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Cancer is a complex disease, and its study requires deep understanding of several

biological processes and their regulation. It is an accepted fact that non-coding RNAs

are vital components of the regulation and cross-talk among cancer-related signaling

pathways that favor tumor aggressiveness and metastasis, such as neovascularization,

angiogenesis, and vasculogenic mimicry. Both long non-coding RNAs (lncRNAs) and

micro-RNAs (miRNAs) have been described as master regulators of cancer on their own;

yet there is accumulating evidence that, besides regulating mRNA expression through

independent mechanisms, these classes of non-coding RNAs interact with each other

directly, fine-tuning the effects of their regulation. While still relatively scant, research

on the lncRNA-miRNA-mRNA axis regulation is growing at a fast rate, it is only in

the last 5 years, that lncRNA-miRNA interactions have been identified in tumor-related

vascular processes. In this review, we summarize the current progress of research on

the cross-talk between lncRNAs and miRNAs in the regulation of neovascularization,

angiogenesis and vasculogenic mimicry.
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INTRODUCTION

Cancer is a serious worldwide health problem that affects the health of all human cultures. Prostate
and breast cancer rank as top prevalent cancer types in men and women, respectively (1). Cancer
has been defined as a complex, heterogeneous, and multifactorial disease that occurs by the
presence of driver mutations that leads to the activation of proto-oncogenes and corresponding
inactivation of tumor suppressors. This provokes a switch in cell functions that ultimately leads to
the hallmarks of cancer (2).

In addition to mutations in protein-coding genes, recent advances in molecular oncology have
described the aberrant expression of non-conding RNAs such as micro-RNAs (miRNAs) and long-
non-coding RNAs (lncRNAs) (3, 4). Both molecules are well-established as master regulators of
multiple protein-coding genes (5). Among other functions, lncRNAs can act as molecular decoys,
sequestering miRNAs, and consequently, inhibiting their interaction with their target messenger
RNAs (mRNA) (6, 7). This way, lncRNAs regulate a wide range of biological processes through
their crosstalk with miRNAs that, in turn, regulate mRNAs (8). Since these crosstalking molecules
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are so closely related, abnormal expression of lncRNAs interferes
with mRNA expression patterns creating a dysregulation that
can culminate in cancer development (9). In the present review,
we summarize the recent studies on the lncRNA-miRNA-mRNA
crosstalk in order to provide insight into the complexity of
the molecular mechanism that underlies neovascularization,
angiogenesis, and vasculogenic mimicry.

MicroRNAs

Micro-RNAs (miRNAs), are small single-stranded 18–25
nucleotide RNAs. They play key roles in biological processes
such as development, stem cell differentiation, and tissue identity
through negative regulation of mRNA transcripts (10). Twenty-
six years after their discovery, the number of studies that describe
their role in cancer is still increasing, so they have earned their
place as diagnostic, prognostic, and therapeutic biomarkers (5).

The earliest report on miRNAs was made by the Ambros
lab (11). Lin-4 is a 22-nucleotide RNA with sequence
complementarity to a region of the 3′UTR in the lin-14
mRNA, which inhibits lin-14 mRNA from being translated.
However, it was not until 2001 that Ambros coined the term
miRNA when describing a number of small RNAs with a
role in gene regulation that had been recently identified in
C. elegans (12).

Most miRNAs are transcribed in the form of a primary
miRNA (pri-miRNA) by RNA polymerase II (Pol II), then
processed by the nuclear microprocessor (comprised by the
Ribonuclease II DROSHA, and DGCR8) to form the pre-miRNA,
which is later exported to the cytoplasm bymeans of an Exportin-
5-Ran-GTP-shuttle protein. In the cytoplasm, DICER binds
to the pre-miRNA and cleaves it to its final 22 nt mature
form that associates with AGO 2 to form the RNA-induced
silencing complex (RISC). MiRNAs function through sequence
complementary: within the RISC, the miRNA binds the target
mRNA 3′UTR and, based on the degree of complementarity,
leads to full mRNA degradation or blocking of the ribosomal
machinery, both result in gene silencing (13).

The first reported miRNAs contributing to cancer were miR-
15/16 in Chronic Lymphocytic Leukemia (CLL). Under normal
conditions, both miRNAs repress antiapoptotic Bcl-2 protein,
which is overexpressed in CLL (14). Since then, several miRNAs
associated with cancer have been described. Ongoing research
on miRNAs and their role in cancer development shows their
great potential as biomarkers, therapeutically targets or even
as potential therapies, restoring function of tumor suppressor
miRNAs (10).

