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Abstract
In this paper, we attempt to quantify the prognostic information embedded in multi-
parametric histologic biopsy images to predict disease aggressiveness in estrogen 
receptor-positive (ER+) breast cancers (BCa). The novel methodological contribution is 
in the use of a multi-field-of-view (multi-FOV) framework for integrating image-based 
information from differently stained histopathology slides. The multi-FOV approach 
involves a fixed image resolution while simultaneously integrating image descriptors 
from many FOVs corresponding to different sizes. For each study, the corresponding 
risk score (high scores reflecting aggressive disease and vice versa), predicted by 
a molecular assay (Oncotype DX), is available and serves as the surrogate ground 
truth for long-term patient outcome. Using the risk scores, a trained classifier is 
used to identify disease aggressiveness for each FOV size. The predictions for each 
FOV are then combined to yield the final prediction of disease aggressiveness (good, 
intermediate, or poor outcome). Independent multi-FOV classifiers are constructed 
for (1) 50 image features describing the spatial arrangement of cancer nuclei (via 
Voronoi diagram, Delaunay triangulation, and minimum spanning tree graphs) in H and 
E stained histopathology and (2) one image feature describing the vascular density in 
CD34 IHC stained histopathology. In a cohort of 29 patients, the multi-FOV classifiers 
obtained by combining information from the H and E and CD34 IHC stained channels 
were able to distinguish low- and high-risk patients with an accuracy of 0.91 ± 0.02 
and a positive predictive value of 0.94 ± 0.10, suggesting that a purely image-based 
assay could potentially replace more expensive molecular assays for making disease 
prognostic predictions.
Key words: Image-based risk score, breast cancer, estrogen receptor positive, com-
puterized prognosis, outcome prediction, multi-variate histology, H and E, CD34 im-
munohistochemistry
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INTRODUCTION

Predicting disease aggressiveness and outcome for 
estrogen receptor-positive (ER+) breast cancers (BCa) 
patients allows for selective employment of therapeutic 
options. Specifically, identifying which women will benefit 
from adjuvant chemotherapy over and above the standard 
hormonal therapy will help limit the use of chemotherapy 
to more aggressive BCa.[1] Prognosis and treatment in 
early stage ER+ BCa are often guided by the Oncotype 
DX genomic assay (Genomic Health, Inc.), which 
produces a quantitative recurrence score  (RS) correlated 
with likelihood for recurrence.[1] However, recent work has 
suggested that molecular assays do not provide additional 
prognostic power over tumor morphology (e.g. grading) 
and immunohistochemistry (e.g. receptor status).[2,3] 
Visual analysis of tumor grade in BCa histopathology has 
shown significant value in predicting patient outcome;[1,4] 
yet high inter- and intra-clinician variability[5] has limited 
its use in clinical practice. Conversely, a quantitative, 
reproducible, and computerized prognostic tool that 
uses only digitized BCa histopathology slides would be 
invaluable for predicting prognosis and guiding therapy. 
Translational advantages of an image-based predictor over 
its molecular counterparts include a reduced cost per 
test, shorter time delay between biopsy and treatment, 
and easier access to patients in developing countries such 
as India and China.

In microscopy, pathologists implicitly partition an entire 
histopathology slide into many fields of views (FOVs) 
and incorporate image features from each FOV to arrive 
at a diagnostic decision for the entire slide. Previous 
computerized approaches to whole-slide classification, 
however, have primarily involved the extraction of image 
features (for the training of a classifier) from within 
empirically selected FOVs.[6,7] The empirical selection of 
FOVs for computerized analysis of BCa histopathology 
slides presents two main concerns. First, it is a subjective 
and time-consuming task that requires manual 
intervention by an expert, an issue that would impede 
the development of a truly automated classification 
system. Second, BCa is known to contain intratumoral 
heterogeneity,[8] whereby different types of cancer (e.g. 
ductal carcinoma in situ and invasive ductal cancer) and 
levels of malignancy (e.g. low and intermediate grades) 
may be present in a single histopathology slide. This 
phenomenon suggests that multiple FOVs of various sizes 
will be needed depending on the different types of image 
features extracted and classification tasks performed.

