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Abstract: Genome engineering makes the precise manipulation of DNA sequences possible in a
cell. Therefore, it is essential for understanding gene function. Meganucleases were the start of
genome engineering, and it continued with the discovery of Zinc finger nucleases (ZFNs), followed
by Transcription activator-like effector nucleases (TALENs). They can generate double-strand breaks
at a desired target site in the genome, and therefore can be used to knock in mutations or knock
out genes in the same way. Years later, genome engineering was transformed by the discovery of
clustered regularly interspaced short palindromic repeats (CRISPR). Implementation of CRISPR
systems involves recognition guided by RNA and the precise cleaving of DNA molecules. This
property proves its utility in epigenetics and genome engineering. CRISPR has been and is being
continuously successfully used to model mutations in leukemic cell lines and control gene expression.
Furthermore, it is used to identify targets and discover drugs for immune therapies. The descriptive
and functional genomics of leukemias is discussed in this study, with an emphasis on genome
engineering methods. The CRISPR/Cas9 system’s challenges, viewpoints, limits, and solutions are
also explored.
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1. Introduction

Genome engineering makes the precise manipulation of DNA sequences possible in a
cell. Therefore, it is essential for understanding gene function [1]. Genome editing began in
the 1970s with the discovery of restriction enzymes by Werner Arber. Restriction enzymes
are capable of recognizing and cutting at specific DNA sequences. Genome editing is
therefore possible by introducing new nucleotide sequences at these sites [2,3]. However,
restriction enzymes can only cut at particular sites, and this consists of their limitation of
use depending on where we want the DNA to be cut. However, they are still commonly
used today for some applications, and this discovery allowed the rise in future genome
engineering techniques [4].

The discovery of meganucleases (naturally occurring restriction enzymes that can
recognize 12–40 bp DNA sequences) was the initial step towards genome editing, followed
by the discovery of zinc finger nucleases (ZFN) in the 1980s [4]. ZFNs comprise a nuclease
domain and a specific zinc finger DNA-binding domain composed of a 3-base pair site
on DNA. Multiple ZFNs can be combined to recognize longer sequences of nucleotides,
increasing specificity and making it “customizable” to a target of interest [5]. ZFNs also
proved advantageous for genome editing in plants, opening genome engineering to new
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species. While ZFNs were well-intentioned, the design and execution process was incred-
ibly time-consuming and challenging [6]. In order to cut a specific site in the genome,
ZFNs are built as a pair that can recognize two sequences flanking the site, one on the
reverse strand and the other on the forward strand [7]. Upon binding the ZFNs on either
side of the site, the pair of FokI domains dimerize and cut the DNA at the site, generat-
ing a double-strand break (DSB) with 5′ overhangs. DSBs can be repaired using either
(a) non-homologous end joining (NHEJ) during any phase of the cell cycle—however,
this mechanism often results in erroneous repair—or (b) homology-directed repair (HDR)
during G2 or late S phase when the other sister chromatid is available to serve as a repair
template [5].

Many genes in human cells and various model organisms have been effectively modi-
fied using ZFN-mediated targeting, paving the way for the development and application of
genome editing tools [8]. The development of a three-finger protein to block the production
of the BCR/ABL human oncogene in 1994 was the first demonstration of ZFN-driven gene
disruption [9]. The researchers then used a human lymphoblast cell line derived from
patients with chronic myeloid leukemia (CML) and a custom-designed ZFN to deliver
DSBs to specific sites of the telomeric region of the mixed-lineage leukemia (MLL) gene
breakpoint cluster region, as well as to analyze chromosomal structural abnormalities in
MLL leukemogenesis by repairing DSB errors [8–10].

In 2011, new gene-editing technology made its way to the scientific world, involving
transcription activator-like effector nucleases (TALENs) [11]. TALENs are similar to ZFNs
as they are composed of a nuclease fused to DNA-binding domain sequences. However,
TALENs recognize single nucleotides rather than relying on 3-base pair sites like ZFNs [6].
Transcription activator-like effector (TALE) repeats, which can naturally occur, consist of
10–30 repeat tandem arrays that bind and identify longer DNA sequences [5,12]. Each
repetition is 33 to 35 amino acids long, with two neighboring amino acids indicating which
of the four DNA base pairs it is specialized for. As a result, the repeats and base pairs in
the target DNA sequences have a one-to-one connection. TALENs and ZFNs can cause
DSBs at a specific locus in the genome. As a result, they can be utilized in the same way to
knock out genes or introduce mutations [5,13,14].

TALENs have quickly established themselves as a viable alternative to ZFNs for
genome editing. Although it is based on a non-specific FokI nuclease domain that may be
fused to a customized DNA-binding domain, it differs from ZFNs in that the DNA binding
domain is made up of highly conserved repeats derived from TALEs (proteins secreted by
Xanthomonas bacteria) [15,16].

In 2012, genome engineering was revolutionized by discovering Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR). Teams led by Jennifer Doudna and
Emmanuelle Charpentier described the biochemical mechanism of CRISPR, which was
until then known to be associated with innate immunity in bacteria. In 2013, a team led by
Feng Zhang described how to use this system to edit eukaryotic DNA. The Cas9 protein
is able to cleave double-strand DNA, and itis an RNA-guided nuclease discovered in the
type II CRISPR immunity system of Streptococcus pyogenes. The well-known CRISPR/Cas9
system is made up of three components; a single guide RNA (sgRNA) specific to a target
DNA sequence; Cas protein having a DNA endonuclease activity; and a trans-activating
CRISPR RNA (tracrRNA) to interact with Cas9. The gRNA (approximately 20 base pairs in
length) binds to the target DNA site and directs the Cas9 protein [17–19].