LONG-NON-CODING RNAs

Transcripts that do not encode proteins and are more than
200 nucleotides in length, are termed long non-coding RNAs
(lncRNA) (15). Many of them resemble mRNAs in aspects such
as being 5′capped, spliced, and polyadenylated; but differ in
a shorter overall length, fewer but longer exons, and lower
expression levels (16).

Transcription of lncRNAs is similar to other eukaryotic RNAs,
transcribed by RNA Pol II from bidirectional promoters (15).
These promoters are often enriched in H3K27ac, H3K4me3,
and H3K9ac modified histones and are repressed by remodeling
complexes such as Swr1, lsw2, Rsc, and Ino80; therefore,
SWI/SNF complex activity is needed to promote transcription
initiation. After being transcribed, their structure is unstable,
and they are subject to nuclear exosome or cytosolic non-sense-
mediated decay, so their half-life is short (<2 h) compared
to miRNA (48-h half-life). It is still unknown whether this
mechanism is followed by all lncRNAs (17).

LncRNA classification relies on the empirical attributes
originally used to detect them such as size, localization, and
function (18) although it is yet to reach a universally recognized
consensus. The latest classification by the genomic consortium
GENCODE categorizes them according to their genomic location
in five groups: (1) Antisense RNAs: encompasses RNAs that are
transcribed from the antisense strand near an exon of a protein-
coding locus; (2) Long intergenic non-coding (LincRNA):
includes RNAs that are transcribed from intergenic loci; (3) Sense
overlapping transcripts: transcripts that comprehend a coding
gene inside an intron on the same strand, (4) Sense intronic
transcripts: comprises transcripts that are encoded in introns of
coding genes, (5) Processed transcripts: RNAs that do not contain
an ORF and cannot be otherwise classified (19).

Due to their ability to interact with DNA, RNA, and proteins,
lncRNAs are able to regulate very diverse cellular processes such
as chromatin modification, transcription, post-transcriptional
modifications, scaffolding, and post-transcriptional mRNA
regulation. Consequently, lncRNAs can be found in equally
diverse subcellular locations: nucleus, subnuclear domains, and
cytoplasm (6, 7).

The existence of lncRNAs was first reported in the early
1990s with the discovery of H19 and Xist in mouse (20, 21).
Subsequently, novel lncRNAs candidates were identified and
their true relevance in human biology and disease was revealed
(22, 23). A role in cancer for lncRNAs was only suggested last
decade, when HOTAIR (24) and H19 (25) were found to modify
the transcriptional landscape through chromatin modification.
Since then, many reports have concurrently established a role
for lncRNAs in cancer development (26). Moreover, they are
uniquely promising cancer biomarkers since they are easily
detectable in body fluids (27, 28).

LncRNA-miRNA INTERACTION

Besides the regulation that both miRNAs and lncRNAs alone
exert on mRNAs, it has been reported that they interact
with one another, further modulating their influence in the
transcriptome. These interactions lead to miRNA-triggered RNA
decay, competition between miRNAs and lncRNAs for the same
mRNA target, miRNA generation from lncRNAs, and lncRNAs
acting as decoys for miRNAs [extensively reviewed in (29)].

Multiple reports show that the latter is the most prevalent
lncRNA-miRNA interaction in cancer. LncRNAs that bind
miRNAs and prevent their interaction with their target are
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FIGURE 1 | lncRNA/miRNA/mRNA axis regulation. Among other interaction

forms between ncRNAs and mRNAs, this review focuses only on lncRNAs

blocking the negative regulation exerted by miRNAs. (A) miRNAs block

translation by binding mRNA. (B) As lncRNAs function as decoys for miRNAs,

mRNA translation is allowed.

regarded to as competitive endogenous RNAs (ceRNAs), decoys
or sponges (30); since they prevent miRNAs from completing
their regulatory function, lncRNAs acting as sponges are,
effectively, positive regulators of mRNA transcripts (Figure 1).
Interestingly, most lncRNAs capture miRNAs using regions
close to their 3′ end named miRNA Response Elements (MRE),
which are complementary with the Ago binding sites present
in most miRNAs (31). It is relevant to mention that, while
most RNA-RNA interaction reports come from strictly controlled
experiments, the exact relationship between the plethora of RNAs
in the cell—and thus the efficiency of competitive endogenous
interactions—remains to be entirely understood in pathological
models, which often present strong dysregulation of specific
competing endogenous RNAs (32).