In this paper, we present a multi-FOV framework[9] to 
perform robust, reproducible classification of entire ER+ 
BCa histopathology slides based on low, intermediate, 
and high disease aggressiveness while addressing 
limitations arising from both manual FOV selection 
and BCa heterogeneity. The multi-FOV classifier is 

fundamentally different from traditional multi-scale (i.e. 
multi-resolution) approaches.[10,11] In image processing, 
multi-scale schemes are often used to interpret contextual 
information over different image resolutions.[10] Most 
multi-scale frameworks, which operate by exposing a 
single FOV to classifiers at multiple image resolutions, 
perform well when quantifying large-scale image patterns. 
Analyzing local object density (or other localized 
descriptors), however, is more challenging since object 
density remains invariant to changes in scale (although 
our visual perception and ability to detect individual 
objects within the image will vary).

The multi-FOV framework is used to predict BCa 
outcome by combining image-based features from CD34 
immunohistochemistry (IHC) stained and hematoxylin 
and eosin (H and E) stained histopathology slides. 
Our multi-FOV scheme uses a fixed image scale and 
extracts image features at FOVs of different sizes, a 
highly desirable attribute in heterogeneous images 
where it is not clear which FOV sizes will contain class 
discriminatory information. First, a slide is split into 
FOVs of a fixed size and relevant image features are 
extracted. A supervised classifier makes an initial class 
decision for each FOV and the decisions for all FOVs 
are aggregated to make a single class prediction for the 
specific FOV size. This procedure is repeated for a variety 
of FOV sizes, from which the class predictions at all 
FOV sizes are aggregated to arrive at a single decision for 
the entire slide. Hence there is no need to empirically 
determine the optimal FOV size for classification; rather 
this approach combines class predictions from image 
features across all FOV sizes. Class predictions are made 
by two multi-FOV classifiers applied independently to 
image features describing (1) nuclear architecture and 
(2) vascular density from the same patient. These class 
predictions are subsequently combined to form a multi-
parametric prediction for the patient.

The CD34 protein is a popular indicator of angiogenesis 
and, hence, tumor growth and metastasis.[12] Previously, 
both qualitative[13] and quantitative[14] assessments 
of CD34 IHC stained slides have characterized IHC 
staining via “hotspots”, i.e. manually selected FOVs; 
yet, the pitfalls associated with manual FOV selection 
suggest that hotspot-based predictions may not 
accurately represent CD34 expression in an entire slide. 
In this paper, vascular density is automatically extracted 
from CD34 IHC stained histopathology and used as 
the sole image-based feature to quantify angiogenic 
activity. Specifically, color deconvolution,[15] which takes 
advantage of light-absorbing properties of histological 
staining, is used to automatically isolate the brown 
diaminobenzidine (DAB) compound signifying CD34 
expression. The extent of DAB staining in a particular 
FOV is defined as vascular density and used as a feature 
in the multi-FOV framework.
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In prior work, researchers have demonstrated the ability to 
model and quantify tumor morphology in H and E stained 
histology through the construction of various graphs.[7,16,17] 
A graph (e.g. Voronoi diagram) is constructed by drawing 
edges between relevant tissue structures (e.g. nuclei) in 
a particular fashion. Graph-based features describing the 
spatial arrangement of these structures (e.g. Voronoi cell 
area) are then defined to quantify tissue architecture. In 
this paper, nuclear architecture is quantified in H and 
E stained histopathology by constructing three graphs 
(Voronoi diagram, Delaunay triangulation, and minimum 
spanning tree) using individual cancer nuclei as nodes. 
The nuclei are first identified automatically by isolating 
the blue hematoxylin stain, which preferentially stains 
nuclear material, via color deconvolution.[15] A total of 50 
graph-based features describing the spatial arrangement 
of cancer nuclei are extracted from each FOV.[7,18] Note 
that, while both vascular density and nuclear architecture 
are widely considered to have prognostic value, their 
biological foundations are very different. This suggests 
that these two feature classes are complementary and that 
their combination may produce an improved predictor of 
patient outcome.

