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Abstract: The age of the Internet of Things (IoT) and smart cities calls for low-power wireless com-
munication networks, for which the Long-Range (LoRa) is a rising star. Efficient network engineering
requires the accurate prediction of the Received Signal Strength Indicator (RSSI) spatial distribution.
However, the most commonly used models either lack the physical accurateness, resolution, or
versatility for cityscape real-world building distribution-based RSSI predictions. For this purpose,
we apply the 2D electric field wave-propagation Oscillator Finite-Difference Time-Domain (O-FDTD)
method, using the complex dielectric permittivity to model reflection and absorption effects by
concrete walls and the receiver sensitivity as the threshold to obtain a simulated coverage area in a
600 × 600 m2 square. Further, we report a simple and low-cost method to experimentally determine
the signal coverage area based on mapping communication response-time delays. The simulations
show a strong building influence on the RSSI, compared against the Free-Space Path (FSPL) model.
We obtain a spatial overlap of 84% between the O-FDTD simulated and experimental signal cover-
age maps. Our proof-of-concept approach is thoroughly discussed compared to previous works,
outlining error sources and possible future improvements. O-FDTD is demonstrated to be most
promising for both indoors and outdoors applications and presents a powerful tool for IoT and smart
city planners.

Keywords: LoRa; RSSI; RF propagation; O-FDTD simulations; Internet of Things (IoT); smart city

1. Introduction and Related Work

The age of smart devices has arrived. With the increasingly powerful paradigm of the
Internet of Things (IoT), smart city environments have become a pressing need for wireless
technologies that enable efficient communication between distant objects [1,2]. Long Range
(LoRa) [3] technology stands out for its combined low-power requirements and long-range
coverage compared to other IoT communication protocols such as Bluetooth, Wi-Fi, ZigBee,
or GSM. Such features are owed to its chirped spread spectrum and large bandwidth,
making it less prone to interference and distance-fading. Examples of previous works
deploying LoRa include monitoring systems for energy [4], environmental [5], and road
condition monitoring [6], and flood prevention [7], among many other applications [8,9].
LoRa’s characteristics have enabled implementations using very low-power mobile [10]
and even battery-free [6,11] devices. The main disadvantage of LoRa technology is the
tradeoff between distance coverage and the data transfer rate. Strategies for tackling
this limitation include LoRa variants such as the Carrier Sense Multiple Access (CSMA)
mechanism, which has enabled long-range image transmission [12].
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Unfortunately, a more extensive communication coverage range makes it difficult to
accurately predict the signal strength within the covered area, which is crucial for an effi-
cient network installation and hotspot deployment. Thus, understanding the propagation
of LoRa signals is immensely relevant nowadays, at the birth of smart cities and in the
future, when IoT-enriched technologies promise to prevail.

In this work, we predict the coverage map of a LoRa network with simulated Received
Signal Strength Indicator (RSSI) maps obtained using a recently developed electric-field
propagation method known as the Oscillator Finite-Difference Time-Domain (O-FDTD) [13].
We propose to use the dielectric permittivity of the absorbing buildings as a single pa-
rameter to model the presence of concrete walls, using real-world building distribution
data extracted from Google Maps. In this manner, the low computational cost O-FDTD
simulation method provides high-resolution cityscape LoRa RSSI maps. Also, we develop
a simple experimental procedure to determine the coverage area based on monitoring
the time of arrival of LoRa packets sent with a constant period by a moving transmitter.
We use the area surrounding the university campus as the test environment. First, we
compare the path-loss characteristics of the O-FDTD simulations with the conventional
Free-Space Path Loss (FSPL) model. Then, we overlay the experimental and simulated
coverage areas for comparison and calculate the area overlap. We obtain a good agreement
between the predicted and characterized coverage area and find that the assumption of a
single dielectric permittivity for all buildings within the analyzed area provides accurate
mappings of the LoRa cityscape signal coverage, its local shadow regions, and hot spots.

2. Related Work

Previous works have experimentally analyzed the performance of LoRa systems for
multiple parameters, with coverage areas ranging from typical indoors [14–16] to cam-
pus [17–20] and city scales [21–24]. Standard analytic prediction models are based on path-
loss formulations optimized for specific power damping conditions, e.g., cityscapes [20,22]
and others [25]. For the spatially-resolved RSSI, different numerical approaches may be
considered, depending on the distance regime [22,26]: for shorter distances (line-of-sight),
ray-based models are used [27,28]. For longer distances, diffraction effects become domi-
nant, and either the uniform geometrical theory of diffraction (UTD) [29], often combined
with ray-launching methods [30–33] (indoors), or knife-edge models [34,35] can be applied.
Different knife-edge methods include the forward [36] and two-way [37,38] parabolic
equation (PE)-based approaches, which are implemented either in the frequency [35] or
time-domain [39,40]. For longer distances, scattering becomes the dominant effect, and the
Okumura–Hata model [41] and the Longley–Rice irregular terrain model (ITM) [42,43] are
most popular. The latter is prevalent because it uses real-world data, such as topography
and weather parameters, to generate simulated RSSI maps. More recently, the updated
ITM with obstructions model (ITWOM) [24,44] provides improved signal descriptions
around obstacles.

In the cityscape regime, diffraction effects are dominant. This rules out the usage
of simpler ray-based algorithms that do not take diffraction into account. Knife-edge
methods such as the two-way PE [45] consider diffraction, but its application to complex
real-world building geometries is challenging. The ITM is likely the most thorough method.
However, it is highly demanding on computational requirements and simulation time.
Recent efforts to improve the simulation times include a parallel graphical processing
unit (GPU) [46] enhanced ITM implementations. Still, ITM is better suited for high power,
very long-range scenarios, as ITM-generated maps usually lack the diffraction resolution
required for city-scale low-power IoT and smart-city applications.