Prediction of these mechanisms has gained importance in
the latest years due to the broad impact of the lncRNA-miRNA
regulation. This has led to the development of bioinformatic
tools such as MechRNA (33), RNAHybrid (34), RNADuplex
(35), and RNAcofold (36) among others, that aim to elucidate
lncRNA-miRNA interactions. Likewise, searchable repositories of
lncRNA-miRNA interactions such as miRcode (37) are working
to facilitate the study of RNA regulation through information. At
the time of writing, experimental validation of lncRNA-miRNA
interactions is necessary (38).

The role of lncRNAs is certainly complex. For instance,
it was recently reported that UCA1 binds the 3′UTR of
mRNAs to prevent their degradation by miRNAs, constituting
a RNA-based regulatory signaling, which regulates cancer-linked
pathways (39).

In the following sections, we review experimentally validated
lncRNA-miRNA interactions with a role in tumor development

processes. The path toward a full understanding of the ncRNA
regulation networks is still long, but we are convinced that this is
an exciting time to study regulatory RNAs.

ANGIOGENESIS

Angiogenesis is the process that generates capillary networks
from pre-existing blood vessels in response to the need of
nutrients in a given tissue region (40). It occurs throughout
development and adult life, precisely controlled by a network
of angiogenesis activators such as VEGF and inhibitors such
as VASH2 (41). Tumor cells demand nutrients and thus
modulate angiogenesis to their advantage altering the delicate
activator-inhibitor balance (42). In the reviewed literature,
we found that the VEGF-A mRNA participates in at least
four lncRNA/miRNA/mRNA axes, albeit in different cancers.
The TUG1/miR-299/VEGF-A axis increased angiogenesis in
glioblastoma (43); LINC00668/miR-297/VEGF-A axis led to
increased cell proliferation in oral squamous cell (44); and
AK131850/miR-93-5p/VEGF-A promoted differentiation,
migration and tube formation of endothelial progenitor
cells (45).

Interestingly, miR-199a regulates both VEGF-A and its
activating transcription factor, HIF-1a; thus, both of them
are upregulated by Snhg1 lncRNA when it blocked miR-199a
in a dual action Snhg1/miR-199a/VEGF-A&HIF-1a axis in
bone marrow microvascular endothelial cells, promoting their
proliferation (46). A somewhat similar mechanism was observed
in HUVEC cells, where MALAT1 lncRNA antagonized miR-
320a and upregulated the transcription factor FOXM1 (47),
which also activates VEGF-A transcription. More studies are still
needed to confirm whether VEGF upregulation is a common
mechanism, attained by different lncRNAs in different tumors or
this regulation has a high degree of redundancy and each of the
investigated lncRNAs are active in other tumors as well.

Some other angiogenesis-related signaling proteins are
upregulated by lncRNAs as well. For instance, VASH2 has
been shown promote angiogenesis in tumors (48) and H19
lncRNA—highly expressed in glioma cells—upregulates VASH2
through the H19/miR-29a/ VASH2 axis. Zheng et al. (49)
found that ANGPT2, a pro-angiogenesis signaling molecule
is targeted by miR-26b, and upregulated in HUVEC cells
by the sponge activity of PVT1 over miR-26b (50). This
same PVT1-miR-26b interaction results in the upregulation of
CTGF, a pro-inflammatory mediator with a role in promoting
angiogenesis (51).

Interestingly, lncRNA-driven upregulation of angiogenesis
has been observed in at least one non-tumoral context.
The WTAPP/miR-3120-5p/MMP-1 axis, promotes angiogenesis
in endothelial progenitor cells (52). Since, MMP-1 has an
established role in cancer development (53), it is likely that
WTAPP1 also promotes angiogenesis in tumors.

NEOVASCULARIZATION

Neovascularization is a mechanism through which new blood
vessels are made from preexistent ones, this process is
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FIGURE 2 | lncRNA/miRNA/mRNA axes involved in Angiogenesis, Neovascularization, and Vasculogenic Mimicry. The main lncRNA/miRNA/mRNA axes reported in

the literature are depicted. lncRNAs (blue) bind miRNAs (red) and upregulate (arrows) mRNAs (black). Bold characters denote axes shared between processes.

coordinated by angiogenesis inductors and inhibitors following
endothelial cell proliferation and migration (54). Developing
tumors obtain the required nutrients and oxygen from
neighboring blood capillaries; nonetheless, since the diffusion
distance of oxygen is 100–200µm, the generation of new
blood vessels is necessary for tumors larger than 1–2mm
(55). In this hypoxic environment, the HIF-1 induces the
expression several growth factors (e.g., HGF) and VEGF to
promote hypervascularization (56). An important distinction
between neovascularization and angiogenesis is that the latter
is a requirement for tumor progression accelerating the tumor
development (57). In the reviewed literature, we found only 5
papers published from 2015 to 2017, describing the lncRNA-
miRNA-mRNA crosstalk orchestrating this mechanism.