The main contributions of this work are the following:
1. Development and quantitative evaluation of image-

based architectural and vascular features for patient 
outcome prediction in whole-slide ER+ BCa 
histopathology and

2. Synergistic combination of image-based features from 
multi-parametric histological studies to achieve an 
improved prognostic prediction of patient outcome.

While the ideal ground truth for evaluation of prognostic 
tools like the one described in this work is long-term 
patient outcome (i.e. survival data), this type of data 
is very difficult to obtain. In lieu of patient outcome, 
we utilize Oncotype DX RS as a relative ground truth. 
Oncotype DX, which produces a quantitative RS between 
0 and 100, is a molecular assay that has been clinically 
validated to predict the likelihood of 10-year distant 
recurrence and the expected benefit from adjuvant 
chemotherapy for early-stage, ER+ BCa patients.[1] 
Specifically, we evaluate the ability of the multi-FOV 
framework (in conjunction with vascular and architectural 
features) to distinguish patients with low, intermediate, 
and high Oncotype DX RS.

The rest of the paper is organized as follows. In the 
section “multi-FOV framework”, we present the theory 
and methodology behind the multi-FOV framework. It is 
followed by the sections “experimental design,” “results 
and discussion”, and “conclusion.”

Multi-FOV Framework
An image scene C=(C,g) is defined as a 2D set of pixels 
c ∈ C with associated intensity function g and class 
label y ∈ {0,1}. For each C and FOV size t ∈ T, a grid 

containing FOVs Dt={dt
1, d

t
2,.... d

t
M} is constructed, where 

dt
m ∈ C,m ∈ {1,2,..., M} is a square FOV with edge length 

of pixels. We define f(dt
m) as the function that extracts 

features from each dt
m. Grid construction and feature 

extraction are repeated likewise for each t ∈ T.

Theoretical Motivation for Consensus-based Approach
The theory supporting consensus over multiple FOVs 
demonstrates that a consensus predictor is inherently 
superior to classification at individual FOV sizes. A 
consensus predictor over multiple FOV sizes is defined as 
H(D)= Et [H (Dt, t)], where D= {Dt: ∀t ∈ T} is the 
collective data over all FOV sizes, H(Dt, t) is a meta-
classifier (integrated FOV size prediction via individual 
FOV classifier) for each t, and Et is the expectation of 
H(Dt, t) at FOV size t ∈ T. The mean squared error of 
classification at individual FOV sizes is given by et=Et 
[y–H(Dt, t)] and the error of the consensus predictor is 
given by eA=[y–H(D)]2.

Proposition 1: Given independent classifiers at FOV sizes 
t ∈ T, et ≥ eA.

Proof:
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Note that the consensus classifier for multiple FOV sizes 
is similar to Bagging.[19] However, instead of combining 
weak learners, independent predictors at different FOV 
sizes (reasonable assumption since different information 
is discernible at different FOV sizes in heterogeneous 
images) are used as the “weak” classifiers used to build 
the “strong” consensus result. To this end, Proposition 
1 ensures that the consensus error eA will always be less 
than the mean error et of individual FOV size classifiers.

Integrated FOV Size Prediction via Individual FOV 
Classifier
A pre-trained classifier h(dt

M, f) ∈ {0,1} is first used to 
assign an initial class decision to each individual FOV 
dt with associated features f. Subsequently, decisions 
are aggregated for all FOVs Dt  to achieve a combined 
decision H(Dt, t) at a single FOV size t ∈ T.

Algorithm 1: Individual FOV Classifier
Input: Image C. FOV sizes T. Classified h(dt

m, f).
Output: Aggregate prediction H(Dt, t) for each FOV size 
t ∈ T
1. for All t ∈ T do
2.  From C, define M, t × t FOVs Dt= {dt

1, d
t
2,.... d

t
M}.

3. Extract features f from dt
m, ∀m ∈ M.

4.  Apply classifier h(dt
m, f) for initial classification of each dt

m.
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5. Make aggregate predication 
1

1
( , ) ( ,f)t tt

=
= å h

M

mm
H D d

M
 over 

all FOVs Dt.

