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Abstract: Trastuzumab, a monoclonal antibody to human epidermal growth factor receptor 2 (HER2),
has improved survival in patients with HER2-positive advanced gastric or gastroesophageal junction
cancer (AGC). The inevitable development of resistance to trastuzumab remains a problem, however,
with several treatment strategies that have proven effective in breast cancer having failed to show
clinical benefit in AGC. In this review, we summarize the mechanisms underlying resistance to
HER2-targeted therapy and outline past and current challenges in the treatment of HER2-positive
AGC refractory to trastuzumab. We further describe novel agents such as HER2 antibody–drug
conjugates that are under development and have shown promising antitumor activity in early studies.
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1. Trastuzumab as a First-Line Therapy for Human Epidermal Growth Factor Receptor 2
(HER2)-Positive Advanced Gastric or Gastroesophageal Junction Cancer (AGC)

HER2, also known as ERBB2, belongs to the ERBB family of proteins that also includes the
epidermal growth factor receptor (EGFR or HER1), HER3, and HER4. Trastuzumab is a humanized
monoclonal antibody that binds HER2 specifically and thereby inhibits its homodimerization and
phosphorylation, resulting in inhibition of the proliferation of HER2-overexpressing tumor cells [1].

1.1. ToGA Study

After its approval for the treatment of breast cancer, a global phase III trial, ToGA, was conducted
for trastuzumab in AGC patients (Table 1) [2]. Enrolled patients were randomly assigned to receive
trastuzumab in combination with chemotherapy (cisplatin with a fluoropyrimidine) or chemotherapy
alone. Among 3830 screened patients, 810 were diagnosed with HER2-positive cancer, 594 were
randomized, and 584 received study treatment. The overall survival (OS), the primary end point of the
study, was found to be significantly longer for trastuzumab plus chemotherapy than for chemotherapy
alone, with a median OS of 13.8 versus 11.1 months, yielding a hazard ratio (HR) of 0.74 with a 95%
confidence interval (CI) of 0.60 to 0.91 and p-value of 0.0046. The median progression-free survival (PFS)
was 6.7 months for trastuzumab plus chemotherapy compared with 5.5 months for chemotherapy alone
(HR of 0.71, 95% CI of 0.59–0.85; p = 0.0002). The overall response rate (ORR) was also significantly
greater for trastuzumab plus chemotherapy than for chemotherapy alone: 47% versus 35% (odds ratio
of 1.70, 95% CI of 1.22–2.38; p = 0.0017).

A preplanned exploratory analysis revealed that patients with a low level of HER2 expression
(immunohistochemistry (IHC) score of 0 or 1+ and fluorescence in situ hybridization (FISH)-positive)
were less likely to benefit from trastuzumab therapy than those with a high level [2]. On the

Cancers 2020, 12, 400; doi:10.3390/cancers12020400 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0003-0033-8741
https://orcid.org/0000-0002-3280-4850
http://dx.doi.org/10.3390/cancers12020400
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/2/400?type=check_update&version=2


Cancers 2020, 12, 400 2 of 14

basis of these results, trastuzumab was approved for AGC with a high HER2 expression level,
and trastuzumab-containing regimens are now a standard option for the first-line treatment of such
patients, who accounted for 7% to 17% of all individuals with gastric cancer [3–5].