CRISPR systems work by identifying and precisely cleaving DNA molecules via
RNA-guided recognition. Therefore their utility in epigenetics and genome engineering is
proved[20]. CRISPR/Cas9 systems are generally made up ofa locus in the genome called
the CRISPR array. Such arrays consist of about 20–50 base-pair (bp) repeats. These repeats
are preceded by a so-called “leader” sequence that is rich in AT pairs and separated by
so-called “spacers” with similar lengths [20,21].

CRISPR systems were initially identified and studied in prokaryotes in the 1990s.
These systemsprotect against phage and plasmid genome exogenous DNA infection and
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are present in 90% of archaea and 50% of bacteria [22,23]. Once the CRISPR/Cas9 system
from Streptococcus pyogenes (type II) was discovered in 2012, it was found to be a remarkably
effective and efficient tool in DNA editing of higher eukaryotes. This finding opened a new
world of possibilities in genetics [24]. The CRISPR/Cas system functions in three stages:
the adaptive, processing, and interference stage [25–27]. CRISPR/Cas9 technology was first
described in the Escherichia coli genomes as short repeats interspaced with short sequences
and were officially named in 2002 [28]. This technology was initially used in 2013 to target
the human genome, and its applications have since increased tremendously in biomedical
research [29–34]. While CRISPR and TALENs enable editing at single-nucleotide resolution,
CRISPR has become a more attractive alternative since it is less time-intensive and cost-
effective [35,36].

In the last couple of years, CRISPR along with the Cas9 nucleases (CRISPR/Cas9),
have revolutionized the possibilities for targeted genome editing [37]. These so-called
RNA-guided endonucleases (RGENs) contain two RNA elements, CRISPR RNA (cRNA)
on the one hand and its transactivating RNA (tracRNA) on the other hand. The two
components can be fused, thus able to induce a targeted DSB [38]. When a corresponding
DNA template is provided, specific gene sequences can be introduced into the DNA
strand by homologous recombination (HR). However, the system’s efficiency is unclear in
hematopoietic and progenitor cells, and it still remains a significant challenge [33,38–40].
The summary of gene-editing techniques is described in Figure 1 and characteristics of
each technique are described in Table 1.
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Figure 1. Summary of gene editing techniques. TALEN = transcription activator-like effector
nucleases, CRISPR/Cas9 = clustered regularly interspaced short palindromic repeats- associated
protein 9, HR = Homologous recombination, NHEJ = Non-homologous end joining [8,24,41–43].

Table 1. Characteristics of gene editing techniques.

ZFNs TALENs CRISPR/Cas9

Class Protein DNA Protein DNA RNA—DNA
Zebrafish genome

targeting coverage
Target site every 140–400

base pair
Target site every 1–3

base pair
Target site every 8–128
base pair (NGG PAM)

Technology cost High High Low
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Table 1. Cont.

ZFNs TALENs CRISPR/Cas9

Restriction of target site High G Start with T, end with A PAM sequence
Technology adoption

time High Moderate Low

Enginereed nucleases Fok I Fok I Cas9

Targeting domain Zinc-finger domain Repeat variant diresidue CRISPR RNA or guide
RNA

Table notes. ZFNs = Zinc finger nucleases, TALEN = transcription activator-like effector nucleases, CRISPR/Cas9
= clustered regularly interspaced short palindromic repeats- associated protein 9 [8,24,41–43].

2. Gene Editing Techniques in Leukemia

Leukemias are generally classified as chronic or acute and as lymphocytic or myeloge-
nous; the subtypes include chronic lymphocytic leukemia (CLL), chronic myeloid leukemia
(CML), acute myeloid leukemia (AML), and acute lymphocytic leukemia (ALL).

2.1. Chronic Leukemia

CLLis a hematologic disorder in which the decision to treat is dependent on the
presence or absence of symptoms. Some patients may require treatment upon diagnosis
secondary to significant cytopenia or bulky lymphadenopathy, while others with stable or
slowly progressive disease may simply be monitored closely [44].

CLL is one of the most common leukemias seen throughout the Western world.
Despite the fact that chemotherapy works, the disease frequently returns, and resistance
develops over time. Combining chemotherapy with monoclonal antibodies against specific
surface markers, such as CD20, CD22, and CD23, appears to improve the outcome by
giving a different strategy to induce apoptosis in clonal cells [45–47]. CLL cells also express
the CD19 antigen on a constant basis, which is a suitable target for Chimeric Antigen
Receptors (CARs) [45].

Unlike other B-cell lymphoproliferative disorders, the CLL genome lacks recurrent
balanced chromosomal translocations. Therefore, it is relatively stable. Translocations
that involve Immunoglobulin genes are relatively rare except MYC, BCL2, and BCL3 re-
arrangements observed in about 2% of cases [48,49]. Studies of somatic copy number
variations (CNV) using fluorescent in situ hybridization (FISH), single nucleotide polymor-
phism (SNP) analyses or karyotyping, identified recurrent lesions of prognostic relevance
associated with CLL: most frequently del13q14 (in 50–60% of cases), del17p13 (in 5–10%
of cases), del11q22 (in 6–20% of cases), trisomy 12 (in 10–18% of cases), and 2p gain (in
5–28% of cases) [50,51]. The minimally deleted regions point to putative CLL drivers:
MIR15A/MIR16-1 (MIR15A/16-1; microRNAs) and deleted in lymphocytic leukemia-2
(DLEU2) (long non-coding RNA, lncRNA) at 13q14, TP53 at 17p13, and ATM and BIRC3
at 11q22 [49]. The most frequent cytogenetic anomalies (deletions of chromosome 13q,
17p, 11q, and trisomy 12) were identified as markers with high prognostic relevance since
they could stratify CLL patients into distinct groups according to the clinical progression
of the disease and survival [51,52]. Chromosome 13q deletion has been described as an
early event in CLL and is considered a favorable marker when isolated, whereas deletions
of 11q and 17p and 2p gain are associated with progression and relapse [52]. Statistically
significant associations between different cytogenetic abnormalities have been identified,
as (i) 2p gain and 11q deletion, (ii) trisomy 12 with trisomy 18, and (iii) 14q deletion and
translocations involving BCL2, BCL3, and MYC, but also with somatic mutations: (i) SF3B1
mutations and 11q deletion, (ii) NOTCH1 mutations and trisomy 12, (iii) MYD88 mutations
and 13q deletion. The reason for such associations is unknown [49,53–57].