This work aims to overcome the lack of physical accuracy associated with standard
ray-based signal-coverage models and single and two-way PE methods, which do not
consider multiple reflections between building walls. We present a new approach to achiev-
ing high-resolution city-scale RSSI maps while minimizing the computational resources
required. We propose using a versatile electromagnetic wave-propagation algorithm that
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considers crucial effects such as absorption and reflection. Such radiation-matter interaction
algorithms are conventional in light-propagation applications, for which the Finite Element
Method (FEM) [47] and the Finite-Difference Time-Domain (FDTD) [48,49] methods are the
most popular. Both methods exist in commercially available software solutions. However,
they focus on micro- and nano-scale light-matter interactions, resulting in computational
requirements that are prohibitively large for city-scale spatial signal-propagation simula-
tions. Alternatively, the recently developed O-FDTD [13] uses a much simpler approach
than conventional FDTD. Instead of solving Maxwell’s equations for four field components,
O-FDTD uses an approximation derived from the Lorentz Oscillator Model solution. The
resulting formulation enables the field propagation using a single global electric field up-
dating equation, which excludes the need for alternating orthogonal electromagnetic field
components found in conventional FDTD. As a result, O-FDTD yields a single electric field
component orthogonal to the 2D simulation space. The approach closely approximates the
more complex electromagnetic FDTD predictions for dielectric materials and effectively
reduces the memory and simulation time requirements, which enables its application
to city-wide simulations. The method is implemented using Graphical User Interface
(GUI)-power toolbox for MATLAB, making it both user-friendly and versatile, which is
crucial for importing Google Maps data and comparing the simulation results against
experimental data.

3. Materials and Methods
3.1. LoRa System Signal Coverage-Characterization
3.1.1. Materials

Figure 1 describes the implemented communication system, using several sensors
for temperature (BMP280, DFRobot), humidity (BME280, Adafruit), noise/sound (Analog
Sound Sensor v2.2, DFRobot), and NO2 concentration (DGS-NO2 968-043, Spec Sens) wired
to a microcontroller board (LoRa32u4 II, BSFrance) (Figure 1a). The board features a LoRa
node chip microcontroller (SX1276, AtmegaQR 32u4 3.3V @ 8MHz MCU), with transmitter
power +20 dBm, receiver sensitivity between −136 dBm @ LoRa 125 Khz SF12 293 bps
and −118 dBm @ LoRa 125 Khz SF6 9380 bps, and an operating frequency of 868 MHz
and transmission current-consumption of 128 mA. A 5 V portable power bank drives the
micro-controller circuit. The LoRa gateway (LPS8, Dragino), with a transmitter power
of +20 dBm, was placed indoors (University of Vigo office), while the micro-controller
LoRa-transceiver was taken outside for signal coverage measurements.

Figure 1. Implemented Long-Range (LoRa) Gateway system. (a) Schematic of the LoRa communication test device equipped
with various sensors on an electronic breadboard. (b) Diagram of the communication process.

3.1.2. Methods

The data packets are sent to a LoRa gateway using a simple custom-built LoRa packet
format. The information that reaches the gateway is processed by a server service app that
publishes the information in an MQTT server (running on a Raspberry Pi). The data is
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retrieved from the server, displayed on a Graphical User Interface (GUI), and stored in a file
or database using Node-RED–see the schematic of the communication process in Figure 1b.
The Node-RED’s GUI is made available in an online domain, making the measurements
remotely accessible in real-time, e.g., via a smartphone (Galaxy S6, Samsung).

The microcontroller is programmed to send one data packet per second to the server
for the signal-coverage measurements. Node-RED is used to display the received data
and monitor the time elapsed between consecutive received packets. Since the signal time-
of-flight is much shorter (picoseconds) than 1 s, one can assume that if the time interval
between successive received packets is larger than 1 s, then one or more packets were lost.
Hence, the time gap between received packets can be used to determine the coverage area
by defining a maximum delay threshold and asserting that if the delay is below or above
the threshold, then the communication is either established or broken, respectively. The
transceiver location is tracked using the smartphone GPS and recorded using the Android
app, Geo Tracker [50]. The mobile system (LoRa transceiver and smartphone) is then moved
around the University campus in Ourense, while position-correlated time-between-packets
measurements are collected and stored for analysis. The analysis consists of overlaying the
reception rate with the GPS coordinates. The GPS coordinates are converted from angular
to Cartesian using the Mercator projection:

x(t) = (R0 + h(t))(θ(t)− θ0), (1)

y(t) = (R0 + h(t)) log
[

tan
(

π

4
+

φ(t)
2

)]
, (2)

where x(t) and y(t) are the time-dependent Cartesian coordinates. θ(t), ϕ(t) are the time-
dependent longitude, latitude, and altitude, respectively, in radians, and h(t) is the time-
dependent altitude in meters. Table 1 shows the values used for the Greenwich meridian
reference θ0 and Earth’s radius R0.

Table 1. Reference values for Greenwich meridian longitude reference θ0 and Earth radius R0.

θ0 [rad] R0 [m]

1.71× 10−4 6.3781× 106

After obtaining time gaps between packet arrivals over the emitter trajectory, we use
a simple interpolation method to create 2D maps of the time gap between packet arrivals.
The developed process works similarly to a flood-fill algorithm, and in the following, we
describe its use and function. First, a zero-filled 2D matrix of appropriate dimensions to
represent the city map, e.g., 1 pixel per meter, is created, such that, e.g., a 700 × 700 m2

city map is represented by a 700 × 700 pixel matrix. The matrix cells (pixels) are then
assigned to the measured time gap between packet arrivals following the relative GPS
location data. Simultaneously, for those areas in which there are no measurements, the
pixel entries remain zero. Optionally, it assigns the points beyond a certain (arbitrary)
maximum radius with the maximum measured time gap between packet arrivals to prevent
undesired outwards signal spreading. The resulting matrix is fed as starting point to the
algorithm. The iterative algorithm assigns each zero-cell with the average of its non-zero
closest neighbors. After each iteration, the map of the time gap between packet arrivals
spreads 1 pixel in every direction, stemming from the original locations with the measured
time gap between packet arrivals. The number of iterations required to fill the map depends
on both the chosen matrix size and the number of points, and the spatial trajectory and
shape. The MATLAB scripts used for data treatment and visualization and representative
data files can be found in Supplementary Materials S1.
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3.2. O-FDTD Simulation of LoRa Coverage