Deng et al. determined the role of the CCAT1/Let-7/c-myc
axis in hepatocellular carcinoma. High expression of CCAT1
was associated with larger tumor size, microvascular invasion
and alpha fetoprotein (58). Both HMGA2 and c-myc are let-7
targets; however, only c-myc was observed up-regulated while
CCAT1was stably overexpressed in SMMC-7721 cells. Deng et al.
concluded that CCAT1 regulates let-7 and this, in turn regulates
c-myc in order to coordinate proliferation and migration events
in hepatocarcinoma (58).

Dong et al. through in vitro and in vivo analysis demonstrated
the participation of TUG1/miR-34a-5p/VEGF-A axis in
hypervascularity and hepatoblastoma progression (59). In

a xenograft model, TUG1 knockdown lead to a significant
tumor reduction up to 28% compared to the control group.
Significantly diminished VEGF-A levels indicated that miR-
34a-5p is a miRNA target of TUG1. At the same time, VEGF-A
was a mRNA target of miR-34a-5p (59). Thus, the TUG1/miR-
34a-5p/VEGF-A axis contributes to unusual hypervascularity
in hepatoblastoma.

Glioma is a well-studied model for neovascularization (60).
Significant H19 overexpression in microvessels from glioma
specimens vs. normal brain microvessels leads to enhanced
proliferation, migration, and tube formation with major
tubule length and number of branches in H19 overexpressed
glioma-associated endothelial cells. Besides, H19 overexpression
decreased the miR-29a level and promoted the VASH2
overexpression. H19 acts a sponge for miR-29a; moreover, H19
knockdown promoted miR-29a overexpression and decreased
VASH2 protein level in consequence diminished proliferation,
migration and tube formation, establishing the H19/miR-
29a/VASH2 axis (60). In another report from glioma cells, cell
growth was arrested by H19 expression inhibition. MiR-140
was detected as a H19 miRNA-target, as suggested when H19
overexpression and miR-140 downregulation were determined
and was corroborated by luciferase assay. Simultaneously, it
was determined that iASPP—previously reported to promote
cancer cell growth—was a direct target of miR-140 (61). Also,
it was reported that PVTI lncRNA and miR-186 expression
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were inversely correlated in glioma. Functional analyses showed
that PVTI stable transfection of glioma vascular cells lines
favored proliferation, migration and tube formation. Likewise,
miR-186 knockdown supported proliferation, migration and
tube formation of glioma vascular endothelial cells; miR-186
inhibits expression of ATG7 and Beclin I, essential proteins
to autophagy-lysosome formation. The authors suggested that
PVTI and miR-186 could be deliver new objectives for glioma
anti-angiogenic therapy (62). Together, these reports strongly
suggest and important role for H19 in neovascularization in
glioma through at least three lncRNA/miRNA/mRNA axes.

VASCULOGENIC MIMICRY

Vasculogenic mimicry (VM) was first described by Maniotis
et al. They defined it a vascular-like structure which can mimic
the embryonic vascular network (microcirculatory channels
comprised of extracellular matrix) to sustain tumor tissue
providing it with plasma and red blood cells (63). An important
distinguishing characteristic is that vasculogenic mimicry
resembles the embryonic vasculogenesis processes, suggesting
that tumor cells can be converted back to an undifferentiated,
embryonic-like phenotype to provide nutrients that ensure
tumor growth in hypoxic environment (64). This mechanism
has been observed in several tumors such as melanoma, ovarian,
breast, prostate, osteosarcoma, bladder, colorectal, and lung
cancers, where it plays an important role in invasion and
metastasis; thus, patients with VM have a worse prognosis (65).

Several key molecules have been reported associated with
this process including Notch1, MMP-2, MMp-9, vimentin (66),
VE-cadherin, EphA2, FAK, PI3-Kinase (67), VEGF, endostatin,
TGF-ß1 (68), Dickkopf-1 (69), maspin (70), laminin, CD44,
thrombospondin 1, and cyclin E2 (64), among others. The
participation of master regulators such as miRNAs and lncRNAs
has not gone unnoticed, although our literature review yielded
only five papers on the miRNAs/lncRNAs/mRNAs cross-talk and
VM regulation.