Deletion of a fragment on the long arm of chromosome 11 (11q22.3) associates a poor
outcome and can be found in about 20% of CLL patients at diagnosis [56]. Although a
variable size of the fragment can be deleted, the ATM gene is usually deleted in most
cases. This gene has an essential role in the signaling and repair of DSB, and at diagnosis,
approximately 10–20% of the CLL patients have at least one mutation. Simultaneous
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abnormalities have been identified in about 33% of CLL patients, consisting of heterozygous
deletion of the specified region and different point mutations of the ATM gene. The result
of these simultaneous mutations is the loss-of-function (LOF) of the protein. Consecutively
the overall survival of CLL patients is significantly reduced [48,53–59].

NOTCH1 is frequently mutated in CLL, but its functional impact on the disease
remains unclear [60]. Using Mec-1 cell line models generated by CRISPR/Cas9 it has
been shown that NOTCH1 regulates homing and growth of the CLL cells by dictating
the expression level of the DUSP22 tumor suppressor gene [61]. By modulating a nuclear
complex, NOTCH1 changes the methylation of the DUSP22 promoter in a specific way.
This complex tunes up the activity of DNA methyltransferase 3A (DNMT3A). Moreover,
these effects are amplified by PEST-domain mutations that prolong signaling and stabilize
the molecule. CLL patients carrying a NOTCH1-mutated clone showed active chemotaxis
to CCL19 chemokine and low levels of DUSP22. In addition, cells with NOTCH1 mutation
displayed a specific homing behavior xenograft model, localizing preferentially to the brain
and spleen. These facts connect DUSP22, NOTCH1, and CCL19-driven chemotaxis in a
single functional network, and suggest that by modulating the homing process, NOTCH1
mutations may associate unfavorable prognosis in CLL patients [61,62].

The immunoglobulin heavy chain variable region (IGHV) mutations are generated
during normal B-cell maturation through somatic hyper-mutation, which promotes im-
munoglobulin diversity [63]. Thus, B-cells that demonstrate mutated IGHV have completed
somatic hypermutation, whereas B-cells lacking mutated IGHV have not undergone this
process. It is thought that the development of CLL may emerge from B cells at varying
stages of maturation. In 1999, it was first postulated that there was an association between
CLL prognosis and IGHV mutation status [64–66].

CRISPR/Cas9 technique has been used to model common LOF alterations found in
CLL (such as BIRC3, TP53, CHD2, ATM, MGA, SAMHD1) in the murine interleukin 3 (IL-3)-
dependent pro-B cell line Ba/F3 [67,68]. For the possibility of multiplex gene editing, a
quantitative polymerase chain reaction (qPCR) technique was developed in order to detect
the identity and number of multiple sgRNAs in single cells. Genome aberrations induced
by sgRNAs were analyzed in numerous individual cells using next-generation sequencing
(NGS), PCR generation of targeted sequencing libraries, and droplet-based sequestration
of single cells. The results demonstrate the possibility of single-cell DNA detection of gene
edits for common LOFs generated by CRISPR/Cas9 gene editing. This method makes the
assessment of a more significant number of cells (over 3000/sample) in multiple Cas9-target
loci. Detection of single-cell modifications is essential for studying the possible effects
of multiplex gene editing [67]. Hacken et al. (2020) demonstrated that co-transduction
using six sgRNAs could generate several combinations of gene modifications. Therefore,
the opportunity to study simultaneous mutations in a single cell with higher resolution is
provided, thus making possible the functional genomic studies of disease drivers. Data
support the use of multiplexed genome editing systems to study gene interactions in
multiple diseases [67].

Ibrutinib is used for the treatment of CLL, but treatment response is variable in patients,
even in patients with a similar genetic background. This variability in treatment response
is thought to be related to differing CLL lineages and was described in a recent study
characterizing CLL lineages by distinct DNA methylation and transcriptional profiles [69].
It is thought that this epigenetic reshuffling may further alter cell genomic neutrality while
it is undergoing neoplastic transformation. Thus, alteration in epigenetic homeostasis may
promote both oncogenic transformations as well as genetic alterations [19,69,70].

CD38 is a glycoprotein that serves as an ADP-ribosyl cyclase as well as a NAD
glycohydrolase [71,72]. Its level of expression is linked to a bad prognosis in CLL patients,
and it is exploited as a therapeutic target in multiple myeloma [18,73].

CML is a myeloproliferative cancer that is characterized by increased and uncontrolled
growth of myeloid cells within the bone marrow and excessive accumulation of such cells
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in the blood [74,75]. CML is a blood cancer caused by BCR/ABL1 fusion gene in a cell with
the intrinsic or acquired biological ability to cause leukemia [76,77].

In recent years, a study focused on the use of genome-editing nucleases to disrupt
BCR/ABL1 as a treatment approach in CML. The CRISPR system has more therapeutic
potential in CML patients, according to this study. In 2020, Chia-Hwa Lee and his col-
leagues disrupted ABL1 in the human CML K562 cell line using a CRISPR/Cas9 lentiviral
vector. They were able to show that disrupting BCR/ABL1 resulted in a lower rate of
proliferation [78].