6. end for

Experimental Design
Dataset
The multi-FOV classifier is leveraged for the task of 
quantifying BCa disease outcome by distinguishing 
tumors based on Oncotype DX RS. CD34 
immunohistochemistry (IHC) and hematoxylin and 
eosin (H and E) stained histopathology images from 
29 patients (9 low RS, 11 intermediate RS, 9 high RS) 
were digitized via a whole slide scanner at 1 µm/pixel 
resolution [Table 1]. Each slide is accompanied by (a) 
annotations from an expert pathologist denoting extent 
of invasive cancer, and (b) RS values denoting good (0 < 
RS < 18), intermediate (18 ≤ RS ≤ 30), or poor (30 < 
RS < 100) outcome.

Classification Strategy
In each experiment, classification accuracy is computed 
by comparing the class predictions made by each classifier 

(multi-FOV and individual FOV sizes) to the ground 
truth, i.e. good, intermediate, or poor outcome, delineated 
by the Oncotype DX RS for each slide. To mitigate the 
bias associated with the selection of training and testing 
samples, each classifier is evaluated via a three-fold cross-
validation scheme.[20] For each experiment, the dataset is 
first divided randomly into three subsets of equal size. 
FOVs from two subsets are used to train the preliminary 
classifier h (via a random forest classifier[21]) and FOVs 
from the remaining subset is used for evaluation. The 
training and testing subsets are rotated so that each slide 
is evaluated once. The entire cross-validation procedure 
is repeated 10 times to produce mean and standard 
deviation classification accuracy values.

Experiment 1: Multi-FOV Classifier for 
Quantifying Vascular Density in CD34 IHC Stained 
Histopathology
The density of vascular formation is calculated from 
CD34 IHC stained histology images [Figures 1a and e] to 
capture the degree of angiogenesis via the following steps.

Step 1: Color deconvolution[15] splits the image into 
channels representing DAB (i.e. CD34 expression) and 
hematoxylin [Figures 1b, c, f, and g].

Step 2: The DAB channel is thresholded to produce a 
set of brown pixels corresponding to angiogenic vessels 
[Figures 1d and h].

Step 3: Global vascular density is defined as fraction of 
brown pixels within region of cancer extent from entire slide.

Step 4: Local vascular density is defined as fraction of 

Table 1: A summary of the data cohort 
comprising 29 ER+ BCa patients used in this 
paper. For each class, the number of patients and 
the range of oncotype DX RS values are given

Patient class # Patients RS range

Low 9 0-17
Intermediate 11 18-30
High 9 31-100

Figure 1: (a), (e) CD34 IHC stained images are separated into (b), (f) hematoxylin and (c), (g) DAB channels via color deconvolution. The 
DAB channel is thresholded to isolate (d), (h) segmented regions expressing the CD34 protein.

a

e

b

f

c

g

d

h
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brown pixels from a smaller FOV (of size t ∈ T) within 
region of cancer extent. A range of FOV sizes (T= {250, 
500, 1000} pixels) was considered in this work.

Experiment 2: Multi-FOV Classifier for 
Quantifying Tissue Morphology on H and E 
Stained Histopathology
The variation in the spatial arrangement of cancer nuclei 
is quantified to capture the BCa tissue structure in an 
image via the following steps.

Step 1: Color deconvolution is used to separate image 
into channels representing hematoxylin and eosin stains 
[Figures 2b and c].

Step 2: Since hematoxylin stains nuclear material, 
individual cancer nuclei are detected by thresholding the 
hematoxylin channel [Figure 2d].

Step 3: Cancer nuclei are used as vertices for construction 
of Voronoi diagram [Figures 2e, h, and k], Delaunay 
triangulation [Figures 2f, i and l], and minimum spanning 

Figure 2: (a) Hematoxylin and eosin stained images are separated into (b) hematoxylin and (c) eosin channels via color deconvolution. 
The hematoxylin channel is thresholded to detect (d) centroids of individual cancer nuclei, which are used to construct (e), (h), (k) 
Voronoi diagram, (f), (i), (l) Delaunay triangulation, and (g), (j), (m) minimum spanning tree. The graphs are subsequently used to extract 
50 features describing nuclear architecture. Note the variations in nuclear arrangement when exposing (e)-(g) large, (h)-(j) medium, and 
(k)-(m) small FOVs

a d

g

b

e

h j

k l m

c

f

i
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tree [Figures 2g, j and m], from which 50 architectural 
features [Table 2] are extracted for each image.