1.2. Derivatives of the ToGA Regimen in the First-Line Setting

The ToGA trial adopted a regimen of cisplatin combined with either 5-fluorouracil (5-FU) or
capecitabine, whereas subsequent prospective studies found similar treatment outcomes with regimens
containing oxaliplatin or tegafur–gimeracil–oteracil (S-1). In a single-arm, nonrandomized phase II
trial (HER2-based strategy in stomach cancer (HERBIS)–1) performed in Japan [6], trastuzumab in
combination with S-1 plus cisplatin yielded a confirmed ORR of 68%, with a median OS and a median
PFS of 16.0 and 7.8 months, respectively, in HER2-positive AGC patients with measurable lesions,
with these results being similar to those of the ToGA trial [2]. Similar efficacy was also apparent in
AGC patients without measurable lesions (HERBIS-1B study) [7]. Three phase II studies that assessed
the combination of trastuzumab with capecitabine plus oxaliplatin reported a median OS, a median
PFS, and an ORR of 13.8 to 21.0 months, 7.1 to 9.8 months, and 46.7% to 67.3%, respectively [8–10].
Trastuzumab in combination with S-1 plus oxaliplatin was also shown to provide a similar treatment
outcome in a phase II study, with a median OS, a median PFS, and an ORR of 18.1 months, 8.8 months,
and 70.7%, respectively [11]. A meta-analysis of data from these trials revealed that S-1 or oxaliplatin
can substitute effectively for capecitabine or 5-FU or for cisplatin, respectively [12].

Immune checkpoint inhibitors such as antibodies to programmed cell death-1 (PD-1) have recently
revolutionized treatment strategies for advanced cancer. Given that trastuzumab was found to
stimulate T cell responses [13], the combination of trastuzumab-containing regimens with antibodies to
PD-1 is receiving attention. A phase II study including 37 patients with HER2-positive AGC treated in
the first-line setting with capecitabine, oxaliplatin, and trastuzumab in combination with the anti-PD-1
antibody pembrolizumab reported an ORR of 83%, with a median PFS of 11.4 months and a median OS
of not reached [14]. A placebo-controlled, randomized phase III trial (KEYNOTE-811, NCT03615326) is
currently ongoing in an attempt to confirm these promising findings.

2. Failure of HER2-Targeted Therapy in AGC

For breast cancer, the development of HER2-targeted therapy has been successful [1,15–20].
In patients with HER2-positive breast cancer refractory to trastuzumab-based therapy, continuation of
trastuzumab in the second-line setting has been shown to prolong survival, with such trastuzumab
beyond progression (TBP) being an established strategy for this cancer [15,16]. In addition, agents
other than trastuzumab have been found to be effective for HER2-positive breast cancer refractory
to trastuzumab. Lapatinib, an oral small-molecule tyrosine kinase inhibitor (TKI) of both HER2
and EGFR, thus confers a significant survival benefit in HER2-positive breast cancer patients when
combined with capecitabine or paclitaxel [17,18]. Trastuzumab emtansine (T-DM1) is an antibody–drug
conjugate comprised of trastuzumab joined by a stable linker to the microtubule inhibitor emtansine
(DM1). T-DM1 is considered a standard care for patients with HER2-positive breast cancer on the
basis of the finding that it significantly improves survival outcome in such patients pretreated with
trastuzumab [19]. Pertuzumab, a recombinant monoclonal antibody to HER2 that binds to a different
domain of the receptor compared with that targeted by trastuzumab, was also shown to prolong
survival in HER2-positive breast cancer when added to trastuzumab plus chemotherapy [20].

Numerous clinical trials including phase III studies have been performed for HER2-positive AGC
in an attempt to establish new options for HER2-targeted therapy. However, no positive data have
been obtained to date.

2.1. Trastuzumab in the Second-Line Setting (beyond Progression)

A randomized phase II study (T-ACT, WJOG7112G) examined the efficacy of TBP in combination
with paclitaxel, the standard of care in the second-line setting for AGC patients, who progressed during
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the first-line treatment with a trastuzumab-containing regimen (Table 1) [21]. A total of 89 patients
with HER2-positive AGC, who failed first-line therapy with trastuzumab plus a fluoropyrimidine and
platinum agent, were randomly assigned to receive paclitaxel plus trastuzumab or paclitaxel alone.
No significant difference in PFS or OS between the two arms was detected with the trial, thus failing to
demonstrate a benefit for the TBP strategy.