2.2. Acute Leukemia

AML is the most common acute leukemia in adult patients and accounts for about
80% of acute leukemias in this population. It is a hematologic malignancy characterized
by cellular hyperproliferation and impaired immature myeloid cell differentiation. These
poorly differentiated cells infiltrate the bone marrow (BM), blood, and other tissues [79,80].
As the BM becomes filled with these cells, normal hematopoiesis is disrupted, resulting
in characteristic findings of anemia, bleeding, and infection. AML may occur at any
age but more commonly in adults and has an annual incidence rate of 3–4 cases per
100,000 [79,81–84].

AML models are usually caused by reciprocal chromosomal translocations. However,
more than half of AML patients show a normal karyotype. Therefore, the majority of AML
cases are driven by somatic mutations [38].

In over 60% of juvenile AML cases, reciprocal chromosomal translocations are the
underlying genetic abnormality [85]. Rearrangements of the MLL1/KMT2A gene on chro-
mosome 11q23 are the most common, accounting for about 25% of pediatric AML cases
and 50% of neonatal AML cases [85,86].

Several somatic mutations, fusion-genes, and copy number aberrations (CNA) have
been described for the AML genome. Some of them are recognized as independent biomark-
ers, others as candidate biomarkers for the patient’s prognosis, outcome, response to ther-
apy, or overall survival. Briefly, we mention the impact of frequently identified somatic
mutations, such as FLT3, NPM1, TP53, RUNX1, ASXL1, IDH1, IDH2, DNMT3A, CEBPA,
TET2, NRAS, KRAS, BCORL1 mutations [87–92]. In addition, several previously published
papers detailed the descriptive genomics of AML patients and the well-known impact
of the mentioned genetic abnormalities [93–96]. Due to the frequent co-occurrence of
genetic abnormalities on the AML genome, it is essential to note the importance of the
comprehensive genetic evaluation for an accurate diagnostic, prognostic, risk stratification,
and therapy.

AML cells can express various stem cell and myeloid differentiation antigens on the
cell membrane, such as CD33, CD34, CD123, CD135 [97].

The CRISPR/Cas9 system has been more frequently used for AML than the other
types of leukemia. Therefore, we will focus on genome engineering techniques rather than
descriptive genomics.

A powerful approach to in vivo identifying critical genes for leukemia cells is rep-
resented by forward genetic screens. For example, by in vivo RNA interference (RNAi)
screens used in a murine AML model, many several leukemia-specific dependencies have
been identified [98]. Even though RNAi screens are powerful techniques, they may result
in a high rate of off-target effects. Therefore, RNAi screens have frequently been replaced
by other techniques based on the CRISPR system in order to result in higher specificity and
efficacy [98–101].

Studies applying genome sequencing have shown that malignancies in humans often
carry mutations in more than four driver genes. This high level of genetic complexity,
however, is difficult to recapitulate in mouse models when using conventional breeding.
M. Jinek and his team in 2012 used the CRISPR/Cas9 system of genome editing in order
to overcome this limitation [17]. Furthermore, by delivering combinations of Cas9 with a
lentiviral vector and small guide RNAs (sgRNAs), researchers were able to modify five
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genes in one mouse hematopoietic stem cell (HSC), resulting in myeloid malignancy by
clonal outgrowth [86]. They generated models of AML cells with coexisting mutations in
genes encoding mediators of cytokine signaling, epigenetic modifiers, and transcription
factors, therefore recapitulating the possible combinations of mutations seen in patients.
Results suggested that sgRNA/Cas9 genome editing delivered by lentivirus could be used
to engineer a broad spectrum of in vivo cancer models with the potential to better reflect
the complexity of human disease [86].

Mutations induced to the 5′ exons of genes of interest have been targeted by some
screening strategies using the CRISPR/Cas9 system. However, this approach can of-
ten lead to in-frame variants. In order to overcome this limitation, researchers targeted
CRISPR/Cas9 mutagenesis in exons encoding for functional protein domains [102]. This
can generate a higher frequency of null mutations, and the potency of negative selection
can be substantially increased. Moreover, the magnitude of this natural selection can be
used to identify the functional importance of studied protein domains. This approach can
make it possible to identify protein domains that sustain cancer cells and could be suitable
for drug targeting. For example, screening 192 chromatin regulatory domains in murine
AML cells identified 19 dependencies and 6 known drug targets in a previously published
study [102].

Research performed by Chen et al. in 2020 utilized a CRISPR-mediated pooled LOF
screening method to investigate metabolic dependencies in AML [103]. It was found
that pyridoxal kinase (PDXK) has an important role in AML. They also showed that
in both in vivo and in vitro murine leukemia models, PDXK plays a crucial role in cell
proliferation in AML. Knockdown of PDXK suppressed cell line proliferation derived from
several murine AML models and human leukemic cell lines. It was also shown that PDXK
depletion by single-guide RNA reduced in vivo Nras (G12D)/MLL/AF9 leukemic cell
progression and prolonged overall survival in animals [103]. They also investigated the
various mechanisms by which tumor growth is influenced by pyridoxal-5’-phosphate (PLP)-
dependent metabolic enzymes. Out of 27 PLP-dependent enzymes, the CRISPR/Cas9
screen identified five that are critical for leukemic cell proliferation and expressed in
AML cells [103]. To further determine the functional consequences of these enzymes,
exogenous metabolites, including putrescine and aspartate, were added. These mimic
the endogenous metabolites produced naturally byornithine decarboxylase 1 (ODC1) and
glutamic-oxaloacetic transaminase 2 (GOT2), respectively. It was observed that the addition
of these metabolites reduced the proliferative defect caused by the disruption of PDXK.
Therefore, these results suggest that ODC1 and GOT2 are required for cell proliferation
in AML and may have important treatment implications for future drug development
targeting these two enzymes. In vivo studies involving PDXK, ODC1, and GOT2 knockout
murine models should be considered to investigate mechanisms of action and further
explore these enzymes as potential therapeutic targets. Additional research is needed to
clarify if PDXK is functionally bound to ODC1/GOT2 in other non-leukemic cells [103,104].