Step 4: Architectural features are calculated for individual 
FOVs within regions of cancer extent. A wide range 
of FOV sizes (t ∈ {250, 500, 1000, 2000} pixels) was 
considered in this paper.

Experiment 3: Multi-Parametric Classifier for 
Combining Features from H and E and IHC 
Stained Histopathology
Since vascular density and nuclear architecture utilize 
distinct biological phenomena to describe disease 
aggressiveness, we expect a combination of the two data 
channels to produce improved classification.

Step 1: Perform Experiment 1 and save resulting class 
decision HIHC ∈ {0,1} made for each slide.

Step 2: Perform Experiment 2 and save resulting class 
decision HHE ∈ {0,1} made for each slide.

Step 3: Generate a decision-level prediction 

IHC HE
ˆ {0,1}= Ù ÎH H H  based on the independent class 
predictions made from the H and E and IHC stained 
slides. Note that the ∧ operation is defined as “logical 
AND”, whereby ˆ 1=H  if both HIHC=1 and HHE=1. 
Conversely, ˆ 0=H  if either HIHC=0 or HHE=0.

RESULTS AND DISCUSSION

Experiment 1: Vascular Density in CD34 IHC 
Stained Histopathology
The ability of the multi-FOV classifier to outperform 
classification at individual FOV sizes is borne out by 
the local vascular density [Figure 3], which is able to 
distinguish entire CD34 IHC stained slides with good vs. 
poor, good vs. intermediate, and intermediate vs. poor 
Oncotype DX RS values with classification accuracies of 
0.82 ± 0.04, 0.75 ± 0.06, 0.86 ± 0.04, respectively, and 
positive predictive values (PPV) of 0.82 ± 0.06, 0.76 ± 
0.06, 0.87 ± 0.06, respectively. The theoretical justification 
for the multi-FOV framework suggests that a multi-FOV 
classifier will outperform the majority of classifiers for 
individual FOV sizes (theoretical motivation for consensus-
based approach ). This concept is validated empirically in 
Experiment 1, where multi-FOV classifiers perform as well 
as (and usually better than) individual FOV sizes in both 
classification accuracy and PPV [Figure 3].

In addition, global vascular density produces 
corresponding classification accuracies of 0.60 ± 0.08, 
0.40 ± 0.11, 0.46 ± 0.07 and PPV of 0.82 ± 0.09, 
0.76 ± 0.07, and 0.72 ± 0.11, respectively [Figure 3]. 
Experiment 1 demonstrates that the multi-FOV classifier 
(in conjunction with local vascular density) consistently 
outperforms whole-slide global vascular density in 
discriminating ER+ BCa with low, intermediate, and high 
Oncotype DX RS [Figure 3]. The superior performance 
of the multi-FOV classifier is likely due to its ability to 
capture local variations in vascular density and robustness 
to intra-slide heterogeneity. The multi-FOV framework 
also has an added benefit in that it readily accommodates 
the inclusion of complimentary structural information 
(e.g. nuclear architecture).

Experiment 2: Tissue Morphology on H and E 
Stained Histopathology
Figure 4 shows that the architectural features (in 

Figure 3: (a) Classification accuracy and (b) positive predictive values for the multi-FOV framework using local vascular density from 29 
CD34 IHC stained histopathology slides over 10 trials of three-fold cross-validation. Note that the bar colors represent different FOV sizes 
as indicated. For comparison, global vascular density was also calculated directly from each slide.