2.2. T-DM1 and Pertuzumab

The GATSBY trial was an open-label, adaptive phase II/III study that compared T-DM1 with the
physician’s choice of taxane regimen for HER2-positive AGC in the second-line setting (Table 1) [22].
This trial found that T-DM1 treatment did not improve the primary end point of OS or a secondary
end point of PFS. A phase III study (JACOB) that evaluated the effect of the addition of pertuzumab to
the standard ToGA regimen in HER2-positive AGC also failed to achieve its primary end point of OS,
despite significant improvements in PFS and ORR (Table 1) [23].

2.3. Lapatinib

The survival benefit of lapatinib for HER2-positive AGC has also been evaluated in a couple
of phase III trials. The TRIO-013/LOGiC trial examined the effect of the addition of lapatinib to
the combination of capecitabine and oxaliplatin for the first-line treatment of HER2-positive AGC
(Table 1) [24]. This study found that lapatinib addition to chemotherapy did not result in a significant
improvement in OS, although the PFS and the ORR (53% versus 39%, p = 0.003) both favored the
lapatinib arm. In the TyTAN trial, which examined paclitaxel with or without lapatinib in the
second-line setting, no OS benefit was apparent for lapatinib (Table 1) [25]. No significant improvement
in PFS or time to progression was observed, despite significant increases in ORR for all enrolled patients
as well as for those with an IHC score of 3+ for HER2.

Table 1. Pivotal randomized phase II and III trials of human epidermal growth factor receptor 2
(HER20-targeted agents in HER2-positive advanced gastric or gastroesophageal junction cancer.

Trial Agent Line of
Therapy

Median PFS
(Month)

Median OS
(Month)

Result for the
Primary End Point

ToGA [2] Trastuzumab 1st
6.7 versus 5.5

(HR, 0.71; 95% CI,
0.59–0.85; p < 0.01)

13.8 versus 11.1
(HR, 0.74; 95% CI,
0.60–0.91; p < 0.01)

Positive

LOGiC [24] Lapatinib 1st
6.0 versus 5.4

(HR, 0.82; 95% CI,
0.68–1.00; p = 0.04)

12.2 versus 10.5
(HR, 0.91; 95% CI,
0.73–1.12; p = 0.20)

Negative

JACOB [23] Pertuzumab 1st
8.5 versus 7.0

(HR, 0.73; 95% CI,
0.62–0.86; p < 0.01)

17.5 versus 14.2
(HR, 0.84; 95% CI,
0.71–1.00; p = 0.06)

Negative

T-ACT [21] Trastuzumab 2nd
3.2 versus 3.7

(HR, 0.91; 95% CI,
0.67–1.22; p = 0.33)

10.0 versus 10.2
(HR, 1.23; 95% CI,
0.76–1.99; p = 0.20)

Negative

TyTAN [25] Lapatinib 2nd
5.5 versus 4.4

(HR, 0.85; 95% CI,
0.63–1.13; p = 0.24)

11.0 versus 8.9
(HR, 0.84; 95% CI,
0.64–1.11; p = 0.10)

Negative

GATSBY [22] T-DM1 2nd
2.7 versus 2.9

(HR, 1.13; 95% CI,
0.89–1.43; p = 0.31)

7.9 versus 8.6
(HR, 1.15; 95% CI,
0.87–1.51; p = 0.86)

Negative

PFS, progression-free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval; T-DM1,
trastuzumab emtansine.

In summary, although HER2-targeted therapy has been found to improve short-term outcome in
HER2-positive AGC, the success of such therapy achieved in HER2-positive breast cancer has not been
reproduced in patients with AGC, highlighting the importance of understanding the mechanisms of
resistance to HER2-targeted therapy in AGC.