Successful application of type II CRISPR/Cas9 system derived from Streptococcus
pyogenes is able to transform genetic research in several different organisms [105]. Fur-
thermore, given its flexibility and high efficiency, the system is appropriate for use in
proof-of-principle studies. Genome-wide recessive genetic screens utilizing cancer cell
lines demonstrate this technology’s potential to identify genes critical for cancer cell sur-
vival [106]. It is known that AML cells generally have a low mutational burden, and the
mutation status of the TP53 tumor suppressor gene is vital in AML prognosis. Therefore,
it is essential to pursue screening involving AML lines in which the genetic background,
namely TP53 status, is well-defined [29,102,106–109].

CRISPR/Cas9 system has been employed to model cases of human clonal hematopoiesis
with an indeterminate potential (CHIP) as well as AML [110]. Hematologic disorders with
multiple mutated genes have been edited, including those encoding epigenetic regulators,
transcriptional regulators, and signaling components in murine hematopoietic stem and
progenitor cells [111]. Sequencing indels resulting from CRISPR/Cas9 tracked the clonal
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dynamics and demonstrated clonal expansion propagated by these leukemia-promoting
cells and ultimately resulted in the development of AML in some of the recipient mice.
Therefore, CRISPR/Cas9-induced multiplex mutagenesis may be utilized to design a
variety of murine models emulating human hematological malignancies with complex
genetic architectures [111].

Research investigating the relationship between AML and metabolic aberrancies has
been performed using a CRISPR/Cas9 “drop out” screen applied as the gRNA library using
metabolic genes that are strongly expressed in AML cells [108]. An aggregate of 2752 genes
encoding transporters and metabolic enzymes were studied, identifying 236 genes noted to
be abundantly expressed in leukemic cells [103]. A focused CRISPR/Cas9 sgRNA library
targeting these 236 genes was introduced into Nras (G12D)/MLL/AF9 leukemic cells. This
was combined with other sgRNAs associated with leukemogenesis and neutral sgRNAs of
Renilla luciferase. The signal strength of each sgRNA from a continuous culture on days 1
to 9 was measured by deep sequencing. The control sgRNAs associated with genes known
to be crucial for AML cell proliferation were depleted(e.g., MYC, BCL2, MCL1, PCNA, and
RPA1), while sgRNAs targeting tumor suppressor TP53 was enriched, and quantities of
neutral sgRNAs remained essentially unchanged [103,112].

A CRISPR/Cas9 screen has also been used to identify critical markers of AML stem
cells in vivo. This was done by targeting cell surface genes in a syngeneic MLL/AF9AML
murine model and demonstrating that C-X-C chemokine receptor type 4 (CXCR4) was criti-
cal in the regulation for AML cell growth and survival. When the CXCR4 gene was deleted
in AML cells, there was a disappearance of in vivo leukemic cells without impairment to
their natural migration to the bone marrow. On the other hand, the CXCR4 ligand C-X-C
motif chemokine 12 (CXCL12) was not found to be critical in the development of leukemia
in recipient mice [100]. Evaluation of mutated CXCR4 variant expression demonstrated that
CXCR4 signaling is crucial for leukemic cells. The loss of CXCR4 signaling in vivo results
in oxidative stress and differentiation. In conclusion, CXCR4 signaling is essential for AML
stem cells by shielding them from differentiation regardless of CXCL12 stimulation [100].

AML cells divide quickly and have a wide range of metabolic abnormalities. As a
result, medications targeting important enzymes in cancer cell metabolic reprogramming
have been discovered, and inhibitors of isocitrate dehydrogenase (IDH) 1 and 2 (ivosi-
denib and enasidenib, respectively) have been approved by the FDA for the treatment of
AML [38,104,113,114].

Due to AML’s complex sub-clonal heterogeneity, focusing on a single mutated gene
triggers development of resistance mechanisms. Leukemic cells have an impressive array
of adaptive capacities allowing them to escape the therapeutic attempts through targeted
therapies [94].

Genome-wide CRISPR/Cas9 screening is used to identify targets for AML therapy.
Initial screening using AML cell lines followed by an in vivo screen is performed. Results
identified the mRNA decapping enzyme scavenger (DCPS) gene as playing a crucial role in
AML cell survival [108]. The DCPS enzyme was shown to interact with components of pre-
messenger RNA (pre-mRNA) metabolic pathways and spliceosomes by mass spectrometry.
RG3039, a DCPS inhibitor that was initially developed to treat spinal muscular atrophy,
demonstrated anti-leukemic activity by promoting pre-mRNA mis-splicing. Humans with
the germline biallelic DCPSLOF mutations fail to exhibit aberrant hematologic phenotypes,
suggesting that DCPS is not critical for human hematopoiesis. These findings provide
additional support for a pre-mRNA metabolic pathway that identifies DCPS as a potential
target for AML therapy [108].