The cityscape LoRa propagation is simulated using the O-FDTD method [13] via the
© 2020 WaveBox toolbox for MATLAB, Supplementary Materials S1. O-FDTD describes
the propagation of electric field waves by modifying the Lorentz Oscillator Model (LOM).
Similarly to the LOM, which considers the oscillation of atom-bound electrons driven by
an incident electric field, O-FDTD uses a mesh of coupled oscillators whose orthogonal
displacement relates to the electric field amplitude. However, O-FDTD’s oscillators are
not electrons but abstract electric field carriers evenly distributed across space, including
vacuum. Each oscillator is connected to its mesh neighbors by a refractive index-dependent
coupling strength that defines the electric field transfer rate and, consequently, the wave
propagation speed. The electric field E time propagation is obtained using the leap-frog
backward differentiation method

Ei = Ei−1 +
dEi−1

dt
δt +

1
2

d2Ei−1

dt2 δt2, (3)

where t is the time, δt is the temporal resolution, and the index i refers to the current time
step. The single motion equation is formulated as:

d2Ei−1

dt2 =
8

3n2δt2

(
Eneigh

i−1 − Ei−1

)
−
√

2c
n

4πκ

λ

dEi−1

dt
, (4)

where n and κ are the real and imaginary parts of the refractive index, Eneigh is the neigh-
borhood electric field, and c and λ are the vacuum speed of light and wavelength. The
first term in Equation (4) is analogous to the restoring spring motion as a function of the
neighborhood electric field and accounts for the wave propagation and interference effects.
The second term of Equation (4) relates to the energy damping or absorption. Using this
simple formulation, O-FDTD allows simulating 2D maps of material-dependent electric
field wave speed and absorption. The refractive index contrast induces signal reflections at
the building walls.

The © 2020 WaveBox toolbox provides simple design functions and allows importing
Google maps [51] data directly from a bitmap image. First, the map is converted into
a vector format using Inkscape. Using Inkscape’s brightness-threshold bitmap-tracing
function and minor manual editing, the city map is cleaned from features, such as text,
icons, and roads, so that only building walls remain. Building walls are (arbitrarily)
set as blue and empty space as black. We considered a 600 × 600 m2 map surrounded
by 0.60 m margins used for the perfectly matched layers (PML) boundary conditions
required by the O-FDTD algorithm and exported the final map as a bitmap *.png file.
Air and the stone walls were modeled in WaveBox using refractive indices of nair and
nwall, respectively (deduced in Section 4.1). The simulation parameters are summarized in
Table 2. For the sake of simplicity, the simulation can be carried out in the reverse of the
experimental configuration, i.e., placing a dipole source at the experimental position of
the LoRa gateway (receiver), located at the center of the simulation space. The O-FDTD
simulation yields a 2D map of the signal power, which we converted into RSSI values
given in dBm, representing the signal propagation across the cityscape. The coverage
area is defined using the calculated (Section 4.1) receiver sensitivity as a threshold in the
false color map. Detectable and undetectable values are shown in color and grayscales,
respectively. The simulation of a 600× 600 m2 area took about 3 h to complete. To visualize
the simulation results described in Section 4.1, we overlayed a transparent vector-image of
the city map onto the obtained RSSI values using Inkscape.
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Table 2. Parameters used for the Oscillator Finite-Difference Time-Domain (O-FDTD) simulation. GTx

and λ are the emission power and wavelength, respectively, dx is the simulation spatial resolution,
nair and nwall are the air and building wall refractive indices, respectively.

GTx [dBm] λ [m] dx [m] nair nwall

+20 0.345 0.0862 1 2.5 + i0.316 *
* Deduced in Section 4.1 from key assumptions and reference values [52,53].

4. Results

In this section, we present the LoRa coverage obtained via the conventional Free Space
Path Loss (FSPL) method (Section 4.1) and compare it against the O-FDTD simulations
(Section 3.2) that provide spatially-resolved LoRa RSSI and coverage maps in an urban
environment. To demonstrate the accuracy of the O-FDTD simulations, we performed
experiments on the university campus area and move the LoRa transceiver position while
recording the time between packets per GPS position (Section 4.3). Ultimately, we quanti-
fied the differences between O-FDTD simulated and experimental signal coverage maps
(Section 4.4).

4.1. Free Space Path Loss (FSPL) Model and Receiver Sensitivity

For this section, the LoRa network coverage was estimated using the RSSI predictions
of the FSPL model. For this purpose, we determined the distance from the emitter at
which the RSSI drops below the receiver’s decoding sensitivity. One can obtain more
reliable signal path loss-based estimations for real-world applications by considering the
detectability threshold approximately 10 dBm above the decoding sensitivity to account
for the high packet losses for RSSI values close to the sensitivity limit. In the FSPL model,
the attenuation of an electromagnetic signal can be expressed as:

FSPL =(4π f d/c)2, (5)

where f, c, and d are the signal frequency, the speed of light, and the distance from the
emitter, respectively. The receiver sensitivity PRx quantifies the minimum RSSI that the
receiver can decode and can be expressed as

PRx = (S/N)k0T(BW)F, (6)

where S/N is the signal-to-noise ratio, kb is Boltzmann’s constant, T is the temperature in
Kelvin, BW is the signal bandwidth, F is the noise factor, and the product k0 × T × (BW) × F
corresponds to the noise power.

Table 3 summarizes the signal parameters used in this work, whereby NF = 10log10(F)
(dB) is the noise figure of the receiver architecture. Using Equation (6), we estimated the
receiver sensitivity in dBm:

PRx= −7.5[dB]+10 log 10

(
1.38× 10−23×290× 1000

)
[dBm]

+10 log10(125, 000)[dB]+6[dB]= −124 dBm, (7)

which is in good agreement with reference values [54] and the product specifications.

Table 3. LoRa network parameters, where f, BW, and SF are the modulation frequency, bandwidth,
and spreading factor, respectively. S/N and NF are the signal-to-noise ratio and noise figure,
respectively. GTx is the transmitter gain.

f BW SF S/N NF GTx

868 MHz 125 KHz 7 −7.5 dB 1 6 dB 2 +20 dBm
1 Typical value for SF7 [55]. 2 Typical value [54].
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Using the FSPL model, we can express the free-space RSSI, PFS as

PFS [dBm] = GTx+20 log10

(
c

4π f d

)
. (8)

Figure 2 shows free-space RSSI expressed in Equation (8) for two different transmitter
gains GTx of 0 and +20 dBm. By finding the distance at which the RSSI drops below the
sensor sensitivity, the maximum theoretical ranges of about 45 and 435 km can be estimated
for GTx of 0 (1 mW) and +20 dBm (100 mW), respectively.