Cancers 2020, 12, 400 4 of 14

3. Mechanisms of Resistance to HER2-Targeted Therapy

Several potential mechanisms of resistance to HER2-targeted therapy in breast cancer have been
identified. These mechanisms are as follows: (1) hindering of the access of trastuzumab to HER2
by expression of an extracellular domain-truncated form of HER2 (p95 HER2) or overexpression
of MUC4; (2) alternative signaling from the insulin-like growth factor-1 receptor, other HER family
members, or mesenchymal–epithelial transition (MET); (3) aberrant downstream signaling caused
by loss of PTEN, PIK3CA mutation, or downregulation of the cyclin-dependent kinase inhibitor p27;
and (4) Fc gamma receptor 3A gene polymorphisms [26]. HER2-positive AGC has been found to share
some of these mechanisms with breast cancer, but also manifests specific mechanisms of resistance
to trastuzumab.

3.1. Tumor Heterogeneity in HER2 Positivity

Gastric cancer is a highly heterogeneous malignancy. Intratumoral HER2 heterogeneity is more
frequent in gastric cancer than in breast cancer, with values ranging widely from 23% to 79% as a result
of differences in the definition of heterogeneity among studies [27]. In addition, discrepancies in HER2
status between the primary tumor and metastatic sites have been identified. The GASTHER1 study
evaluated HER2 status at metastatic sites of patients with AGC, whose primary tumors were found to
be negative for HER2 at an initial screening. This study found that 5.7% of initially HER2-negative
patients turned out to have HER2-positive metastatic lesions, with liver metastases being associated
with the highest frequency of discordance (17.2%) [28]. A retrospective analysis that investigated
differences in HER2 status between the primary tumor and metastatic lymph nodes or other metastatic
sites also found that ~10% of cases developed discrepancies [29]. Such tumor heterogeneity increased
the risk of a false positive result on HER2 testing, potentially leading to a reduced survival benefit for
HER2-tageted therapy in clinical trials. Two retrospective studies in Japan indeed detected a poorer
outcome of trastuzumab-based therapy in AGC patients with heterogeneity of HER2 expression than
in those with homogeneity of such expression [30,31]. A recent study analyzed gene alterations by
next-generation sequencing in 50 patients with HER2-postive metastatic esophagogastric cancer, who
received first-line trastuzumab therapy [32]. Four patients, whose HER2 status was positive by FISH or
IHC, were shown to be negative for HER2 amplification by next-generation sequencing and progressed
rapidly on trastuzumab therapy. Such discordance between FISH/IHC and next-generation sequencing
may reflect intratumoral heterogeneity and lead to a poor treatment outcome.

3.2. Loss of HER2 Protein Expression

Studies that evaluated changes in HER2 protein expression in AGC patients receiving
trastuzumab-containing regimens by comparison of matched pre- and post-treatment samples have
demonstrated a loss of HER2 [33,34]. In the aforementioned T-ACT study [21], given that collection of
new tumor biopsy samples at the time of study enrollment (after progression on prior trastuzumab
therapy) was not mandatory, reassessment of HER2 positivity was performed for only 16 out of
44 patients. Nonetheless, 11 of these 16 patients (69%) were found to lose HER2 positivity [21],
with such a loss likely contributing to the failure of TBP in this study. In the study by Janjigian et al.,
the comparison of matched pre- and post-trastuzumab samples revealed loss of HER2 amplification [32].

3.3. Alterations in HER2 Downstream Signaling

The abovementioned study that applied next-generation sequencing also analyzed gene alterations
related to trastuzumab resistance [32]. Alterations that affected the receptor tyrosine kinase
(RTK)–RAS–phosphatidylinositol 3-kinase (PI3K) signaling pathway were associated with a short
time to treatment failure for trastuzumab therapy. This association is consistent with findings for
breast cancer showing that aberrant downstream signaling can give rise to resistance to HER2-targeted
therapy. Heregulin serves as a ligand of HER3 and triggers HER2–HER3 heterodimerization and
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activation of PI3K–AKT signaling [35–37]. We previously found that high levels of heregulin in tumor
specimens were associated with resistance to trastuzumab in both HER2-positive breast cancer and
AGC [38].