ALL is a common malignancy seen in pediatric patients. It is caused by lymphoid
progenitor clonal proliferation in the bone marrow. It represents around 80% of acute
leukemia cases in children and only 20% in adult patients. Infiltration of the bone marrow
leads to various cytopenias in the peripheral blood associated with the appearance of
peripheral blast cells [115].
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Swaroop et al., in 2019, using gene-edited cell lines, investigated the impact of mu-
tant NSD2 enzyme in silico, in vitro, and in vivo. In childhood ALL, NSD2, a histone
methyltransferase that methylates histone 3 lysine 36 (H3K36), has a glutamic acid to lysine
mutation at residue 1099 (E1099K), and cells with this mutation can become the dominant
clone in recurrent illness. Cell lines that contained the E1099K mutation had increased
H3K36 dimethylation and reduced H3K27 trimethylation, especially in histone H3.1 nucle-
osomes. These effects were noted to be secondary to altered enzyme/substrate binding and
enhanced methylation rate of H3K36 as a result of the E1099K mutation. Mutant NSD2 cells
were noted to have reduced apoptosis but increased cell proliferation, adhesion, migration,
and clonogenicity. Mutant NSD2 cells had a greater probability of getting through the
blood–brain barrier and are more deadly than wild-type cells, according to research using
murine xenografts. The use of transcriptional profiling provides evidence that mutant
NSD2 stimulates mechanistic pathways associated with signaling and adhesion genes
as well as neural and stromal lineages. Understanding the roles of NSD2 and E1099K
mutations presents possible targets for future novel therapeutics [116].

Researchers from China reported in 2019, bone marrow transplantation was success-
fully carried out in a Human Immunodeficiency Virus-1 (HIV-1)-positive patient suffering
from acute lymphocytic leukemia. The patient’s hematopoietic progenitor cells had been
CCR5-ablated using CRISPR in order to prevent HIV infection [117]. CCR5 gene encodes
for C-C chemokine receptor type 5 (CCR5) protein. CCR5 ablation was confirmed in the pa-
tient’s T cells after engraftment, and off-target effects could be identified by whole-genome
sequencing [117,118].

3. Perspectives

CRISPR/Cas9 genome editing opens up a world of possibilities for developing next-
generation T cell products to tackle cancer and other disorders. Off-target consequences
produced by non-specifically detecting unwanted target locations are the key risk for
employing CRISPR/Cas9 in human disease treatment. Progress has been made that might
considerably reduce off-target effects. As a result, CRISPR/Cas9 technology holds a lot of
promise for the future of adoptive cell therapies [119–122].

The first clinical trials involving CRISPR/Cas9 in humans were initiated in 2016 [78,123].
Researchers isolated immune cells from a patient’s blood and, using CRISPR/Cas9, dis-
abled a gene in the cells. The disabled gene encoding for protein PD-1 usually blocks a cell’s
immune response. Some types of cancers take advantage of the PD-1 protein’s function
to proliferate. Then they placed the edited cells in cultures, thus increasing their number,
and finally administered them to the patient suffering frommetastatic non-small-cell lung
cancer. Their hope was that, without functional PD-1 protein, the edited cells would be
able to attack and defeat cancer [123].

CRISPRa (CRISPR activation) for gene expression upregulation and CRISPRi (CRISPR
interference) for gene expression suppression are two novel CRISPR/Cas9 technologies
that have recently been created to modify gene expression [124]. These methods rely on an
enzymatically defective Cas9 (dCas9, which is generated by inserting mutations into two
nuclease domains) that interacts with or is coupled with transcriptional activators [125].
dCas9 nucleases can still attach to certain DNA sequences, preventing these genes from
being transcribed (CRISPRi) [126]. The GAS6-AS2 lncRNA cell line was transcriptionally
activated (by CRISPRa), and researchers discovered a hyperactivation of the GAS6/TAM
pathway. Multiple malignancies, including AML, have been shown to use this pathway as
a resistance strategy [127,128]. CRISPRa has also been explored in bacterial systems, and it
appears to be a promising tool for future bacterial engineering [129].

CRISPR technology is being used in a variety of ways right now. Figure 2 depicts a
quick overview of them.
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Figure 2. Applications of CRISPR/Cas9 technology in human therapy and hematology research [68].
CRISPR/Cas9 = clustered regularly interspaced short palindromic repeats- associated protein 9,
HIV = Human Immunodeficiency Virus, CAR = Chimeric antigen receptor, CHIP = clonal hematopoiesis
with an indeterminate potential.

Several clinical studies investigating the safety and effectiveness of CRISPR-edited
cells in the treatment of relapsed or refractory hematological malignancies are underway.
NCT04767308 studies CT125A cells in CLL, MCL, DLBCL, FL, and PTCL, where endoge-
nous CD5 in CT125A cells are knocked out by CRISPR/Cas9 to avoid fratricide during
CAR-T cell production. CTX110 is being studied in adult B-cell ALL by NCT04035434,
while CD19 and CD20 or CD22 CAR-T cells are being studied in B-cell leukemia by
NCT03398967. Dual Specificity CD19 and CD20 or CD22 CAR-T cells can detect and
destroy CD19-negative malignant cells via CD20 or CD22 identification. PBLTT52CAR19 T
cells are being used in one clinical study (NCT04557436) to ensure molecular remission
in children with relapsed or refractory B-ALL prior to planned allogeneic stem cell trans-
plantation. For their anti-leukemia properties, gene-edited cells will be employed for a
short period of time before being depleted by normal pre-transplant conditioning. XYF19
CAR-T cells with altered endogenous HPK1 (NCT04037566) will be tested in patients with
relapsed or refractory CD19+ leukemia or lymphoma in this first-in-human study.