Figure 2. A plot of the calculated free-space Received Signal Strength Indicator (RSSI), PFS power
decay over distance, for an 868 MHz LoRa signal. The estimated receiver sensitivity PRx = −124 dBm
yields maximum coverage distances of 45 km (blue) and 435 km (orange) for transmitter gains GTx of
0 dBm and +20 dBm, respectively.

The relatively long coverage range achieved by LoRa networks is one of its main
attractive features. However, no matter how impressing the free-space coverage ranges
may be, they are hardly realistic in urban environments, where absorption, scattering, and
interference effects induced by dense and intricate buildings can severely decrease the
coverage range.

To simplify the comparison between free-space and cityscape scenarios, we plotted in
Figure 3a a 2D representation of the RSSI (PFS) decaying from the central position. Figure 3b
shows a 2D histogram of combined RSSI and distance occurrences in the theoretical PFS
map from Figure 3a. As expected, the 2D histogram shows a single line, which is in perfect
overlap with PFS(GTx = +20 dBm). For additional reference, and similarly to Figure 2, we
plotted the PFS(0 dBm) and receiver sensitivity, which shows that the free-space RSSI is far
above the sensitivity threshold in these relatively short distances. It is worth noticing that
the increase in occurrence rate (color gradient) for distances from 0 to 300 m is due to the
larger circumference perimeter associated with longer radii. Furthermore, even though we
show distances up to 350 m, the FSPL map is side-edge limited at a distance of 300 m from
the center, which explains the decrease of the occurrence rate (dimmer color) for distances
larger than 300 m. Nevertheless, the line continues to follow the PFS dashed line.

In Section 4.2, we propose and test the use of the O-FDTD wave-propagation algorithm,
which considers all the mentioned effects induced by the presence of buildings, for the
realistic simulation of the propagation of LoRa signals in urban environments.
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4.2. O-FDTD for Spatially Resolved LoRa Signal Propagation Simulation

The recently developed radiation-matter interaction O-FDTD algorithm [13], as im-
plemented in the WaveBox toolbox for MATLAB, is used to simulate the propagation of
LoRa signals in an urban environment, with building arrangements obtained from Google
Maps. Here the O-FDTD method simulates the propagation of electric-field waves from
an emitter (source) into a space characterized by different relative dielectric permittivity
values, representing air εair = 1 or concrete buildings walls εwall, respectively.
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Figure 3. Theoretical free-space Received Signal Strength Indicator (RSSI) distribution of an 868 MHz LoRa signal over
distance with a transmitter gain of GTx = +20 dBm. (a) 2D representation of free-space RSSI in a radius of 300 m. (b) 2D
histogram of combined RSSI and distance occurrences in the RSSI map shown in (a). The color scale indicates the relative
occurrence rate, normalized to the number of map pixels. The dashed white lines represent the free-space RSSI (PFS) for GTx

of 0 and +20 dBm, and the receiver sensitivity PRx of −124 dBm, as indicated by the labels. The vertical dotted line indicates
the 300 m spatial observation window used in the RSSI map representation in (a).

Previous reports have shown many different (even disparate) dielectric permittivity
values for concrete [56,57]. The value considered in this work is derived as follows: We
consider the real part of the optical refractive index n = 2.5 for concrete [52], and, since
many historic buildings in Ourense are stone-walled, knowing that a signal crossing a 60 cm
stone wall is attenuated by about −30 dB [58], we calculated the absorption coefficient
α = 0.115 dB/cm, using Beer–Lambert’s law

P/P0= e−αl , (9)

where P/P0 is the power decay across a length l. The absorption coefficient as a function of
the wavelength λ and the imaginary part of the refractive index ñ = n + iκ is expressed as

α =
4πκ

λ
. (10)

The dielectric permittivity is simply the square of the refractive index

ε = (n + iκ)2. (11)

Thus, considering a wavelength of λ = 0.345 m (f = 868 MHz), using Equations (9)–(11) we
estimated the dielectric permittivity of buildings walls εwall = 6.15 + i1.58 (nwall = 2.5 + i0.316),
which agrees with the average reported values [53].

We performed the O-FDTD simulations for a portion of the city-map of Ourense,
Spain, specifically, around the university campus, matching the realistic localization of
the signal loss experimental characterization. Figure 4 displays the O-FDTD simulated
RSSI maps. The emitter is located at the center of the simulation map, corresponding
to the experimental position of the LoRa gateway. In the chosen false color map, the
grayscale and colored areas identify the simulated RSSI values above and below the
calculated PRX = −124 dBm, respectively. In the close-up map Figure 4a, interesting signal
heterogeneities such as local hotspots and wave-ripples are observed, emerging due to
reflections from the buildings. Conversely, Figure 4b shows larger-scale effects such as
ray-like reflections between buildings. The LoRa signal often appears trapped, displaying
wave-guiding between buildings and beam divergence effects at the end of narrow streets.
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Despite the significant RSSI decrease induced by building walls (about 15 dBm/wall on
average), the signal often finds its way around them, either by reflection or diffraction
effects, especially in sparsely-built regions. On the other hand, shadow regions of reduced
signal strength are observed in densely-built areas.

Figure 4. O-FDTD simulation of LoRa Received Signal Strength Indicator (RSSI) in Ourense for a signal source located
indoors (center of the map). The building wall lines from Google Maps are overlaid onto the simulations for improved
visualization. (a) Close-up 200 × 200 m2 map. (b) Zoom-out (full) 600 × 600 m2 map. The false color map turns to grayscale
for RSSI values below the calculated receiver sensitivity of −124 dBm.

To compare the free-space decay scenario with the O-FDTD simulated, heterogeneity-
rich cityscape scenario, we plotted in Figure 5a a 2D histogram of combined RSSI and dis-
tance occurrences together with the above-analyzed free-space model PFS(GTx = +20 dBm).
The plot allows a statistical observation of the fraction of covered versus non-covered
map locations that show RSSI values above (shorter distances) and below (longer dis-
tances) the receiver sensitivity. The overall much lower RSSI values than the free-space
PFS(GTx = +20 dBm) indicate the rather drastic RSSI attenuation caused by the buildings.
Figure 5b shows a plot of the average RSSI per distance. For distances up to 150 m, local
minima and maxima can be assigned to the position of the first building layers, as both
attenuate and concentrate the signal via wall absorption and reflections, respectively. It
should be noted that the highly attenuated RSSI values inside the concrete walls themselves
also contribute to the statistics, which leads to decreased average values in Figure 5b.