3.4. Bypass Pathways

The Cancer Genome Atlas classification [39] identifies four molecular subtypes of gastric cancer:
tumors with microsatellite instability, tumors positive for Epstein–Barr virus, genomically stable
tumors, and tumors with chromosomal instability (CIN). The CIN subtype, which is the most common
subtype in gastric cancer, is characterized by marked aneuploidy. CIN is also linked to amplification in
oncogene RTK signaling pathways, including EGFR and MET in addition to HER2. Surgically resected
gastric tumors were found to manifest a significant association between HER2 protein expression and
MET protein expression [40]. A study of MET-amplified AGC revealed frequent co-amplification
of RTK genes, with 40% to 50% of cases showing co-amplification of either HER2 or EGFR. Such
patients failed to respond to HER2-targeted therapy, whereas combined MET and HER2 inhibition was
associated with a marked clinical response in one patient [41].

Another oncogene co-amplified with HER2 in AGC is CCNE1, which encodes the cell cycle
regulator cyclin E1. The application of next-generation sequencing in a phase II study of lapatinib with
capecitabine and oxaliplatin in 32 chemotherapy-naive patients with HER2-positive AGC revealed
a high frequency (40%) of CCNE1 co-amplification [42]. Nonresponders to lapatinib treatment were
more likely to manifest CCNE1 co-amplification than responders, suggesting that CCNE1 amplification
is a negative predictive factor. A retrospective study also found that a higher level of copy number
variation for CCNE1 correlated with a shorter survival time in patients with HER2-positive AGC
treated with trastuzumab [43]. Of note, co-amplification of CCNE1 was found to be more strongly
associated with HER2-positive AGC than with HER2-positive breast cancer [44].

Together, these observations suggested that the development of new HER2-targeted therapeutic
approaches should take into account challenges posed by concomitant gene alterations in addition to
HER2 heterogeneity and loss of HER2 protein expression.

4. Novel HER2-Targeted Approaches

4.1. ZW25

ZW25 is a bispecific antibody directed toward two different HER2 epitopes, extracellular domain
4 (ECD4) and ECD2 [45], which are the binding sites of trastuzumab and pertuzumab, respectively.
The preclinical analysis has revealed that ZW25 manifests antitumor activity over a range of HER2
expression levels and inhibits HER2 signaling more potently than either trastuzumab or pertuzumab.
In a phase I basket trial, single-agent ZW25 showed encouraging efficacy in heavily pretreated patients
with HER2-positive gastroesophageal cancer, with an ORR of 44% and a disease control rate (DCR) of
56% [46]. Toxicities were manageable with almost all adverse events classified as grade 1 or 2. Only one
patient developed toxicities of grade 3 including reversible hypophosphatemia, arthralgia, and fatigue,
and there were no treatment-related deaths. On the basis of these promising results, ZW25 received a
fast track designation by the U.S. Food and Drug Administration (FDA), and a trial evaluating ZW25
plus chemotherapy for patients with HER2-positive tumors (NCT02892123) is ongoing.