Table 2: A breakdown of the 50 architectural 
features extracted from the Voronoi diagram, 
Delaunay triangulation, and minimum spanning 
tree graphs

Type # Description

Voronoi diagram 13 Polygon area, perimeter, chord 
length

Delaunay triangulation 8 Triangle side length, area
Minimum spanning tree 4 Edge length
Nearest neighbor 25 Density, distance to nearest nuclei
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Table 3: Classification accuracies and positive 
predictive values for comparing good, 
intermediate, and poor Oncotype DX scores via 
the multi-FOV framework using a combination 
of vascular density and architectural features 
over 10 trials of three-fold cross-validation

Good vs. poor Good vs.  
intermed

Intermed. 
vs. poor

Accuracy 0.91 ± 0.022 0.76 ± 0.051 0.83 ± 0.076
PPV 0.94 ± 0.10 0.85 ± 0.11 0.92 ± 0.13

PPV - Positive predictive values

Table 4: Bonferroni-corrected P-values produced 
by two-sided t-tests with a null hypothesis 
that classification results from the multi-FOV 
approach are equivalent to results from individual 
FOV sizes from both IHC stained and H and E 
stained histopathology slides. The alternative 
hypothesis asserts that the multi-FOV classifier 
performs better than individual FOV sizes

FOV size Good vs.  
poor

Good vs. 
intermed.

Intermed. 
vs. poor

Vascular density in IHC stained histopathology
1000 0.0288 0.2250 0.9042
500 0.0123 0.1011 1.0000
250 0.0129 0.2313 0.1101
Nuclear architecture in H and E stained histopathology
2000 0.0570 0.0666 1.0000
1000 0.02657 0.0066 0.1575
500 0.0429 0.0003 0.0657
250 <0.0001 <0.0001 0.0027

IHC: Immunohistochemistry, H and E: Hematoxylin and eosin, FOV: Field-of-view

Figure 4: (a) Classification accuracy and (b) positive predictive values for the multi-FOV framework using architectural features from 29 
H and E stained histopathology slides over 10 trials of three-fold cross-validation. Note that the bar colors represent different FOV sizes 
as indicated

conjunction with the multi-FOV classifier) are able 
to discriminate H and E stained slides with good vs. 
poor, good vs. intermediate, and intermediate vs. poor 
Oncotype DX RS at classification accuracies of 0.91 ± 
0.04, 0.72 ± 0.06, 0.71 ± 0.11, respectively, and positive 
predictive values of 0.92 ± 0.06, 0.74 ± 0.12, 0.68 ± 0.11, 
respectively. The argument in favor of the multi-FOV 
classifier is even stronger in Experiment 2 (compared 
to Experiment 1), where it shows significantly increased 
performance over individual FOV sizes [Figure 4].

Experiment 3: Combined Features on H and E and 
IHC Stained Histopathology
Performing a decision-level combination of vascular 
density and nuclear architecture produces classification 
accuracies of 0.91 ± 0.02, 0.76 ± 0.05, 0.83 ± 0.08 
and PPV of 0.94 ± 0.10, 0.85 ± 0.11, 0.92 ± 0.13, for 
distinguishing good vs. poor, good vs. intermediate, and 
intermediate vs. poor RS values, respectively [Table 3]. 
The fact that vascular density and nuclear architecture 
exploit such disparate aspects of cancer biology (i.e. 
angiogenesis and tissue morphology, respectively) suggests 
that the two feature classes are complimentary and 
integration will yield improved classification. Experiment 
3 shows that a decision-level combination of the two 
feature sets maintains high levels of classification accuracy 
while improving positive predictive values [Table 3]  
over the corresponding multi-FOV classifiers from 
Experiments 1 and 2 [Figures 3 and 4].