The statistical representations of Figure 5 characterize the overall dynamics of the full
O-FDTD simulated RSSI map. The 2D histogram from Figure 5a builds upon the sum of
all spatial contributions from propagation pathways stemming over 360◦ from the central
source. Still, the RSSI decay characteristics for specific directions can be identified and
analyzed in further detail. As an example, we apply an angular gating θ + ∆θ to analyze
the RSSI over distance dynamics in four arbitrarily-defined directions. Figure 6a represents
the selected gates of ∆θ= 5◦ and θ = −135◦, −45◦, 45◦ and 135◦. The vivid and faded colors
distinguish the considered from disregarded regions, respectively. Figure 6b shows the
mean RSSI over distance in each direction of interest, where distinct direction-dependent
dynamics with a strong dependence on the building density can be identified. In this
case, the −135◦ and −45◦ directions show shorter coverage distances than the 45◦ and
135◦ directions. Interestingly, the RSSI drops in and out of the receiver sensitivity range,
depending on the building arrangements.
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Figure 5. Statistical analysis of the real-world building-based O-FDTD simulated Received Signal Strength Indicator (RSSI).
(a) 2D histogram of combined RSSI and distance occurrences in the simulated RSSI map. The color scale indicates the
relative occurrence rate, normalized to the number of map pixels. The dashed white lines represent the free-space RSSI (PFS)
for transmitter gains GTx of 0 and +20 dBm, and the receiver sensitivity PRx of −124 dBm, as indicated by the labels. The
vertical dotted line indicates the 300 m spatial observation window used in the simulated RSSI map. (b) Free-space RSSI,
PFS(GTx = +20 dBm) (orange) in comparison to the mean O-FDTD simulated RSSI over distance (blue). The green and red
highlights indicate the distances for which the simulated RSSI is, on average, above and below the receiver sensitivity.

Figure 6. Distance dynamics of O-FDTD simulated Received Signal Strength Indicator (RSSI) for a sample of regions within
the simulated cityscape maps. (a) Map of the arbitrarily selected propagation directions, with ∆θ = 5◦ and θ = −135◦,
−45◦, 45◦ , and 135◦. The vivid and faded-colored regions indicate the analyzed and disregarded areas. (b) Mean RSSI over
distance for each of the selected propagation directions.

According to the simulation results, and assuming a receiver sensitivity of −124 dBm,
most of the simulated city area should lie within the LoRa network coverage. In Section 4.3,
we present the experimental characterization of a LoRa network, and in Section 4.4, we
compare the spatially resolved O-FDTD cityscape LoRa coverage simulations against the
experimental results.

4.3. Experimental Characterization of LoRa Coverage

This section presents the experimental results of the LoRa network coverage charac-
terization in an urban environment. A mobile LoRa transmitter sends one LoRa packet per
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second containing multiple sensor measurements. The connection is tested by displacing
the emitter and monitoring the timestamps of packet arrivals at the gateway as a function
of the transceiver GPS position. We found that the time gap between packet arrivals
changes directly from the set value of 1 s (connection established) and infinity (connection
broken). Using this system, we determined the signal loss locations in every radial direction
around the receiver by moving the transmitter around the gateway. Figure 7a shows a
color-coded plot of the time gap between packet arrivals measured over the performed
trajectory. The receiver is located at the center of the map. Using an iterative interpolation
(flood-fill-like) script, we expanded the trajectory information (line) into a spread coverage
area (2D color-coded map), as shown in Figure 7b.

Figure 7. Mapping of time gap between packet arrivals around the LoRa gateway receiver. (a) Time gap between packet
arrivals measured along the trajectory used to determine the edge of the signal coverage area. (b) Interpolated map of
time gap between packet arrivals, obtained by expanding the results in (a) in all directions. The displayed city maps were
retrieved from Google Maps [51].

The iterative progress of the integration algorithm is shown in Figure 8 for 0 (starting
point), 20, 40, and 80 iterations. The resulting map shows two regions of time gap between
packet arrivals equal to 1 s (network-covered areas) and “infinity” (here limited at 40 s,
non-covered areas). The map shown in Figure 7b corresponds to the final result overlaid
onto the city map. We defined the experimental coverage region, i.e., the region where the
connection is established, as the locations for which the interpolated time gap between
packet arrivals is lower than 20 s, whose edge is indicated by the dashed line in the final
map of Figure 8.

In the following Section 4.4, the simulated and experimental coverage regions are
overlaid and compared.

4.4. Analysis of Simulation Versus Experimental Results

Figure 9a shows the overlay of the experimental coverage area onto the O-FDTD
simulation map. In Figure 9b, a color classification represents the match between simulated
and experimental coverage regions. Matching regions are yellow, exclusively simulated are
red, and exclusively experimental are green. The interpolation algorithm described above
ignores the presence of buildings, which leads to inaccurate building edge descriptions.
For a more accurate comparison, an adjusted/improved experimental coverage area was
obtained by subtracting the building prints from the original experimental signal coverage
map—see the difference between Figure 9a,b. To compare the coverage prediction with
the experimental result, we calculated the total area overlap η as the ratio between the
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overlapping area Coverlap and the sum of the simulation Csim and experimental Cexp spatial
coverage areas as follows:

ηarea =
2 ∑ Coverlap

∑ Csim + ∑ Cexp
. (12)

Figure 8. Expansion of experimental time gaps between packet arrivals measured along a line
trajectory around the LoRa gateway into a map of time gap between packet arrivals, using an
iterative flood-like interpolation algorithm. The four subplots show the results after 0 (starting point),
20, 40, and 80 iterations. The dashed line indicates the edge of the coverage area, defined as the
interface where the time gap between packet arrivals equals 20 s.