4.2. Margetuximab

Margetuximab is a monoclonal antibody that binds to the same epitope of HER2 (ECD4) as
trastuzumab does [47]. Although the affinity of margetuximab for HER2 is similar to that of trastuzumab,
the modification of the Fc domain of margetuximab resulted in enhancement of antibody-dependent
cell-mediated cytotoxicity compared with that observed with trastuzumab. A total of 66 patients with
HER2-positive tumors, including 20 with gastroesophageal cancer, were enrolled in a first-in-human
phase I study of margetuximab [48]. Most patients (45 out of 66, ratio: 68%) underwent at least one
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previous HER2-targeted therapy in the metastatic setting. Adverse events of grade 3 or 4 included
increased blood lipase, a decreased lymphocyte count, increased blood amylase, increased blood alkaline
phosphatase, and infusion-related reaction, all of which occurred in <5% of patients. Among 60 patients
evaluable for tumor response, seven individuals including one with gastroesophageal cancer showed a
confirmed partial response, resulting in an ORR of 12%. For breast cancer, the phase III SOPHIA trial
compared margetuximab plus chemotherapy with trastuzumab plus chemotherapy in such heavily
pretreated patients [49]. Margetuximab plus chemotherapy demonstrated significant improvements
in its primary end point compared with chemotherapy alone (median PFS: 5.8 versus 4.9 months,
HR of 0.76, 95% CI of 0.59–0.98; p = 0.033). Margetuximab in combination with pembrolizumab
is currently under investigation for AGC (NCT02689284). The preliminary results in patients with
HER2-positive gastroesophageal adenocarcinoma, who progressed on first-line trastuzumab treatments,
have been already reported. Margetuximab in combination with pembrolizumab as a second-line
setting showed acceptable toxicities with 18.2% of grade 3 or more treatment-related adverse events
such as autoimmune hepatitis. Patients with an IHC score of 3+ were more likely to gain clinical
benefit with an ORR of 41%, a median PFS of 5.5 months, and a median OS of not reached [50].

4.3. Pan-HER TKIs

Several HER2-targeted TKIs have been evaluated in clinical trials. Whereas lapatinib targets
EGFR (HER1) and HER2, recent trials have focused on pan-HER inhibitors, given that studies have
suggested that the antitumor efficacy of pan-HER blockade is more promising than that of HER2
blockade alone [51].

Afatinib is an oral TKI that irreversibly blocks EGFR, HER2, HER3, and HER4, and it has
shown promising preclinical activity against HER2-positive gastrointestinal tumors that are resistant
to trastuzumab [52]. A phase II study that evaluated afatinib monotherapy in 20 patients with
esophagogastric cancer previously treated with trastuzumab found that afatinib provided moderate
therapeutic benefit with an ORR of 10%, and the data suggested that co-amplification of EGFR and
HER2 predicted treatment response [53].

Neratinib is another pan-HER TKI that binds irreversibly to the active site of the tyrosine kinase
domain and blocks signal transduction by EGFR, HER2, and HER4 [54]. Neratinib has been tested
against HER2-mutated tumors, and a nonrandomized phase II basket study (SUMMIT, NCT01953926)
is currently exploring its efficacy.

Tucatinib is an oral TKI that is highly selective for HER2 and has shown clinical benefit for
patients with HER2-positive tumors, especially for those with central nervous system metastasis [55].
Tucatinib was granted fast track designation by the U.S. FDA for the treatment of HER2-positive breast
cancer. The HER2CLIMB trial evaluated the addition of tucatinib to trastuzumab and capecitabine
in patients with HER2-positive breast cancer previously treated with trastuzumab, pertuzumab, and
T-DM1. The one-year PFS rate was 33.1% for the tucatinib-containing regimen and 12.3% for the control
regimen (HR of 0.54, 95% CI of 0.42–0.71; p < 0.001), and the median PFS rates were 7.8 and 5.6 months,
respectively, with the primary end point thus being met [56].

4.4. Trastuzumab Deruxtecan (DS-8201a)

Trastuzumab deruxtecan (DS-8201a) is a novel HER2-targeted antibody–drug conjugate.
The antibody of trastuzumab deruxtecan was developed with reference to the amino acid sequence of
trastuzumab and thus binds to HER2 with a similar affinity. The drug payload is a derivative of the
topoisomerase I inhibitor DX-8951 (DXd) and shows a higher potency compared with SN-38, the active
metabolite of irinotecan [57]. Furthermore, trastuzumab deruxtecan has a drug-to-antibody ratio of 8,
which is higher than that of T-DM1 (3.5). In addition, the novel linker technology provides a stable and
efficient linkage between the antibody and drug payload of trastuzumab deruxtecan. In contrast to
T-DM1, these unique characteristics of trastuzumab deruxtecan render it effective against tumors with
low levels of HER2 expression [58].
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In a first-in-human phase I study, patients with advanced breast cancer or AGC received
trastuzumab deruxtecan at a dose of 0.8 to 8.0 mg/kg intravenously every three weeks [59]. Common
adverse events of grade of ≥3 included myelosuppression as reflected by a decreased lymphocyte
count, a decreased neutrophil count, and anemia. Three serious adverse events (febrile neutropenia,
intestinal perforation, and cholangitis) occurred in one patient each. However, no dose-limiting toxic
effects were encountered. The ORR and DCR were 43% and 91%, respectively, for patients, who
underwent multiple lines of standard therapy. A phase II study for heavily pretreated patients with
HER2-positive breast cancer revealed promising efficacy for trastuzumab deruxtecan at a dose of
5.4 mg/kg, with an ORR and a DCR of 60.9% and 97.3%, respectively [60]. The high antitumor efficacy
was further translated into prolongation of survival, with a median PFS of 16.4 months (95% CI of
12.7 months—not reached).