Gao et al. observed HOXA-AS2 overexpression in
glioma cell lines and tissues. HOXA-AS2 knockdown lead
to underexpression of MMP-9, MMP-2 and VE-cadherin
proteins and, consequently to VM inhibition; HOX-AS2 turned
out to sponge miR-373, which, interestingly, did not target
MMP-9, MMP-2, or VE-cadherin but EGFR. Furthermore,
HOXA-AS2 knockdown favored miR-373 expression and
EGFR downregulation in U87 and U251 cell lines. Xenograft
and orthotopic models further demonstrated that HOXA-AS2
knockdown plus pre-miR-373 produced the smallest tumors, the
longest survival time and the lowest VW densities (71).

We found that TWIST1 has an important role in VM, as it
participates in at least two lncRNA-miRNA axes. In glioma, in is
upregulated by LncRNA LINC00339 via miR-539-5p. Functional
analysis revealed that overexpression of miR-539-5p inhibited
the viability, migration, invasion and tube formation of the cell
lines by downregulating TWIST1. Moreover, TWIST1 binds to
the promoter of MMP-2 and MMP-14, both involved in VM
formation. In xenograft models with knockdown LINC00339
and pre-miR-539-5p, smaller tumors and longer overall survival

supported the LINC00339/miR-539-5p/TWIST1 axis (72). In
triple-negative breast cancer (TNBC), the regulation of TWIST1
is through miR-430-3p which, in turn, is regulated by TP73-
AS1. Both an inverse correlation between TP73-AS1 and miR-
430-3p expression, and the interaction between miR-490-3p and
TWIST1 were found in MDA-MB-231 cells. Interestingly, it
was observed that the enforced expression of TWIST1 and the
inhibition of miR-430-3p increased VM formation (73).

Zhao et al. reported that lncRNA n339260 overexpression
was associated with the presence of metastasis, shorter overall
survival and with MV in hepatocellular carcinoma (HCC)
patients (74). LncRNA n339260 resulted critical to induce stem-
like characteristics and VM formation; also, its expression was
correlated with c-Myc, SOX2 and Nanog expression, which
are pluripotency-maintaining molecules. Interestingly, the target
miRNAs of n339260 were miR-31-3p, miR-30e-5p, miR-519c-
5p, miR-520c-5p, miR-29b-1-5p, and miR-92a-1-5p, which were
detected by microarray in HepG2 cells transfected with this
lncRNA (74).

The MALAT1/miR-145-5p/NEDD9 axis was described in
lung cancer: MALAT1 sponges miR-245-5p to amplify NEDD9
expression. Interestingly, MALAT1 is induced by the ERβ, a
novel role for this receptor in lung cancer progression in female
patients. NEDD9 also plays an important role in metastasis
through TGFβ signaling pathway. This axis was analyzed in
xenograft models and it was observed that ERβ promoted
metastasis via MALAT1/miR-145-5p/NEDD9 signal (75).

CONCLUSION AND PERSPECTIVES

Angiogenesis, neovascularization and VM, as tumor progression
and metastasis mechanisms, are becoming more important as
sources of biomarkers and therapeutic targets, as the authors
of several of the reviewed papers point out. On the other
hand, the nuances of lncRNA/miRNA/mRNA regulation are
not analyzed when ncRNA expression profiles are sought
(76), and global analyses of this regulation mechanisms are
still scarce [e.g., (77)]. So we considered it important to
summarize current knowledge on the lncRNA/miRNA/mRNA
axis regulation regarding angiogenesis, neovascularization, and
VM, as it is still limited and deserves further scrutiny,
perhaps due to the high methodological requirements. Upon
analyzing the PubMed-listed papers, we found few studies that
address lncRNA/miRNA/mRNA axis regulation of these nutrient
supply processes.

So far, available information shows that lncRNA H19 is
involved in angiogenesis and neovascularization, although in
diverse manners. The sharing of the H19/miR-29a/VASH2 axis
by both angiogenesis and neovascularization hints at a master
regulation role for H19 and VASH2 (Figure 2). Interestingly,
vasculogenic mimicry did not share any lncRNA/miRNA/mRNA
axes with angiogenesis or neovascularization, which makes it
reasonable to speculate that this is a specific molecular process
and suggests pivotal role for it in aggressive tumors.

Our review has shown us the important role of
lncRNA/miRNA/mRNA regulation in cancer development,
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an open area of opportunity that grants broader and deeper
exploration in the following years.
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