A total area overlap ηarea = 84% can be identified. For the statistical analysis of the
signal coverage as a function of the gateway distance, we defined the histogram H(r) of
distance values within the coverage map C as

H(r) = Hist(C, r) = ∑
x,y

R(r) � C, (13)

where Hist(A,r) is the histogram of r values within a matrix A, R(r) is the binary map of
the circumference with radius across the xy space and � is the element-wise (Hadamard)
product. Then, we defined the radial coverage Hr(r) as the coverage fraction over each
circumference of radius r by normalizing H(r) by the perimeter of the rim, ∑x,y R(r)

HR(r) =
∑x,y R(r)� C

∑x,y R(r)
=

H(r)
∑x,y R(r)

(14)
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Figure 9. Correlation between simulation and experimental results. (a) Overlay of the experimentally determined coverage
area onto the simulated Received Signal Strength Indicator (RSSI) map. (b) Color-coded overlay of (red) O-FDTD simulation
only, (green) experimental only, and (yellow) overlapping coverage areas (CA). Spatial overlap of 84% between the simulated
and experimental coverage areas is identified. (c) Histogram of covered distances and (d) circular coverage within the
experimental (green) and simulated (red) coverage areas. The red, yellow, and green shades relate directly to the regions
identified in (b).

The distance histogram H(r) and the circular coverage HR(r) are plotted in Figure 9c,d,
for the experimental (green) and the simulated (red) coverage maps. The red and green
shades identify the differences between the profiles and are directly related to the mis-
matching areas identified in Figure 9b. An average of 95 m of radial coverage range is
obtained, which agrees with the transition point in Figure 5b, where the mean RSSI drops
below the receiver sensitivity. A maximum LoRa signal coverage distance of about 340 m
can be obtained from both approaches.

We analyzed the agreement between simulations and experiments at the edge of the
determined signal coverage areas in more detail, see Figure 10. Figure 10a represents the
differences between the experimental (green) and O-FDTD simulations (red). We aimed to
compare with a simplified path-loss model, for which we allowed the coverage radius to fit
the experimental values optimally (see Figure 10b). Projecting radius-dependent deviations
over the detection angle ∆r(θ), the Root Mean Squared Deviation (RMSD) can be defined as

RMSD =

√
∑(∆r(θ))2

N
(15)
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and be used as a quantitative descriptor of the coverage prediction quality, where

∆r(θ) =
∫ (

C′sim(θ)− C′exp(θ)
)

dr (16)

Figure 10. Correlation between the edges of the simulation and experimental coverage areas. (a) Color-coded overlay
of O-FDTD simulation (red), experimental (green) coverage differences. (b) Minimization of the Root Mean Squared
Differences (RMSD) between the experimental coverage area and a path-loss circular model. (c) Color-coded overlay
of optimized circular model (blue), experimental (green) coverage differences. (d) Deviations of the O-FDTD (red) and
optimized circle (blue) models from the experimentally determined coverage in dependence of the detection angle, with a
0.2 o resolution. Effective RMSD of 24 and 41 m are determined, respectively.

N = 360◦/dθ is the number of angular points. We chose an angular resolution of
dθ = 0.2◦. We found that a radius of 180 m leads to the minimal RMSD of around 41 m
for the path-loss circular model. Similarly, we plotted the spatial-resolved differences
between prediction and experimental results in Figure 10c. Experimentally, we found an
increased signal coverage towards North-West directions, exceeding the path-loss model
predictions, while towards the South-East directions, the path-loss model overestimates
the signal coverage, not being able to take the presence of a dense building arrangement
into account. Figure 10d shows the angle-dependent deviations δr(θ) for the optimized
circle and O-FDTD simulations. These deviations result in a net RMSD of 41 m, while the
Google Maps building arrangement-supported O-FDTD simulations achieve a net RMSD
value of 24 m, thereby showing the strength of the proposed model.
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5. Discussion

This paper’s modeling and simulation results show the contrast between the simplest
free space and a more realistic LoRa signal spatial distribution in a real-world cityscape.
Despite its simplicity, the free-space path loss model Equation (8) provides some basic
understanding of the propagating electromagnetic signals, specifically, the influence of
frequency and transmitter gain in the signal strength attenuation over distance. The
accurate prediction of the coverage range also depends on a correct receiver sensitivity
calculation. In this work, the estimated value of−124 dBm was obtained partly from actual
implemented LoRa parameters and reference values for the signal-to-noise ratio and noise
factor (Table 3), which introduces some uncertainty. The FSPL model predicts a maximum
free-space coverage range of up to 435 km for the parameters considered. Indeed, previous
works (using different implementations) have set the experimental world record at an
astonishing 766 km [59]. Other works have reported ranges of 9.7, 6.9, and 4.6 km in rural,
urban and suburban environments [60], respectively. Also 1.6 km [23] and 1.2 km [19] were
reported in urban environments, and reaching down to about 100 m in high-density urban
environments [19].

We show in Section 4.2 that the wave-propagation O-FDTD method can be used to sim-
ulate the propagation of LoRa signals in urban environments and generate high-resolution
RSSI maps. The relative dielectric permittivity defines the propagation conditions in air
and concrete building walls. The imaginary part of the permittivity describes the signal
absorption by the walls, while the dielectric contrast at the air/wall interfaces leads to
reflections. Further, O-FDTD provides exact modeling of wave-effects, such as diffraction,
which is particularly relevant in urban environments and disregarded by many other
models, such as analytical path loss models and line-of-sight ray-tracing [43]. Yet, at larger
scales, the O-FDTD also reproduces ray-like reflections, as shown in Figure 4, which is vital
for distance regimes where scattering starts to play a dominant role [22]. However, despite
considering building wall arrangements, several factors are not considered, such as other
scattering objects like cars and trees, variations of terrain, weather parameters, the possibil-
ity of interference, and the influence of RF noise. Also, the signal mapping is incomplete
inside buildings, and variable construction materials are disregarded (a single permittivity).
Nevertheless, it provides excellent coverage predictions with 84%. In the following, we
address each of the identified error sources and discuss improvements possibilities:

(1) Implementation and impact of cars and trees: Apart from path loss models specifically
developed to account for trees [25], which require knowledge of tree parameters such
as spatial distribution, leaf area index, and trunk diameter, most approaches use
semi-empirical methods to determine an average path loss characteristic of the city in
question [20]. We do not do this in our approach but instead use the building walls
arrangement of a real-world city map directly. We remark that trees are sparse in this
particular area of the campus, and cars do not entirely block the signal propagation
above 2 m from the ground. Nevertheless, future works beyond this proof-of-concept
could, in areas containing denser distributions of such scattering objects, include a
map of trees or additional scattering elements assigned to specific regions where cars
or trees are known to be abundant. The accurate location of trees may, for example,
be obtainable from satellite images from Google Maps using some dedicated image
processing algorithm. Such additional elements would be treated in the O-FDTD
method analogously to the way building walls were treated in this work.