A dose-escalation and dose-expansion phase I trial was conducted for trastuzumab deruxtecan
in patients with AGC [61]. A total of 44 patients pretreated with HER2-positive AGC received at
least one dose of trastuzumab deruxtecan (5.4 or 6.4 mg/kg) every three weeks. Although 11 patients
(25%) developed serious treatment-emergent adverse events and there were four cases of pneumonitis,
almost all adverse events were consistent with the results of a previously reported phase I study [59].
Nineteen patients achieved a confirmed response, resulting in an ORR of 43.2%, which was also similar
to the value in the previous study. The recommended dose for a subsequent phase II study was thus
set at 6.4 mg/kg.

The DESTINY-Gastric01 study (NCT03329690), a randomized, open-label phase II trial evaluating
the efficacy and safety of trastuzumab deruxtecan versus the physician’s choice of therapy, is ongoing
in 220 patients with HER2-positive AGC, who progressed during treatment with two or more previous
regimens including trastuzumab. Trastuzumab deruxtecan has received the SAKIGAKE designation
for the treatment of HER2-positive AGC by the Japanese Ministry of Health, Labor, and Welfare.
SAKIGAKE is a system to place innovative medical products, including pharmaceuticals, medical
devices, and regenerative medicine products, into clinical use.

5. Advantages of Trastuzumab Deruxtecan

Although homogeneity of HER2 amplification and expression is necessary for the success of
conventional HER2-targeted therapy, such homogeneity is less frequent for AGC than for breast cancer
and is not necessarily required for the success of therapy with trastuzumab deruxtecan. We thus
previously showed that trastuzumab deruxtecan is effective not only against tumor cells positive
for HER2 protein but also, in the presence of HER2-positive cells, against those negative for such
expression [62] (Figure 1). This “bystander killing effect” is likely due to the internalization of
trastuzumab deruxtecan by HER2-positive cells (Figure 1A), the release of DXd into the cytoplasm of
these cells (Figure 1B), and the subsequent transfer of the released DXd into adjacent HER2-negative
cells (Figure 1C) [63].
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On the other hand, the expression of HER2 protein at various levels on the tumor cell surface occurs 

more frequently. In AGC, the concordance between IHC and FISH for detection of HER2 

overexpression is moderate, with a value of 83% for the ToGA trial [2], suggesting that a substantial 
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Figure 1. Proposed mechanism for the “bystander killing effect” of trastuzumab deruxtecan. The binding
of trastuzumab deruxtecan to HER2 expressed on the surface of HER2-positive tumor cells (A) triggers
its internalization followed by the release of DXd into the cytoplasm and the induction of apoptosis (B).
(C) DXd is then transferred to and induces apoptosis in neighboring HER2-negative cells.