Relapsed or resistant B-cell malignancies can be treated using autologous T cells
modified to express CARs against leukemia antigens, such as CD19 on B cells. To address
leukemia therapy challenges, researchers are developing universal CD19-specific CAR-
T cells called UCAT019. These cells are generated from one or more healthy unrelated
donors, which might reduce the risk of graft-versus-host disease (GVHD) as well as lessen
their immunogenicity. Allogeneic UCART019 cells with gene-disrupted TCR and B2M
genes have been produced by combining lentiviral delivery of CAR with CRISPR RNA
electroporation, and researchers will investigate if it may evade host-mediated immunity
and provide anti-leukemic effects without GVHD (NCT03166878). CD7-specific CAR on
autologous T cells for cell treatment is another clinical study (NCT03690011).

Basic clinical trial information is summarized in Table 2.
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Table 2. Ongoing clinical trials in leukemia using the CRISPR/Cas9 system [130].

Condition or Disease Intervention/Treatment CT Identifier Phase First Posted Title

D5+ Relapsed/Refractory
Hematopoietic
Malignancies

Chronic Lymphocytic
Leukemia

Mantle Cell Lymphoma
Diffuse Large B-cell

Lymphoma
Follicular Lymphoma

Peripheral T-cell
Lymphomas

Biological: CT125A
cells

Drug:
Cyclophosphamide,

fludarabine

NCT04767308 Early Phase 1 2021

Safety and Efficacy of
CT125A Cells for

Treatment of
Relapsed/Refractory
CD5+ Hematopoietic

Malignancies

B Acute Lymphoblastic
Leukemia

Drug:
PBLTT52CAR19 NCT04557436 Phase 1 2020

TT52CAR19 Therapy
for B-cell Acute
Lymphoblastic

Leukemia
(PBLTT52CAR19)

B-cell Malignancy
Non-Hodgkin

Lymphoma
B-cell Lymphoma
Adult B Cell ALL

Biological: CTX110 NCT04035434 Phase 1 2019

A Safety and Efficacy
Study Evaluating

CTX110 in Subjects
with Relapsed or
Refractory B-Cell

Malignancies
(CARBON)

Acute Lymphocytic
Leukemia in Relapse,

ALL Refractory
Lymphoma, B-Cell

CD19 Positive

Genetic: XYF19
CAR-T cell

Drug:
Cyclophosphamide
Drug: Fludarabine

NCT04037566 Phase 1 2019

CRISPR (HPK1)
Edited CD19-specific
CAR-T Cells (XYF19

CAR-T Cells) for
CD19+ Leukemia or

Lymphoma

B-cell leukemia
B-cell lymphoma

Biological: Universal
Dual Specificity

CD19 and CD20 or
CD22 CAR-T Cells

NCT03398967 Phase 1
Phase 2 2018

A Feasibility and
Safety Study of
Universal Dual

Specificity CD19 and
CD20 or CD22

CAR-T Cell
Immunotherapy for

Relapsed or
Refractory Leukemia

and Lymphoma

T-cell Acute
Lymphoblastic Leukemia

T-cell Acute
Lymphoblastic

Lymphoma
T-non-Hodgkin

Lymphoma

Genetic:
CD7.CAR/28zeta

CAR T cells
Drug: Fludarabine

Drug: Cytoxan

NCT03690011 Phase 1 2018

Cell Therapy for
High Risk T-Cell

Malignancies Using
CD7-Specific CAR

Expressed On
Autologous T Cells

B-cell leukemia
B-cell lymphoma

Biological:
UCART019 NCT03166878 Phase 1

Phase 2 2017

A Study Evaluating
UCART019 in
Patients with
Relapsed or

Refractory CD19+
Leukemia and

Lymphoma

CAR T cells = Chimeric antigen receptor T cells.

4. Challenges and Opportunities for CRISPR/Cas9 Applications in Therapy
4.1. Delivering Editing Tools

It is crucial to obtain delivery platforms that can secure the transport of editing com-
ponents in to various target cells [131]. Ribonucleoprotein is the preferred cargo format
because of its “hit-and-run” type mechanism. This method reduces the risk of affecting
off-target sites with resultant undesired effects and allows for efficient modification of
cells with low translation rates [68]. Less optimal formats include non-integrating viral
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vectors and mRNA. Taking advantage of the ribonucleoprotein transport format in the
CRISPR/Cas9 system further increases the benefit-to-harm ratio. Potential applications
include developing novel approaches to integrate donor template DNA and ribonucleopro-
tein for gene correction in the desired systems [132].

4.2. Safety

The most pressing concern regarding the use of CRISPR/Cas9 editing is unintentional
Cas9 cleavage leading to off-target DSB [68]. Therefore, it is essential that genome-wide
sequencing is applied thoroughly to examine such modifications at unexpected genome
sites or at potential off-target sites, which in-silico prediction tools can indicate.

Nevertheless, the consequences of the off-target activity are controversial, and studies
have shown discordant results [133,134].

There are several methods to detect CRISPR off-target mutations [135]; however, there
is no consensus regarding identifying which potential off-target sites require examination
using deep targeted sequencing. Cas9-related on-target mutagenesis, which includes large
gene rearrangements and deletions resulting in pathogenic consequences, has been identi-
fied as another safety concern [136]. Accordingly, additional studies are needed to better
understand the in vivo effects of the CRISPR/Cas9 technique over the human genome. The
possibility of undesired gene mutations raises some concerns about the therapeutic utility
of the CRISPR/Cas9 system in humans. Infused gene-edited hematopoietic stem cells may
have the potential to expand clonally and thereby promote the development of leukemia.
One possible solution would be to substitute Cas9 with a different alternative nuclease,
such as Cas12a (Cpf1), which prevents mismatches along the 18 nucleotides adjacent to the
neighboring protospacer motif [137]. Other solutions could involve paired nickases [138]
guided by two unique gRNAs, both targeting the identical locus but on the opposite DNA
strands, or “base editors” which edit nucleotides without causing a DNA break [139].