(2) Absence of terrain and weather data: As a 2D wave propagation method, O-FDTD
does not trivially take terrain information into account. Future study could be en-
visioned to investigate how a modified O-FDTD approach, e.g., via dielectric per-
mittivity gradients, could model terrain features. However, the topography should
not significantly impact the area considered in this work since this is usually only
considered for far more extended regions [44]. Previous works describe the influence
of weather parameters in LoRa propagation [61]. Again due to the area contemplated,
relevant air temperature gradients across the considered cityscape can be disregarded.
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A more refined approach could take into account shades cast by tall buildings in sunny
countries. However, additional information on the building height would be required,
and the shade regions vary with the hour of the day. Thus, a linear correction to the
RSSI maps could be considered to account for the average temperature, following
previously identified dependences of the signal-coverage on weather parameters.

(3) Effect of RF noise: Previous works demonstrate that high-levels of RF noise can be
found in urban environments [62]. However, LoRa’s modulation characteristics make
it particularly invulnerable to noise interference [54], and thus, we neglected such
effects in our approximation.

(4) Indoor LoRa signal distribution: the concrete walls can be considered the dominant
source of damping and reflection, not only because concrete is a very absorbent
material in itself but also because walls represent full floor-to-ceiling barriers, while
furniture items, aside from impossible to determine, are only partial barriers, thus
allowing most of the signal to diffract around them. On the one hand, we consider
all building walls as made of concrete and therefore ignore far less absorbent glass
windows. This is a reasonable approximation since concrete is the predominant
building material. On the other hand, one could argue that the exaggerated wall
absorption may somehow compensate for the absence of furniture, even though the
scattering features would be slightly different.

(5) Use of a single permittivity value: At a glance, this could be a significant error source
since considering a single permittivity may overlook highly scattering materials such
as metals. However, we are interested in modeling radiation-matter interactions,
mainly in terms of reflection and absorption by building walls. In the RF regime, the
dielectric properties of metals are dominated by their electrical conductivity, leading
to a virtually infinite permittivity, making them almost perfect mirrors. In this work,
we used a dielectric permittivity value estimated to reproduce the absorption of about
50 dB/m. Hence, the associated contrast in the dielectric permittivity, or equivalent
refractive index, leads to a reflectance r = (n− 1)2/(n + 1)2 of about 20% for normal
incidence, which is not a very good approximation for metallic surfaces. The O-FDTD
method can reproduce the metallic mirror behavior via the use of arbitrarily large
refractive index values e.g., r(n = 100) = 96%, r(n = 200) = 98%, which is similar
to previously reported approaches using knife-edge methods [35]. However, to
accurately incorporate the cityscape contributions of metals would require a much
more complete representation of the cityscape, containing the mapping of metals
within the building walls. Considering this level of detail might be feasible for small-
scale indoor applications, but it is not practical in the cityscape scope. Instead, we
assumed that walls are dominantly composed of concrete, with a common permittivity.
Alternatively, one could incorporate the effects of metals within the wall structures by
increasing the real part of the refractive index to induce a higher reflectance, which
could approximate the average metal composition in building materials, provided
that information is available.

We demonstrate here that combining the O-FDTD method with a simplistic cityscape
to building walls information from Google Maps, and using a single permittivity value,
excellently predicts the LoRa signal distribution and coverage regions with high spatial
accuracy. Compared to previous approaches that do not take real-world building maps into
account, the proposed O-FDTD approach provides a significant improvement. Conceiv-
able benefactors include end-users aiming to implement a continuous LoRa network in a
dedicated area or network users to access the local LoRa network distribution information.
Many previous works have used much more general approximations, ignoring real-world
data-based cityscape heterogeneities [14,16,20,22,33,63,64]. Neural networks have been
used to increase the computational efficiency of UTD ray-launching [65] methods to inte-
grated spatial information but are still mostly limited to indoor scenarios. Knife-edge and
PE approaches are the closest related to O-FDTD. However, such methods are limited in
the number of wave reflections [36,37] and thus usually limited to a few knife edges or
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simplified models [45,66]. Multiple knife-edge diffraction [35] solves this issue but is still
limited to simple geometries, which renders it unsuited for complex real-world building
arrangements. ITM succeeds in real-world terrain and weather-dependent solutions but is
highly demanding on computational resources. The simulation spatial resolution obtained
is usually low compared to the achieved in this study. Therefore, it is typically applied to
high-power telecommunications extending over extensive areas [22,24,44], far too large for
the O-FDTD method.

The spatial resolution required by O-FDTD for the wave propagation may become
unsustainable for LoRa maps much larger than the 600 × 600 m2 maps shown in this paper,
depending on the RAM resources available. In O-FDTD, the spatial resolution (simulation
step size) must be at least four times smaller than the signal wavelength, limiting the maxi-
mum simulation step size. As a result, the field-of-view of an NxN pixel simulation map
depends on the signal wavelength. A possible strategy to increase the spatial step size, and
thus the simulation’s field-of-view, is to use the following approximation: According to the
FSPL model, a wave propagating with wavelength 2λ will see its signal strength attenuated
by a factor of four, compared to a signal with wavelength λ, i.e., (FSPL)(2λ) = (FSPL)(λ)/4.
This relation can be generalized as

FSPL(nλ) = (FSPL)(λ)/n2, (17)

and thus,
PFSPL(nλ) [dBm] = PFSPL(λ) + 20 log10(n), (18)

which states the relationship between the RSSI of signals with wavelengths λ and nλ.
Hence, an approximated result can be obtained by performing the simulation with a
longer wavelength nλ and using Equation (13) to convert the RSSI map back to the λ

scenario, thereby increasing the field-of-view by a factor of n, using the same number of
pixels. It should also be noted that, according to the Beer–Lambert law, Equation (9), a
change in the wavelength requires an updated wall dielectric constant. However, this
approximation may introduce errors associated with (a) poor building resolution or (b)
incorrect wavelength-dependent diffraction properties.