Given that most anti-HER2 drugs including trastuzumab target only the HER2 signaling pathway,
their efficacy is limited to HER2-amplified tumors, which account for ~17% of AGC tumors. On the
other hand, the expression of HER2 protein at various levels on the tumor cell surface occurs more
frequently. In AGC, the concordance between IHC and FISH for detection of HER2 overexpression
is moderate, with a value of 83% for the ToGA trial [2], suggesting that a substantial population of
patients classified as HER2-negative by FISH are actually positive for HER2 protein expression but
do not benefit from current anti-HER2 therapy. In our preclinical study, with the use of engineered
cell lines that expressed HER2 protein at various levels in the absence of HER2 amplification, we
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also demonstrated the efficacy of trastuzumab deruxtecan against tumors that express HER2 but are
negative for HER2 amplification [62]. In this case, HER2 may function as a “gate” for the selective
passage of DXd, with the antitumor effect being solely due to the cytotoxicity of DXd, not to HER2
signal blockade by trastuzumab. These preclinical findings may be reflected in the clinical setting by
the observation that patients with AGC that expressed HER2 at a low level responded to trastuzumab
deruxtecan in the phase I study [59], suggesting that the definition of “HER2 positivity” may need
to be changed for similar agents. Furthermore, the antitumor effect of DXd is basically independent
of the absence or presence of other gene alterations such as those that activate alternative pathways
(MET or CCNE1 co-amplification) or those that affect downstream signaling components like RAS or
RAF, suggesting that trastuzumab deruxtecan may be able to overcome trastuzumab resistance. In our
preclinical study, we found that the antitumor effect of trastuzumab deruxtecan was more rapid for
HER2-amplified tumors than for those that expressed HER2 without HER2 amplification, possibly as a
result of a difference in tumor dependence on HER2 signaling [62]. These preliminary results await
clinical confirmation, however.

Antibodies to HER family members have been developed mostly for breast cancer and
gastrointestinal malignancies including AGC and metastatic colorectal cancer (mCRC). Antibodies to
EGFR have been shown to confer a survival benefit in the first-, second- or later-line setting for patients
with mCRC that is wild type for RAS. However, the benefit of retreatment with such antibodies has
been unclear [64]. A recent phase II CRICKET study examined the possibility of rechallenge with
antibodies to EGFR in the third-line setting for RAS wild-type mCRC [65]. The study recruited patients,
who benefited from first-line treatment with anti-EGFR antibody cetuximab before the development of
resistance and administration of chemotherapy as a second-line treatment. It was found that 21% of
patients responded to irinotecan plus cetuximab in the third-line setting, suggesting that the sensitivity
to the anti-EGFR antibody was restored over the period of subsequent therapy. The mechanism
underlying this loss of resistance is unknown, but the second-line chemotherapy in the absence of
cetuximab might play a key role [66]. To date, most anti-HER2 agents, which failed to show clinical
benefit, have been examined in the second-line setting, and little is known about their efficacy in the
third- or later-line setting. The efficacy of anti-HER2 agents is basically dependent on expression of the
HER2 protein, and such treatment would therefore be expected to be invalid in the second-line setting
for tumors that lose such expression as a result of prior trastuzumab treatment. However, as shown
in the CRICKET study, second-line chemotherapy without targeting EGFR might induce recovery of
sensitivity to anti-EGFR antibodies. In this context, the results of the DESTINY-Gastric01 study will be
of interest, given that the study is being conducted in the third-line or later-line setting. Longitudinal
assessment of HER2 protein expression should also provide insight into this issue.

6. Conclusions

After the success of the ToGA study, several anti-HER2 drugs failed to show efficacy against
HER2-positive AGC, mostly in the second-line setting. Improvement in clinical outcome for
HER2-positive AGC patients will require an understanding of the mechanisms underlying trastuzumab
resistance. A new generation of HER2-targeted drugs including bispecific antibodies, antibody–drug
conjugates, and TKIs has been designed to overcome such mechanisms. Among them, trastuzumab
deruxtecan has the advantage of a unique antitumor mechanism including a bystander killing effect.
Several clinical trials evaluating novel anti-HER2 approaches are ongoing, but we are still awaiting a
breakthrough for the treatment of HER2-positive AGC.
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