentation Assay
Monolayers of BMs were infected with Mtb strains for 4 hrs,

(MOI 1:5) washed and overlaid with Ag85B specific BB7 T cells

(1:20 ratio) as described earlier [43]. Four or 18 hrs later the

supernatant was assayed for IL-2 using a sandwich ELISA kit (R

and D systems, CA) and expressed as pg/mL/106 T cells. This

assay has been validated earlier by the lack of antigen presentation

when macrophages are infected with Mtb strains deleted for

Ag85B antigen (DfbpB) or when MHC class II deficient PMJ2-R

macrophages are used as antigen presenting cells [43]. Two or

four separate experiments were performed for each Mtb strain

using triplicate wells for each assay and the data were averaged for

p value calculations.

Elispot Assay
C57Bl/6 mice (3 per group per time point per strain) were

immunized s.c. with 106 CFU of Mtb strains once and after 7,14

and 21 days, the splenic cells were depleted of non-T cells using a

pan-T cell kit (Miltenyi Inc). A 96 well plate coated with anti-

mouse IFNc (Elispot kit, Ebiosciences) was washed and overlaid

with 105 enriched T cells from spleens of mice along with T cells

from naı̈ve mice. The wells were added with 100 ng of Ag85B

purified protein per well (BEI,ATCC). Control wells received

100 ng/mL of KLH protein and Elispots from this control were

subtracted from those induced by Ag85B restimulation and

expressed as spot forming cells per 105 T cells. Three separate

experiments were performed and data averaged.

Supporting Information

Figure S1 Schematic showing the restriction sites and
primers around sapM region. a). sapM region in the genome

of Wild type (H37Rv) M. tuberculosis. Stippled box represents the

sapM gene; empty boxes on either side represent the flanking

regions; BamHI, EcoRI, NdeI, NotI and PstI are restriction

enzymes around sapM gene. Numbers above the small black boxes

indicate the location of the different primers to amplify the DNA

or cDNA. 1, RV3310A; 2, RV3310B; 3, RV3310C; 4, RV3310D;

5, RV3310EX1; 6, RV3310EX2; 7, RV3310RT1; 8,

RV3310RT2. Lines below the boxes indicate the sizes of DNA
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fragments obtained when cut with BamHI and NdeI. b). PCR

fragments amplified from the sapM region. FragI was amplified by

primers RV3310A and RV3310B and FragII was amplified by

primers Rv3310C and RV3310D. Stippled boxes represent the

sapM gene; empty boxes on either side represent the flanking

regions. C). The sapM region cloned into plasmid pTBSAPM5.

Stippled box represents the sapM gene; empty boxes on either side

represent the flanking regions. D. SapM region in the chromosome

of DKO (fbpA/sapM double knock out) strain. Stippled box

represents the sapM gene; empty boxes on either side represent the

flanking regions BamHI, EcoRI, NotI and PstI are restriction

enzymes around sapM gene. Line below the boxes represent the

size of the DNA fragment obtained when cut with BamHI.

(TIF)

Figure S2 Viability of DKO strain complemented with
sapM gene (DKOcom) in bone marrow derived macro-
phages. Macrophages from C57Bl/6 mouse derived bone

marrow (BMs) were infected with mycobacteria (MOI 1:1),

washed, incubated, lysed and plated for viable colony counts

(CFUs). Results indicate that DKOcom strain shows a growth

pattern similar to that of its parental strain DfbpA, which is higher

than that of DKO strain (P#0.001).

(TIF)
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