Significance of Multi-FOV Classifier Compared 
to Individual FOV Sizes
To confirm the significance of our results for the multi-
FOV classifier, two-sample t-tests were performed with 
alternative hypotheses asserting that the multi-FOV 
classifier outperforms individual FOV sizes in terms 
of classification accuracy [Table 4]. The Bonferroni 
correction for multiple comparisons[22] has been applied 
to all P-values in Table 4. For good vs. poor outcome, 
we were able to reject the null hypothesis for all FOV 

sizes with P < 0.05 for vascular density and for 3 of 4 
FOV sizes for nuclear architecture. Similarly, the null 
hypothesis was rejected with P < 0.05 for 3 of 4 FOV 
sizes when comparing good vs. intermediate outcomes 
and with P < 0.10 for 2 of 4 FOV sizes when comparing 
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intermediate vs. poor outcomes for nuclear architecture. 
The results also suggest that vascular features in 
conjunction with the multi-FOV approach do not appear 
to offer any significant improvement in distinguishing 
good vs. intermediate and intermediate vs. poor 
outcomes, suggesting the need to identify higher order 
features that more accurately quantify vascular formation 
in IHC stained ER+ BCa histopathology.

Understanding Misclassified Patients in the 
Context of Oncotype DX as a Relative Ground 
Truth
It is particularly important to note that the Oncotype 
DX RS values used as class labels in this work represent 
a relative ground truth due to their demonstrated 
correlation with patient outcome.[1] The classification 
results in this paper do not reflect directly upon the 
ability of the multi-FOV framework to predict patient 
outcome; instead, they reveal the level of concordance 
between the multi-FOV framework and Oncotype DX 
RS values. Specifically, our results demonstrate the 
difficulty in using relative ground truth to evaluate 
BCa prognosis due to the high degree of uncertainty 
in the “intermediate” class. This problem is illustrated 
in Figure 5, where only a few of the misclassified 
slides with intermediate RS fall squarely within 
the intermediate class (RS 22-29). Meanwhile, the 
majority of misclassifications lies on the lower end of 
the intermediate class (RS 18-21) and may actually 
represent patients with good prognosis.

CONCLUSIONS

We have presented a computerized system for predicting 
disease outcome in ER+ BCa using only image-based 
features from multi-parametric histopathology images. 
From a translational perspective, this work illustrates 
the possibility of a low cost, quantitative, image-based 
risk predictor that performs on par with expensive 
gene expression assays (e.g. Oncotype DX) in terms of 
predicting outcome in ER+ BCa patients. The main 
contributions of this work are the following:

A multi-FOV framework that integrates vascular and 
structural information from multiple FOVs at different 
sizes in ER+ BCa histopathology, and

Quantitative evaluation of vascular density from CD34 
IHC stained slides as a prognostic indicator for ER+ BCa 
via comparison to Oncotype DX RS.

Utilizing image features that quantify angiogenesis and 
nuclear architecture, we demonstrated the ability of the 
multi-FOV classifier to discriminate between cancers 
with good and poor RS, good and intermediate RS, and 
intermediate and poor RS with accuracies of 0.91, 0.76, 
and 0.83, respectively. We also establish the importance 

of using localized FOV-based feature extraction instead 
of a global approach for classifying heterogeneous 
histopathology slides. For nuclear architecture, the 
advantage of the multi-FOV classifier (over classification 
at individual FOV sizes) is significant in most cases. 
However, the results for vascular density suggest that 
additional patients should be included to confirm the 
superiority of the multi-FOV approach.

A closer look at studies misclassified by the multi-
parametric multi-FOV classifier shows that a large number 
of misclassified patients with intermediate RS are actually 
distributed closely along the border between low and 
intermediate RS values. This distinction is particularly 
important because recent studies comparing Oncotype 
DX with another molecular assay, PAM50, have suggested 
that a number of patients assigned intermediate RS may 
actually have a low risk of recurrence and, hence, do not 
require adjuvant chemotherapy.[23]

In the current implementation, the entire algorithm 
(including object detection/segmentation, feature 
extraction, and classification) requires approximately 2 h 
per slide on a 2.83 GHz processor. A key advantage of the 
multi-FOV approach, however, is that computational time 
can be significantly reduced via parallelization, especially 
with the rapid proliferation of multi-core CPU and GPU 
computing. For instance, individual FOV sizes (from all 
histological channels) can be processed in parallel since the 
class predictions they make are independent of each other.

Future work will focus on incorporating additional feature 
classes and a larger variety of histopathology studies. In the 
long term, we aim to perform a direct comparison against 
Oncotype DX in terms of predicting patient outcome.
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