4.3. Efficiency

Insufficient target conversion or suboptimal DNA repair outcomes might prevent the
desired therapeutic effect of gene editing. Strategies to optimize HDR in CRISPR/Cas9-
mediated transgenesis, such as the use of siRNA or shRNA, fusion of Cas9 with a domain
of CtIP, or the use of Rad51 activator RS1 that increase the CRISPR/Cas9 efficiency, etc.,
are reported but require further clinical testing [140]. Efficiency may also be reduced if a
mutation from CRISPR/Cas9 is detrimental to cells, resulting in a non-reversible, negative
effect [68].

4.4. Strategies

Compared to the traditional CRISPR/Cas method, prime editing (PE) has fewer off-
target effects and can repair various types of genetic variations (frameshift mutations
caused by indels, nucleotide substitutions, etc.) that are linked to human illnesses [141,142].
Two proteins, a Cas9 nickase domain and an engineered reverse transcriptase domain are
fused together for PE [143–145]. Anzalone AV et al. [141] utilized PE to repair sickle cell
anemia’s pathogenic mutation (A > T transversion). For safety concerns, however, more
research is necessary, taking into account the indels frequency of PE [146].

A study by Ren J et al. [147,148] used multiplex assays to simultaneously target the two
micro globulins, programmed cell death protein 1, and T-cell receptor, etc. This resulted in
dual and triple gene ablation with promising results in the generation of CAR-T cells after
a single shot. It is required to repair two or more loci at the same time for some illnesses.
However, this might lead to off-target consequences, such as chromosomal rearrangement
and translocation [145]. There may be a way to circumvent this restriction by using the
CRISPR-nickase genome editing technology. CRISPR-nickase, according to Satomura A
et al., has no restrictions on editable bases, and off-target effects were not found [149].
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4.5. Immunogenicity

The immune system’s reaction to genetically modified ex vivo cells or gene editing
reagents administered in vivo is also a potential cause for concern [150]. For example,
the existence of anti-Cas9 antibodies, mostly isolated from Staphylococcus pyogenes or
Streptococcus aureus, is common in adults and neonates. Similarly, T lymphocytes target-
ing Staphylococcus aureus Cas9 represent an obstacle to therapeutic gene-editing through
CRISPR/Cas9 [151]. Therefore, the role of the immune system as it relates to gene editing
must be carefully examined. Strategies to overcome these challenges include incorporating
alternative nucleases that have not been exposed to the human immune system or using
novel nucleases that lack an immune response. Other strategies include: (1) to recognize
the innate immune mechanism that is formed against CRISPR/Cas9 in order to optimize
vector choice and engineering; (2) to initiate immunosuppression through medications
and/or regulatory T cells to suppress undesired immune reactivity; (3) to construct an
in silico prediction tool to assist in determining immunogenic predisposition; and (4) to
identify regions on CRISPR/Cas9 that are antigenic with the intention of enabling epitope
masking and deimmunization [152].

4.6. DNA Damage Response Mediated by TP53

The DNA damage response through TP53 in some human cell types induced by
CRISPR/Cas9 genome editing [153,154] is likely responsible for the low efficiency rates in
these cells. Inhibiting TP53 could theoretically improve the efficiency of genome editing in
wild-type cells; however, this may increase the risk of cells being malignantly transformed.
Therefore, the sequence and function of the TP53 gene should be closely monitored in
targeted cell populations that are chosen for CRISPR/Cas9 cell-based therapy [68].

4.7. Bioethical Regulation

Utilizing CRISPR/Cas9 gene-editing tools is associated with a variety of ethical con-
cerns, including its application to germline cells, embryos, and humans [155,156]. While
the clinical application of CRISPR in human somatic cells with the intention of treating
hematologic diseases is generally accepted, the consensus among geneticists is that its
application in human germline cells and embryos (apart from research purposes), in which
future generations would inherit genetic changes, should be impermissible [68]. Recently,
it was reported that CRISPR/Cas9 was used to inactivate the CCR5 receptor in human em-
bryos, thereby promoting resistance to HIV infection [157]. Limited and non-peer-reviewed
data was presented that described the birth of twin girls that were genetically edited using
CRISPR/Cas9. This claim highlights the importance of having clear regulations regarding
the use of human CRISPR/Cas9 genome-editing techniques, as its use should be focused
on therapeutic applications, not on eugenics or human enhancement. CRISPR/Cas9 has
the potential as a research tool to better understand disease pathogenesis and early human
development. To date, infusions of ex vivo modified T cells have been given to patients,
but none have been treated using in vivo CRISPR-based therapy [68].

The regulatory and ethical considerations involving using CRISPR/Cas9 genome
editing for therapeutic purposes are very complex [158]. It is clear that CRISPR/Cas9
has significant potential to modify the human genome, and there are high expectations
for future applications. In order to adequately assess concerns and potential benefits,
a multidisciplinary regulatory committee involving lawyers, geneticists, clinicians, and
society representatives should be established to outline a legislative framework to appro-
priately regulate the prohibition or permission of CRISPR applications and other genome
engineering techniques in the future. Global biological and scientific ethics communities
must establish procedures and standards that reduce the risks of these powerful new tools
without forgetting the benefits [68].

In conclusion, we can state that CRISPR methods are beneficial for the identification
of novel biomarkers for leukemogenesis and disease progression as well as for targeted
treatment. A number of techniques have been devised in order to circumvent the real
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limitations. As a result of medical advances, the overall survival of leukemia patients has
improved, although, for some, such as AML, substantial hurdles for long-term life remain.
In addition to leukemias, CRISPR-based methods may provide promise for the future of
cancer treatment.
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