The LoRa signal coverage region was experimentally determined by thresholding the
time-between packet arrivals, which is not as rich as an experimental RSSI mapping. How-
ever, the developed method provides a simple approximation of the binary signal coverage
area, which can be achieved directly by any LoRa communication system, regardless of
its simplicity, or the accurate knowledge of the receiver sensitivity or transmission power.
This is particularly important for system implementations where the RSSI measurements
are not possible. The developed interpolation algorithm provides a fast and straightfor-
ward solution to convert the time gap between packet arrivals from a line path to an area
mapping. The main disadvantage of this method is that it does not consider the presence
of buildings, which leads to unrealistic building edge and interior representations. We
addressed this problem by performing a manual correction step, seen as the difference
between the white semi-transparent area in Figure 9a and the green/yellow regions in
Figure 9b. Previous works reported similar interpolation methods applied to experimen-
tal RSSI measurements [67]. However, very few provide complete cityscape RSSI maps,
resorting, instead, to a few point measurement comparisons against path loss models.

The experimentally obtained maximum coverage range of 340 m is in good agreement
with previous studies in urban environments [19]. Several strategies could increase the
coverage range, such as using a higher spread factor, placing the LoRa gateway outdoors,
and raising the gateway vertically to reduce overall signal reflections. However, the
experimental conditions used in this work privilege such interactions and thus highlight
the relevance of the O-FDTD simulations for low power, mid-range communications.
Applications such as indoor, campus, or neighborhood-wide networks may benefit from
smaller coverage areas, e.g., to reduce the chance of malicious communication interceptions.
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As mentioned in Section 4.1, a reliable coverage range prediction (especially if based
on simple path-loss equations) for a real-world application should consider the coverage
threshold about 10 dB above the receiver decoding sensitivity, lest the actual range should
fall short of the expected. We chose not to do this since the highly detailed O-FDTD maps
correlated directly with the decoder sensitivity provide a sharper approximation between
the O-FDTD simulated RSSI maps and the experimentally-determined signal-loss regions.

The overlay between the experimental and simulated coverage areas reveals an area
overlaps of 84%. However, most coverage area-prediction models yield good predictions
near the gateway, where the coverage can be assumed homogeneous. A prime feature of the
O-FDTD approach is the realistic coverage edge prediction, which is a massive advantage
compared to simpler path-loss models that only predict average circular coverage ranges.
As demonstrated in Figure 10 by overlaying coverage deviations at the edge, even the
best-fitting circular model does not take buildings into account, leading to a much larger net
RMSD of 41 m, compared to a RMSD of 24 m achieved by the O-FDTD simulations. While
we considered this an excellent agreement, several sources of error in the experimental
and simulation approaches are discussed. Our simulations did not consider temperature
effects, while high temperatures are known to reduce the coverage range [61,68]. Indeed,
the measurements were performed on a sunny day at 32 ◦C (89.6 Fahrenheit), leading to
several-degree temperature-variations between sun and shade areas. The lack of terrain
information may also play a role in the observed mismatches, as the model does not capture
out-of-plane signal propagation. This effect may be the case of the regions highlighted
in red on the left side of Figure 9b, where the terrain is lower than at the center of the
cityscape. Furthermore, the incomplete experimental characterization of the citywide
time gap between packet arrivals causes the experimental signal distribution to be more
reliant on the simple interpolation algorithm. As discussed above, this introduces errors
at the building interfaces, which are particularly noticeable on the top part of the map
in Figure 9a, associated with the green areas in Figure 9b. Also, more refined (and more
complex) projection models could be used to convert the GPS coordinates from the spherical
to the Cartesian plane, thus improving the overlap between the experimental trajectory
and the downloaded city maps, which is not perfect.

Altogether, the simulation and experimental results show an excellent agreement
for LoRa signal distribution in the real environment, which holds the promise for future
O-FDTD applications using spatial information maps for indoor and outdoor scenarios.

6. Conclusions and Outlook

The LoRa mid-range radiofrequency communication coverage area was spatially
mapped in an urban environment and observed to be highly dependent on the building ar-
rangement of the city. In this work, we report using the wave-propagation O-FDTD method
combined with Google Maps data to obtain high-resolution simulated RSSI maps. The
method reproduces both diffraction and scattering radiation-matter interactions, character-
istic of the selected LoRa frequency and distance regime. This is a significant improvement
from previous models, which usually consider such effects independently, often either
suited for much smaller or much larger distance ranges or not easily adaptable to take
complex real-world building maps into account. Also, we report a low-cost method to ex-
perimentally determine the binary “on-off” signal coverage area by mapping the cityscape
time gap between packets and introducing a connection-determining threshold. A spatial
overlap of 84% was obtained between the simulated and experimental signal-coverage
areas. Furthermore, the deviations at the coverage area margins were far reduced com-
pared to the best-fitting circular area that an average path-loss range model could yield.
The simulations hold the advantage of providing highly detailed RSSI maps that display
building fingerprints such as signal shadowing or hot spot formations, which would nearly
be impossible to access experimentally. Future application of the proposed technique be-
yond this proof-of-concept demonstration may include the comparison of experimentally
measured against O-FDTD simulated quantitative RSSI maps.
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We conclude that this O-FDTD with spatial mapping is a versatile approach from
which a vast set of applications may benefit. We foresee the wide use of this methodology
for shorter-range wireless networks, such as Wi-Fi, Zigbee, or Z-wave in closed environ-
ments, or well-known LoRa alternatives such as NB-IoT or Sigfox. For indoor applications,
besides the selected building wall position, other parameters may be included, such as
furniture objects featuring different materials modeled via dedicated dielectric permit-
tivity values, thus further enriching this simulation tool’s predictive power. This would
provide value to city planners, engineers involved in smart city developments and im-
proving the end-user experience by assuring homogenous signal coverage of information
communication technology (ICT) networks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21082717/s1: Computer program O-FDTD simulation toolbox wavebox.m, MATLAB
scripts used for data treatment and visualization: importGPX, convertGPXtoXY, importSensor,
correlateSensorPos, mapSpreadLine, and example.m script calling the functions and representative
data files: example.gpx, temp.txt.
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